1
|
Wang Y, Wang H, Zhang H, Liu T, Chen X. Metal-based micro/nanomaterials for hydrogen therapy and their biomedical applications. NANOSCALE 2025. [PMID: 40387479 DOI: 10.1039/d5nr00271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Hydrogen therapy, as an emerging and promising therapeutic strategy, utilizes the ability of hydrogen to selectively scavenge reactive oxygen species, exerting biological effects such as antioxidant, anti-inflammatory, anti-tumor and antibacterial, and showing significant therapeutic effects on many oxidative stress/inflammatory related diseases, and consequently has attracted extensive attention for clinical/preclinical studies. However, low water solubility and non-targeted diffusion of hydrogen limit its application in the treatment of many diseases. Metal-based micro/nanomaterials, serving as effective hydrogen storage and production platforms, represent ideal candidates for enhancing hydrogen delivery efficiency and achieving targeted hydrogen release. This review comprehensively explores the hydrogen release mechanisms, synthesis methods, and biomedical applications of hydrogen-releasing metal-based micro/nanomaterials. Furthermore, the challenges and limitations of metal-based micro/nanomaterials for hydrogen therapy are discussed, while providing forward-looking recommendations for future research and development directions in this field.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, China.
| | - Haoyu Wang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, China.
| | - Handan Zhang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, China.
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Jin J, Yue L, Du M, Geng F, Gao X, Zhou Y, Lu Q, Pan X. Molecular Hydrogen Therapy: Mechanisms, Delivery Methods, Preventive, and Therapeutic Application. MedComm (Beijing) 2025; 6:e70194. [PMID: 40297245 PMCID: PMC12035766 DOI: 10.1002/mco2.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Molecular hydrogen (H2), recognized as the smallest gas molecule, is capable of permeating cellular membranes and diffusing throughout the body. Due to its high bioavailability, H2 is considered a therapeutic gas for the treatment of various diseases. The therapeutic efficacy of hydrogen is contingent upon factors such as the administration method, duration of contact with diseased tissue, and concentration at targeted sites. H2 can be administered exogenously and is also produced endogenously within the intestinal tract. A comprehensive understanding of its delivery mechanisms and modes of action is crucial for advancing hydrogen medicine. This review highlights H₂'s mechanisms of action, summarizes its administration methods, and explores advancements in treating intestinal diseases (e.g., inflammatory bowel disease, intestinal ischemia-reperfusion, colorectal cancer). Additionally, its applications in managing other diseases are discussed. Finally, the challenges associated with its clinical application and potential solutions are explored. We propose that current delivery challenges faced by H2 can be effectively addressed through the use of nanoplatforms; furthermore, interactions between hydrogen and gut microbiota may provide insights into its mechanisms for treating intestinal diseases. Future research should explore the synergistic effects of H2 in conjunction with conventional therapies and develop personalized treatment plans to achieve precision medicine.
Collapse
Affiliation(s)
- Jiayi Jin
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Lijun Yue
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Maoru Du
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Feng Geng
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Xue Gao
- School of PharmacyBinzhou Medical UniversityYantaiChina
| | - Yuming Zhou
- Department of Laboratory MedicineYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Qianqian Lu
- Department of OncologyYantai Affiliated Hospital of Binzhou Medical UniversityYantaiChina
| | - Xiaohong Pan
- School of PharmacyBinzhou Medical UniversityYantaiChina
| |
Collapse
|
3
|
Mo B, Ding Y, Ji Q. NLRP3 inflammasome in cardiovascular diseases: an update. Front Immunol 2025; 16:1550226. [PMID: 40079000 PMCID: PMC11896874 DOI: 10.3389/fimmu.2025.1550226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of mortality worldwide. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in numerous types of CVD. As part of innate immunity, the NLRP3 inflammasome plays a vital role, requiring priming and activation signals to trigger inflammation. The NLRP3 inflammasome leads both to the release of IL-1 family cytokines and to a distinct form of programmed cell death called pyroptosis. Inflammation related to CVD has been extensively investigated in relation to the NLRP3 inflammasome. In this review, we describe the pathways triggering NLRP3 priming and activation and discuss its pathogenic effects on CVD. This study also provides an overview of potential therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Binhai Mo
- People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yudi Ding
- First People’s Hospital of Nanning, Nanning, Guangxi, China
| | - Qingwei Ji
- People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
4
|
Zhang X, Xu C, Liu ZY, Zhang DY, Wang BH, Wang J, Ding XM. The Inflammasome: A Promising Potential Therapeutic Target for Early Brain Injury Following Subarachnoid Hemorrhage. FRONT BIOSCI-LANDMRK 2025; 30:33454. [PMID: 40018941 DOI: 10.31083/fbl33454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 12/31/2024] [Indexed: 03/01/2025]
Abstract
Subarachnoid hemorrhage (SAH), a severe cerebrovascular disorder, is principally instigated by the rupture of an aneurysm. Early brain injury (EBI), which gives rise to neuronal demise, microcirculation impairments, disruption of the blood-brain barrier, cerebral edema, and the activation of oxidative cascades, has been established as the predominant cause of mortality among patients with SAH. These pathophysiological processes hinge on the activation of inflammasomes, specifically the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)and absent in melanoma 2 (AIM2) inflammasomes. These inflammasomes assume a crucial role in downstream intracellular signaling pathways and hold particular significance within the nervous system. The activation of inflammasomes can be modulated, either by independently regulating these two entities or by influencing their engagement at specific target loci within the pathway, thereby attenuating EBI subsequent to SAH. Although certain clinical instances lend credence to this perspective, more in-depth investigations are essential to ascertain the optimal treatment regimen, encompassing dosage, timing, administration route, and frequency. Consequently, targeting the ensuing early brain injury following SAH represents a potentially efficacious therapeutic approach.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Chao Xu
- Department of Neurosurgery, Chongqing General Hospital, 400799 Chongqing, China
| | - Zi-Yuan Liu
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Dong-Yuan Zhang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Bo-Hong Wang
- Department of Neurosurgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, 030032 Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| | - Xin-Min Ding
- Department of Neurosurgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Ming Y, Zhao P, Zhang H, Zhang Z, Huang Z, Zhang L, Sun Y, Li X. Complement Molecule C3a Exacerbates Early Brain Injury After Subarachnoid Hemorrhage by Inducing Neuroinflammation Through the C3aR-ERK-P2X7-NLRP3 Inflammasome Signaling Axis. Inflammation 2024:10.1007/s10753-024-02155-7. [PMID: 39528767 DOI: 10.1007/s10753-024-02155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
An important aspect of the pathophysiology of early brain damage (EBI) after subarachnoid hemorrhage (SAH) is inflammasome-mediated neuroinflammation. It has been demonstrated that C3aR activation exacerbates neuronal damage in a number of neurological disorders. This study aims to explore the role of C3a in activating the NLRP3 inflammasome and exacerbating neuroinflammation after SAH. Preprocessing of RNA-seq transcriptome datasets using bioinformatics analysis, and screening of differentially expressed genes between SAH patients and healthy individuals from the GEO database. Internal carotid artery puncture was performed to establish SAH models in rats and mice. SAH grading, neurological scoring, brain water content, behavioral analysis, and assessments using ELISA, Western blot, immunofluorescence, and immunohistochemistry were conducted. An in vitro model of SAH was induced in BV-2 cells treated with heme (200 μM). The mechanism of C3a in post-SAH neuroinflammation was studied by interfering with and inhibiting C3aR. Results showed that the expression of C3aR was upregulated in the GEO dataset (serum of SAH patients) and identified as a key differential gene in SAH. Further, elevated levels of C3a were found in the cerebrospinal fluid of clinically collected SAH patients. In the cerebral cortex and/or serum of SAH rats, expression of C3a, IL-1β, IL-6, TNF-α, CD11b, and Ki67 were significantly increased, while IL-10 was significantly decreased. Correlation analysis revealed that C3a showed negative correlation with IL-10 and positive correlation with IL-1β, IL-6, TNF-α, CD11b, and Ki67. After stimulation with heme, protein levels of C3a increased in BV-2 cells. Interfering with C3aR significantly reduced LDH release, IL-1β secretion, Caspase1 activation, levels of NLRP3 expression and ASC oligomerization, and ATP release after heme stimulation in BV-2. Subsequently, the addition of inhibitors of ERK1/2 phosphorylation demonstrated that C3a promotes ATP efflux by activating ERK1/2 phosphorylation, thereby activating P2X7. Further addition of JNJ-55308942 (a P2X7R antagonist) revealed that C3a activated the NLRP3 inflammasome via P2X7. Finally, administering SB290157 (a C3aR inhibitor) in vivo effectively alleviated brain edema, reduced mortality, improved Garcia score, ameliorated motor dysfunction, and suppressed inflammation and NLRP3 inflammasome activation in mice after SAH. Overall, C3a exacerbates EBI-associated NLRP3 inflammasome and neuroinflammation via the C3aR-ERK-P2X7 pathway after SAH. Inhibiting C3aR may serve as a one possible treatment approach to alleviate SAH after EBI.
Collapse
Affiliation(s)
- Yuanyuan Ming
- Institute of Stroke Research, Soochow University, Suzhou, 215006, China
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Panpan Zhao
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Hongwei Zhang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Ziyuan Zhang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Zhengqian Huang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Le Zhang
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China
| | - Yong Sun
- Department of Neurosurgery, Institute of Neuroscience, The First People's Hospital of Lianyungang City, Lianyungang, 222005, China.
| | - Xiangdong Li
- First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
6
|
Abo Aasy NK, Ragab D, Sallam MA, Elkhodairy KA. Follicular mediated etodolac phosalosomal gel for contact dermatitis alleviation, insights from optimization to in-vivo appraisal. Sci Rep 2024; 14:21744. [PMID: 39289408 PMCID: PMC11408589 DOI: 10.1038/s41598-024-71456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Despite its long history as a preferential cyclooxygenase-2 inhibitor, the topical application of etodolac in inflammatory disorders does not achieve the desired clinical efficiency because of its poor water solubility and poor skin permeation. In the ongoing study, phosalosomes were designed to mitigate the etodolac drawbacks and to enhance its skin localization. Hyaluronic acid was utilized to prepare a dermal gel for the alleviation of skin inflammation. Etodolac loaded hyaluronic acid phosalosomal gel had a sustainable release profile and 10.59-fold enhanced skin retention compared to free etodolac, with boosted skin tolerability on histopathological examination after acute and chronic applications. Confocal laser microscopy imaging indicated that the etodolac amounts accumulated in the liver and kidney following dermal application were 29 and 5.7-fold lower than those following the systemic dose, respectively. For in vivo studies, etodolac loaded hyaluronic acid phosalosomal gel presented superior anti-oedemic and significant anti-nociception potential. The promising homogenous localization highlighted its potential for the delivery of lipophilic drugs for the targeted treatment of other localized skin disorders.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt.
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Marwa Ahmed Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Kadria A Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
7
|
Lin YC, Hu CC, Liu WC, Dhawan U, Chen YC, Lee YL, Yen HW, Kuo YJ, Chung RJ. Hydrogen-treated CoCrMo alloy: a novel approach to enhance biocompatibility and mitigate inflammation in orthopedic implants. J Mater Chem B 2024; 12:7814-7825. [PMID: 38895823 DOI: 10.1039/d4tb00725e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In recent decades, orthopedic implants have been widely used as materials to replace human bone tissue functions. Among these, metal implants play a crucial role. Metals with better chemical stability, such as stainless steel, titanium alloys, and cobalt-chromium-molybdenum (CoCrMo) alloy, are commonly used for long-term applications. However, good chemical stability can result in poor tissue integration between the tissue and the implant, leading to potential inflammation risks. This study creates hydrogenated CoCrMo (H-CoCrMo) surfaces, which have shown promise as anti-inflammatory orthopedic implants. Using the electrochemical cathodic hydrogen-charging method, the surface of the CoCrMo alloy was hydrogenated, resulting in improved biocompatibility, reduced free radicals, and an anti-inflammatory response. Hydrogen diffusion to a depth of approximately 106 ± 27 nm on the surface facilitated these effects. This hydrogen-rich surface demonstrated a reduction of 85.2% in free radicals, enhanced hydrophilicity as evidenced by a decrease in a contact angle from 83.5 ± 1.9° to 52.4 ± 2.2°, and an increase of 11.4% in hydroxyapatite deposition surface coverage. The cell study results revealed a suppression of osteosarcoma cell activity to 50.8 ± 2.9%. Finally, the in vivo test suggested the promotion of new bone formation and a reduced inflammatory response. These findings suggest that electrochemical hydrogen charging can effectively modify CoCrMo surfaces, offering a potential solution for improving orthopedic implant outcomes through anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore
| | - Chih-Chien Hu
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linko, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linko, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wai-Ching Liu
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - Yu-Chieh Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Yueh-Lien Lee
- Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan
| | - Hung-Wei Yen
- Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
8
|
Xu M, Qian LH, Wang JX, He ZY, Ling XY, Wang WH, Wang JW, Hu Y, Gong MJ. Rutaecarpine Alleviates Early Brain Injury-Induced Inflammatory Response Following Subarachnoid Hemorrhage via SIRT6/NF-[Formula: see text]B Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:799-819. [PMID: 38752843 DOI: 10.1142/s0192415x24500320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Subarachnoid hemorrhage (SAH), a specific subtype of cerebrovascular accident, is characterized by the extravasation of blood into the interstice between the brain and its enveloping delicate tissues. This pathophysiological phenomenon can precipitate an early brain injury (EBI), which is characterized by inflammation and neuronal death. Rutaecarpine (Rut), a flavonoid compound discovered in various plants, has been shown to have protective effects against SAH-induced cerebral insult in rodent models. In our study, we used a rodent SAH model to evaluate the effect of Rut on EBI and investigated the effect of Rut on the inflammatory response and its regulation of SIRT6 expression in vitro. We found that Rut exerts a protective effect on EBI in SAH rats, which is partly due to its ability to inhibit the inflammatory response. Notably, Rut up-regulated Sirtuin 6 (SIRT6) expression, leading to an increase in H3K9 deacetylation and inhibition of nuclear factor-kappa B (NF-[Formula: see text]B) transcriptional activation, thereby mediating the inflammatory response. In addition, further data showed that SIRT6 was proven to mediate the regulation of Rut on the microglial inflammatory response. These findings highlight the importance of SIRT6 in the regulation of inflammation and suggest a potential mechanism for the protective effect of Rut on EBI. In summary, Rut may have the potential to prevent and treat SAH-induced brain injury by interacting with SIRT6. Our findings may provide a new therapeutic strategy for the treatment of SAH-induced EBI.
Collapse
Affiliation(s)
- Min Xu
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, P. R. China
| | - Li-Hui Qian
- School of Medicine, Nanjing University of Chinese Medicine 210023, Nanjing, P. R. China
| | - Jun-Xiang Wang
- Department of Neurosurgery, Changshu No. 2 People's Hospital, Affiliated Changshu Hospital of Nantong University 215500, Jiangsu Province, P. R. China
| | - Zi-Yang He
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, P. R. China
| | - Xiao-Yang Ling
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, P. R. China
| | - Wen-Hua Wang
- Department of Neurosurgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu Province, P. R. China
| | - Jin-Wen Wang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine 210023, Nanjing, P. R. China
| | - Yue Hu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine 210023, Nanjing, P. R. China
- Shen Chun-Ti Nation-Famous Experts Studio for Traditional Chinese Medicine Inheritance, Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou 213003, Jiangsu, P. R. China
- Department of Neurology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210001, P. R. China
| | - Ming-Jie Gong
- Department of Neurosurgery, Changshu No. 2 People's Hospital, Affiliated Changshu Hospital of Nantong University 215500, Jiangsu Province, P. R. China
| |
Collapse
|
9
|
Hu Q, Li Y, Lin Z, Zhang H, Chen H, Chao C, Zhao C. The Molecular Biological Mechanism of Hydrogen Therapy and Its Application in Spinal Cord Injury. Drug Des Devel Ther 2024; 18:1399-1414. [PMID: 38707612 PMCID: PMC11068043 DOI: 10.2147/dddt.s463177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Hydrogen, which is a novel biomedical molecule, is currently the subject of extensive research involving animal experiments and in vitro cell experiments, and it is gradually being applied in clinical settings. Hydrogen has been proven to possess anti-inflammatory, selective antioxidant, and antiapoptotic effects, thus exhibiting considerable protective effects in various diseases. In recent years, several studies have provided preliminary evidence for the protective effects of hydrogen on spinal cord injury (SCI). This paper provides a comprehensive review of the potential molecular biology mechanisms of hydrogen therapy and its application in treating SCI, with an aim to better explore the medical value of hydrogen and provide new avenues for the adjuvant treatment of SCI.
Collapse
Affiliation(s)
- Quan Hu
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Yingxiao Li
- Department of Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Zhaochen Lin
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Hao Zhang
- Department of Rehabilitation Medical Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Haoyue Chen
- Department of Rehabilitation Medical Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Cui Chao
- Hydrogen Medical Research Center, The Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| | - Chuanliang Zhao
- Department of Orthopedics, the Affiliated Taian City Central Hospital of Qingdao University, Tai’an City, Shandong, 271000, People’s Republic of China
| |
Collapse
|
10
|
Wu Y, Xu Y, Sun J, Dai K, Wang Z, Zhang J. Inhibiting RIPK1-driven neuroinflammation and neuronal apoptosis mitigates brain injury following experimental subarachnoid hemorrhage. Exp Neurol 2024; 374:114705. [PMID: 38290652 DOI: 10.1016/j.expneurol.2024.114705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
RIPK1, a receptor-interacting serine/threonine protein kinase, plays a crucial role in maintaining cellular and tissue homeostasis by integrating inflammatory responses and cell death signaling pathways including apoptosis and necroptosis, which have been implicated in diverse physiological and pathological processes. Suppression of RIPK1 activation is a promising strategy for restraining the pathological progression of many human diseases. Neuroinflammation and neuronal apoptosis are two pivotal factors in the pathogenesis of brain injury following subarachnoid hemorrhage (SAH). In this study, we established in vivo and in vitro models of SAH to investigate the activation of RIPK1 kinase in both microglia and neurons. We observed the correlation between RIPK1 kinase activity and microglia-mediated inflammation as well as neuronal apoptosis. We then investigated whether inhibition of RIPK1 could alleviate neuroinflammation and neuronal apoptosis following SAH, thereby reducing brain edema and ameliorating neurobehavioral deficits. Additionally, the underlying mechanisms were also explored. Our research findings revealed the activation of RIPK1 kinase in both microglia and neurons following SAH, as marked by the phosphorylation of RIPK1 at serine 166. The upregulation of p-RIPK1(S166) resulted in a significant augmentation of inflammatory cytokines and chemokines, including TNF-α, IL-6, IL-1α, CCL2, and CCL5, as well as neuronal apoptosis. The activation of RIPK1 in microglia and neurons following SAH could be effectively suppressed by administration of Nec-1 s, a specific inhibitor of RIPK1. Consequently, inhibition of RIPK1 resulted in a downregulation of inflammatory cytokines and chemokines and attenuation of neuronal apoptosis after SAH in vitro. Furthermore, the administration of Nec-1 s effectively mitigated neuroinflammation, neuronal apoptosis, brain edema, and neurobehavioral deficits in mice following SAH. Our findings suggest that inhibiting RIPK1 kinase represents a promising therapeutic strategy for mitigating brain injury after SAH by attenuating RIPK1-driven neuroinflammation and neuronal apoptosis.
Collapse
Affiliation(s)
- Yan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingshan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Dai
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Yang F, Ma N, Li S, Chen F, Huang X, Zhao L, Cao L. Tanshinone IIA Alleviates Early Brain Injury after Subarachnoid Hemorrhage in Rats by Inhibiting the Activation of NF-κB/NLRP3 Inflammasome. Biol Pharm Bull 2024; 47:279-291. [PMID: 38057100 DOI: 10.1248/bpb.b23-00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The abnormal activation of the nuclear factor-kappa B (NF-κB)/nod-like receptor family-pyrin domain-containing 3 (NLRP3) signaling pathway is closely related to early brain injury after subarachnoid hemorrhage (SAH). Targeting the NLRP3-inflammasome has been considered an efficient therapy for the local inflammatory response after SAH. Tanshinone IIA (Tan IIA), a major component extracted from Salvia miltiorrhiza, has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effect and mechanism of Tan IIA on early brain injury after SAH. In vivo SAH injury was established by endovascular perforation technique in Sprague-Dawley rats. Limb-placement test and corner turning test were used to measure the behavior. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, hematoxylin-eosin (H&E) staining, and immunofluorescence were used to evaluate the nerve damage. Real-time RT quantitative PCR (RT-qPCR) was used to quantify the levels of inflammatory factors. Western blot was performed for the activation of the NF-κB/NLRP3 pathway. An in vitro SAH model was used to validate the conclusion. We found that the neurobehavioral impairment and cerebral edema in SAH model rats given Tan IIA were alleviated. Further study demonstrated that Tan IIA could inhibit SAH-secondary neuronal apoptosis around hematoma and alleviate brain injury. Tan IIA down-regulated the expression of interleukin-6 (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor (TNF)-α, and inhibited the activation of NF-κB. And the overexpression of pro-inflammatory factors NLRP3, IL-1β, and IL-18 induced after SAH was also reversed by Tan IIA. In conclusions, Tan IIA could inhibit the NF-κB/NLRP3 inflammasome activation to protect and ameliorate SAH-followed early brain injury, and may be a preventive and therapeutic strategy against SAH.
Collapse
Affiliation(s)
- Fanhui Yang
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Ningshuai Ma
- Department of Ultrasonography, The Affiliated Hospital of North Sichuan Medical College
| | - Suping Li
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Fei Chen
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Xiaohong Huang
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| | - Li Zhao
- Department of Neurology, The Affiliated Hospital of North Sichuan Medical College
- Institute of Neurological Diseases, North Sichuan Medical College
| | - Lingzhi Cao
- Department of Nuclear Medicine, The Affiliated Hospital of North Sichuan Medical College
| |
Collapse
|
12
|
Martínez-Martel I, Pol O. A Novel Therapy for Cisplatin-Induced Allodynia and Dysfunctional and Emotional Impairments in Male and Female Mice. Antioxidants (Basel) 2023; 12:2063. [PMID: 38136183 PMCID: PMC10741113 DOI: 10.3390/antiox12122063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Patients undergoing chemotherapy with cisplatin (CIS) develop neuropathy in addition to other symptoms such as, anxiety, depression, muscle wasting and body weight loss. This symptomatology greatly weakens patients and may even lead to adjournment of chemotherapy. The protecting actions of molecular hydrogen in many neurological illnesses have been described, but its effect on the functional and emotional deficiencies caused by CIS has not been assessed. In C57BL/6J male and female mice injected with CIS, we examined the impact of the prophylactic treatment with hydrogen-rich water (HRW) on: (i) the tactile and cold allodynia, (ii) the deficits of grip strength and weight loss, (iii) the anxiodepressive-like behaviors and (iv) the inflammatory and oxidative reactions incited by CIS in the dorsal root ganglia (DRG) and prefrontal cortex (PFC). The results demonstrate that the mechanical allodynia and the anxiodepressive-like comportment provoked by CIS were similarly manifested in both sexes, whereas the cold allodynia, grip strength deficits and body weight loss produced by this chemotherapeutic agent were greater in female mice. Nonetheless, the prophylactic treatment with HRW prevented the allodynia and the functional and emotional impairments resulting from CIS in both sexes. This treatment also inhibited the inflammatory and oxidative responses activated by CIS in the DRG and PFC in both sexes, which might explain the therapeutic actions of HRW in male and female mice. In conclusion, this study revealed the plausible use of HRW as a new therapy for the allodynia and physical and mental impairments linked with CIS and its possible mechanism of action.
Collapse
Affiliation(s)
- Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca Sant Pau, Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
13
|
Hirano SI, Ichikawa Y, Sato B, Takefuji Y, Satoh F. Clinical Use and Treatment Mechanism of Molecular Hydrogen in the Treatment of Various Kidney Diseases including Diabetic Kidney Disease. Biomedicines 2023; 11:2817. [PMID: 37893190 PMCID: PMC10603947 DOI: 10.3390/biomedicines11102817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
As diabetes rates surge globally, there is a corresponding rise in the number of patients suffering from diabetic kidney disease (DKD), a common complication of diabetes. DKD is a significant contributor to chronic kidney disease, often leading to end-stage renal failure. However, the effectiveness of current medical treatments for DKD leaves much to be desired. Molecular hydrogen (H2) is an antioxidant that selectively reduces hydroxyl radicals, a reactive oxygen species with a very potent oxidative capacity. Recent studies have demonstrated that H2 not only possesses antioxidant properties but also exhibits anti-inflammatory effects, regulates cell lethality, and modulates signal transduction. Consequently, it is now being utilized in clinical applications. Many factors contribute to the onset and progression of DKD, with mitochondrial dysfunction, oxidative stress, and inflammation being strongly implicated. Recent preclinical and clinical trials reported that substances with antioxidant properties may slow the progression of DKD. Hence, we undertook a comprehensive review of the literature focusing on animal models and human clinical trials where H2 demonstrated effectiveness against a variety of renal diseases. The collective evidence from this literature review, along with our previous findings, suggests that H2 may have therapeutic benefits for patients with DKD by enhancing mitochondrial function. To substantiate these findings, future large-scale clinical studies are needed.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yusuke Ichikawa
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Bunpei Sato
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yoshiyasu Takefuji
- Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo 135-8181, Japan
| | - Fumitake Satoh
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| |
Collapse
|
14
|
Perveen I, Bukhari B, Najeeb M, Nazir S, Faridi TA, Farooq M, Ahmad QUA, Abusalah MAHA, ALjaraedah TY, Alraei WY, Rabaan AA, Singh KKB, Abusalah MAHA. Hydrogen Therapy and Its Future Prospects for Ameliorating COVID-19: Clinical Applications, Efficacy, and Modality. Biomedicines 2023; 11:1892. [PMID: 37509530 PMCID: PMC10377251 DOI: 10.3390/biomedicines11071892] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
Molecular hydrogen is renowned as an odorless and colorless gas. The recommendations developed by China suggest that the inhalation of hydrogen molecules is currently advised in COVID-19 pneumonia treatment. The therapeutic effects of molecular hydrogens have been confirmed after numerous clinical trials and animal-model-based experiments, which have expounded that the low molecular weight of hydrogen enables it to easily diffuse and permeate through the cell membranes to produce a variety of biological impacts. A wide range of both chronic and acute inflammatory diseases, which may include sepsis, pancreatitis, respiratory disorders, autoimmune diseases, ischemia-reperfusion damages, etc. may be treated and prevented by using it. H2 can primarily be inoculated through inhalation, by drinking water (which already contains H2), or by administrating the injection of saline H2 in the body. It may play a pivotal role as an antioxidant, in regulating the immune system, in anti-inflammatory activities (mitochondrial energy metabolism), and cell death (apoptosis, pyroptosis, and autophagy) by reducing the formation of excessive reactive O2 species and modifying the transcription factors in the nuclei of the cells. However, the fundamental process of molecular hydrogen is still not entirely understood. Molecular hydrogen H2 has a promising future in therapeutics based on its safety and possible usefulness. The current review emphasizes the antioxidative, anti-apoptotic, and anti-inflammatory effects of hydrogen molecules along with the underlying principle and fundamental mechanism involved, with a prime focus on the coronavirus disease of 2019 (COVID-19). This review will also provide strategies and recommendations for the therapeutic and medicinal applications of the hydrogen molecule.
Collapse
Affiliation(s)
- Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Bakhtawar Bukhari
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Mahwish Najeeb
- University Institute of Public Health, The University of Lahore, Lahore 54590, Pakistan
| | - Sumbal Nazir
- School of Zoology, Minhaj University Lahore, Lahore 54770, Pakistan
| | - Tallat Anwar Faridi
- University Institute of Public Health, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Farooq
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Qurat-Ul-Ain Ahmad
- Division of Science and Technology, University of Education, Township Lahore, Lahore 54770, Pakistan
| | - Manal Abdel Haleem A Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Thana' Y ALjaraedah
- Department of Diet Therapy Technology & Dietetics, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Wesal Yousef Alraei
- Department of Diet Therapy Technology & Dietetics, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Mai Abdel Haleem A Abusalah
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Al-Zarqa 13132, Jordan
| |
Collapse
|
15
|
Du Y, Chen L, Qiao H, Zhang L, Yang L, Zhang P, Wang J, Zhang C, Jiang W, Xu R, Zhang X. Hydrogen-Rich Saline-A Novel Neuroprotective Agent in a Mouse Model of Experimental Cerebral Ischemia via the ROS-NLRP3 Inflammasome Signaling Pathway In Vivo and In Vitro. Brain Sci 2023; 13:939. [PMID: 37371417 DOI: 10.3390/brainsci13060939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Our previous research revealed that inflammation plays an important role in the pathophysiology of cerebral ischemia. The function of the NOD-like receptor protein 3 (NLRP3) inflammasome is to activate the inflammatory process. Recent findings suggest that reactive oxygen species (ROS) are essential secondary messengers that activate the NLRP3 inflammasome. Hydrogen-rich saline (HS) has attracted attention for its anti-inflammatory properties. However, the protective effect and possible mechanism of HSin brain ischemia have not been well elucidated. METHODS To test the therapeutic effect of HS, we established a mouse model of distal middle cerebral artery occlusion (dMCAO) and an in vitro model of BV2 cells induced by lipopolysaccharide (LPS). The ROS scavenger N-acetylcysteine (NAC) was used to investigate the underlying mechanisms of HS. RESULTS HS significantly improved neurological function, reduced infarct volume, and increased cerebral blood flow in a dMCAO mouse model. ROS, NLRP3, Caspase-1, and IL-1β expression increased after cerebral ischemia, and this was reversed by HS treatment. In BV2 cells, the application of NAC further demonstrated that HS could effectively inhibit the expression of the ROS-activated NLRP3 inflammasome. CONCLUSIONS HS, as a novel therapeutic option, could exert protect the brain by inhibiting the activation of the ROS-NLRP3 signaling pathway after cerebral ischemia.
Collapse
Affiliation(s)
- Yuanyuan Du
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Linyu Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Huimin Qiao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Lan Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Lan Yang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Peipei Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Jing Wang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Wei Jiang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Renhao Xu
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050000, China
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang 050000, China
| |
Collapse
|
16
|
Chhabra S, Mehan S. Matrine exerts its neuroprotective effects by modulating multiple neuronal pathways. Metab Brain Dis 2023; 38:1471-1499. [PMID: 37103719 DOI: 10.1007/s11011-023-01214-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Recent evidence suggests that misfolding, clumping, and accumulation of proteins in the brain may be common causes and pathogenic mechanism for several neurological illnesses. This causes neuronal structural deterioration and disruption of neural circuits. Research from various fields supports this idea, indicating that developing a single treatment for several severe conditions might be possible. Phytochemicals from medicinal plants play an essential part in maintaining the brain's chemical equilibrium by affecting the proximity of neurons. Matrine is a tetracyclo-quinolizidine alkaloid derived from the plant Sophora flavescens Aiton. Matrine has been shown to have a therapeutic effect on Multiple Sclerosis, Alzheimer's disease, and various other neurological disorders. Numerous studies have demonstrated that matrine protects neurons by altering multiple signalling pathways and crossing the blood-brain barrier. As a result, matrine may have therapeutic utility in the treatment of a variety of neurocomplications. This work aims to serve as a foundation for future clinical research by reviewing the current state of matrine as a neuroprotective agent and its potential therapeutic application in treating neurodegenerative and neuropsychiatric illnesses. Future research will answer many concerns and lead to fascinating discoveries that could impact other aspects of matrine.
Collapse
Affiliation(s)
- Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
17
|
Rahman MH, Jeong ES, You HS, Kim CS, Lee KJ. Redox-Mechanisms of Molecular Hydrogen Promote Healthful Longevity. Antioxidants (Basel) 2023; 12:988. [PMID: 37237854 PMCID: PMC10215238 DOI: 10.3390/antiox12050988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Age-related diseases represent the largest threat to public health. Aging is a degenerative, systemic, multifactorial and progressive process, coupled with progressive loss of function and eventually leading to high mortality rates. Excessive levels of both pro- and anti-oxidant species qualify as oxidative stress (OS) and result in damage to molecules and cells. OS plays a crucial role in the development of age-related diseases. In fact, damage due to oxidation depends strongly on the inherited or acquired defects of the redox-mediated enzymes. Molecular hydrogen (H2) has recently been reported to function as an anti-oxidant and anti-inflammatory agent for the treatment of several oxidative stress and aging-related diseases, including Alzheimer's, Parkinson's, cancer and osteoporosis. Additionally, H2 promotes healthy aging, increases the number of good germs in the intestine that produce more intestinal hydrogen and reduces oxidative stress through its anti-oxidant and anti-inflammatory activities. This review focuses on the therapeutic role of H2 in the treatment of neurological diseases. This review manuscript would be useful in knowing the role of H2 in the redox mechanisms for promoting healthful longevity.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Eun-Sook Jeong
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Hae Sun You
- Department of Anesthesiology & Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Cheol-Su Kim
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| |
Collapse
|
18
|
Jung H, Youn DH, Park JJ, Jeon JP. Bone-Marrow-Derived Mesenchymal Stem Cells Attenuate Behavioral and Cognitive Dysfunction after Subarachnoid Hemorrhage via HMGB1-RAGE Axis Mediation. Life (Basel) 2023; 13:881. [PMID: 37109411 PMCID: PMC10145212 DOI: 10.3390/life13040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
We evaluated the therapeutic effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on behavioral and cognitive function in a mouse model of mild subarachnoid hemorrhage (SAH) and explored the underlying mechanisms in conjunction with the HMGB1-RAGE axis. The SAH models were generated in a total of 126 male C57BL/6J mice via endovascular perforation and evaluated 24 h and 72 h after the intravenous administration of BMSCs (3 × 105 cells). The BMSCs were administered once, at 3 h, or twice, at 3 h and 48 h after the model induction. The therapeutic effects of the BMSCs were compared to those of the saline administration. Compared to saline-treated SAH-model mice, at 3 h, the mice with mild SAH treated with the BMSCs showed significant improvements in their neurological scores and cerebral edema. The administration of the BMSCs decreased the mRNA expression of HMGB1, RAGE, TLR4, and MyD88, as well as the protein expression of HMGB1 and phosphorylated NF-kB p65. Furthermore, the numbers of slips per walking time, impairments in short-term memory, and the recognition of novel objects were improved. There was some improvement in inflammatory-marker levels and cognitive function according to the BMSCs' administration times, but no large differences were seen. The administration of BMSCs improved behavioral and cognitive dysfunction by ameliorating HMGB1-RAGE axis-mediated neuroinflammation after SAH.
Collapse
Affiliation(s)
- Harry Jung
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research Team, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul 05030, Republic of Korea
- Department of Neurosurgery, Kangwon National University College of Medicine, Chuncheon 24341, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24253, Republic of Korea
| |
Collapse
|
19
|
Artamonov MY, Martusevich AK, Pyatakovich FA, Minenko IA, Dlin SV, LeBaron TW. Molecular Hydrogen: From Molecular Effects to Stem Cells Management and Tissue Regeneration. Antioxidants (Basel) 2023; 12:antiox12030636. [PMID: 36978884 PMCID: PMC10045005 DOI: 10.3390/antiox12030636] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
It is known that molecular hydrogen is a relatively stable, ubiquitous gas that is a minor component of the atmosphere. At the same time, in recent decades molecular hydrogen has been shown to have diverse biological effects. By the end of 2022, more than 2000 articles have been published in the field of hydrogen medicine, many of which are original studies. Despite the existence of several review articles on the biology of molecular hydrogen, many aspects of the research direction remain unsystematic. Therefore, the purpose of this review was to systematize ideas about the nature, characteristics, and mechanisms of the influence of molecular hydrogen on various types of cells, including stem cells. The historical aspects of the discovery of the biological activity of molecular hydrogen are presented. The ways of administering molecular hydrogen into the body are described. The molecular, cellular, tissue, and systemic effects of hydrogen are also reviewed. Specifically, the effect of hydrogen on various types of cells, including stem cells, is addressed. The existing literature indicates that the molecular and cellular effects of hydrogen qualify it to be a potentially effective agent in regenerative medicine.
Collapse
Affiliation(s)
- Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| | - Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | | | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Sergei V. Dlin
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| |
Collapse
|
20
|
Viderman D, Tapinova K, Abdildin YG. Mechanisms of cerebral vasospasm and cerebral ischaemia in subarachnoid haemorrhage. Clin Physiol Funct Imaging 2023; 43:1-9. [PMID: 36082805 DOI: 10.1111/cpf.12787] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 12/13/2022]
Abstract
Subarachnoid haemorrhage (SAH) is a cerebrovascular emergency associated with significant morbidity and mortality. SAH is characterized by heterogeneity, interindividual variation and complexity of pathophysiological responses following extravasation of blood from cerebral circulation. The purpose of this review is to integrate previously established pre-existing factors, pathophysiological pathways and to develop a concept map of mechanisms of SAH-induced cerebral vasospasm and delayed cerebral ischaemia using a systematic approach. We conducted an extensive mapping of a hypothesized sequence of pathophysiological events. Documentation of supporting evidence was done alongside a concept map building. After finalizing the model, we conducted an analysis of the consequences and connections of pathophysiological events. We included the findings of experimental research, focusing on pathophysiological processes. We focused on SAH-induced cerebral vasospasm and delayed cerebral ischaemia as a component of cerebral injury and potential systemic consequences. SAH-induced brain injury occurs within 72 h following haemorrhage. Pathophysiology of cerebral vasospasm may include reduction in NO production, direct activation of calcium channels, upregulating genes involved with inflammation and extracellular matrix remodelling, triggering oxidative stress and free radical damage to smooth muscle and lipid peroxidation of cell membranes, cortical spreading depolarizations, sympathetic activation, finally resulting in the failure of cerebral autoregulation, microthrombosis and cerebral ischaemic injury. This cascade of events might explain why medical therapy often fails to reverse resistant cerebral vasospasm and to prevent cerebral ischaemia.
Collapse
Affiliation(s)
- Dmitriy Viderman
- Department of Biomedical Sciences, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan, Kazakhstan
| | - Karina Tapinova
- Department of Biomedical Sciences, Nazarbayev University School of Medicine (NUSOM), Nur-Sultan, Kazakhstan
| | - Yerkin G Abdildin
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
21
|
Dumbuya JS, Li S, Liang L, Chen Y, Du J, Zeng Q. Effects of hydrogen-rich saline in neuroinflammation and mitochondrial dysfunction in rat model of sepsis-associated encephalopathy. J Transl Med 2022; 20:546. [DOI: 10.1186/s12967-022-03746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Sepsis-associated encephalopathy (SAE) is one of the most common types of sepsis-related organ dysfunction without overt central nervous system (CNS) infection. It is associated with higher mortality, low quality of life, and long-term neurological sequelae in suspected patients. At present there is no specific treatment for SAE rather than supportive therapy and judicious use of antibiotics, which are sometimes associated with adverse effects. Molecular hydrogen (H2) has been reported to play crucial role in regulating inflammatory responses, neuronal injury, apoptosis and mitochondrial dysfunction in adult models of SAE. Here we report the protective effect of hydrogen-rich saline in juvenile SAE rat model and its possible underling mechanism(s).
Materials and methods
Rats were challenged with lipopolysaccharide (LPS) at a dose of 8 mg/kg injected intraperitoneally to induce sepsis and hydrogen-rich saline (HRS) administered 1 h following LPS induction at a dose of 5 ml/kg. Rats were divided into: sham, sham + HRS, LPS and LPS + HRS. At 48 h, rats were sacrificed and Nissl staining for neuronal injury, TUNEL assay for apoptotic cells detection, immunohistochemistry, and ELISA protocol for inflammatory cytokines determination, mitochondrial dysfunction parameters, electron microscopy and western blot analysis were studied to examine the effect of HRS in LPS-induced septic rats.
Results
Rats treated with HRS improved neuronal injury, improvement in rats’ survival rate. ELISA analysis showed decreased TNF-α and IL-1β and increased IL-10 expression levels in the HRS-treated group. Apoptotic cells were decreased after HRS administration in septic rats. The numbers of GFAP and IBA-1positive cells were attenuated in the HRS-treated group when compared to the LPS group. Subsequently, GFAP and IBA-1 immunoreactivity were decreased after HRS treatment. Mitochondrial membrane potential detected by JC-1 dye and ATP content were decreased in septic rats, which were improved after HRS treatment, while release of ROS was increased in the LPS group reverted by HRS treatment, ameliorating mitochondrial dysfunction. Further analysis by transmission electron microscopy showed decreased number of mitochondria and synapses, and disrupted mitochondrial membrane ultrastructure in the LPS group, while HRS administration increased mitochondria and synapses number.
Conclusion
These data demonstrated that HRS can improve survival rate, attenuate neuroinflammation, astrocyte and microglial activation, neuronal injury and mitochondrial dysfunction in juvenile SAE rat model, making it a potential therapeutic candidate in treating paediatric SAE.
Collapse
|
22
|
Abdel Baky NA, Al-Najjar AH, Elariny HA, Sallam AS, Mohammed AA. Pramipexole and Lactoferrin ameliorate Cyclophosphamide-Induced haemorrhagic cystitis via targeting Sphk1/S1P/MAPK, TLR-4/NF-κB, and NLRP3/caspase-1/IL-1β signalling pathways and modulating the Nrf2/HO-1 pathway. Int Immunopharmacol 2022; 112:109282. [DOI: 10.1016/j.intimp.2022.109282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
|
23
|
Youssef NS, Elzatony AS, Abdel Baky NA. Diacerein attenuate LPS-induced acute lung injury via inhibiting ER stress and apoptosis: Impact on the crosstalk between SphK1/S1P, TLR4/NFκB/STAT3, and NLRP3/IL-1β signaling pathways. Life Sci 2022; 308:120915. [PMID: 36055546 DOI: 10.1016/j.lfs.2022.120915] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
Abstract
AIMS Acute lung injury (ALI) is a life-threatening clinical problem with high mortality rate and limited treatments or preventive options that represents a major challenge for clinicians. Diacerein (DIA) is a multi-target anthraquinone derivative with potent anti-inflammatory action. The aim of this study is to assess the protective effect of DIA and its potential molecular targets against lipopolysaccharide (LPS)-induced ALI in rats. MATERIALS AND METHODS Adult male Sprague-Dawley rats were orally administrated DIA (50 mg/kg) for 5 consecutive days followed by a single intraperitoneal injection of LPS (5mg/kg). KEY FINDINGS DIA mitigated oxidative lung injury in LPS-challenged rats via significantly decreasing lung wet/dry (W/D) ratio, inflammatory cells infiltration, and lipid peroxidation, with concomitant elevation in enzymatic and non-enzymatic antioxidant levels in lung tissue. Likewise, DIA alleviated endoplasmic reticulum stress and markedly halted inflammation triggered by LPS challenge in pulmonary tissue by suppressing NLRP3/IL-1β and TLR4/NF-κB signaling with parallel decrease in proinflammatory cytokine levels. Interestingly, DIA down regulated Sphk1/S1P axis, reduced GSK-3β and STAT3 proteins expression, and markedly decreased caspase-3 besides increasing Bcl-2 levels in lung tissue of LPS-challenged animals. These biochemical findings was simultaneously associated with marked improvement in histological alterations of lung tissue. SIGNIFICANCE These findings verify the protective effect of DIA against LPS-induced ALI through targeting oxidative stress, endoplasmic reticulum stress, and apoptosis. Importantly, DIA halted the hyperinflammatory state triggered by LPS via multi-faceted inhibitory effect on different signaling pathways, hence DIA could potentially reduce mortality in patients with ALI.
Collapse
Affiliation(s)
- Nagwa Salah Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Asmaa Sameer Elzatony
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
24
|
Kiran S, Rakib A, Singh UP. The NLRP3 Inflammasome Inhibitor Dapansutrile Attenuates Cyclophosphamide-Induced Interstitial Cystitis. Front Immunol 2022; 13:903834. [PMID: 35720309 PMCID: PMC9205468 DOI: 10.3389/fimmu.2022.903834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Interstitial cystitis (IC)/bladder pain syndrome (BPS), hereafter referred together as IC, is a clinical syndrome characterized by sterile inflammation in the bladder. While the etiology and pathophysiology of IC remain unclear, it may involve autoimmunity in light of the significant role played by the NLRP3 inflammasome. However, the effect of NLRP3 inhibitors including dapansutrile (Dap) on IC had not been explored previously. Here, we investigated the effect of Dap in the cyclophosphamide (CYP)-induced experimental mouse model of IC, which results in functional and histological alterations confined to the urinary bladder (UB) comparable to that of clinical IC. CYP-induced mice treated with Dap exhibited improved UB pathology and reductions in inflammation scores and the frequency and the number of mast cells and neutrophils, relative to mice that received CYP alone. Dap- and CYP-treated mice also exhibited infiltration of T cells in the spleen and iliac lymph nodes (ILNs) and a concurrent significant decrease (p<0.01) in CXCR3+CD8+ T cells in the UB, induction of systemic and mucosal dendritic cells (DCs), and reduced levels of systemic proinflammatory cytokines, as compared to CYP alone. We also observed decreases in the expression of several signaling pathways regulators, including interleukin-1 beta (IL-1β), NLRP3, caspase-1, nuclear factor kappa B (NF-κB), and inducible nitric oxide synthase (iNOS) in the UB of CYP- and Dap-treated mice, relative to those receiving CYP alone. Taken together, these results suggest that Dap suppresses IC through the reduction of CXCR3+T cells, mast cells, and neutrophils in the UB and induces DCs as a protective measure. The present study identifies the mechanisms underlying the amelioration of IC by the NLRP3 inhibitor Dap and may provide an avenue for a potential therapeutic agent for the treatment of IC.
Collapse
|
25
|
Cycloastragenol Confers Cerebral Protection after Subarachnoid Hemorrhage by Suppressing Oxidative Insults and Neuroinflammation via the SIRT1 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3099409. [PMID: 35693703 PMCID: PMC9184193 DOI: 10.1155/2022/3099409] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022]
Abstract
Subarachnoid hemorrhage (SAH) is an acute cerebral vascular disease featured by oxidative insults and neuroinflammation. Cycloastragenol (CAG), the major active component of Astragalus radix, has a wide range of biological functions. However, the potential beneficial effects and the underlying molecular mechanisms of CAG on SAH remain obscure. In the current study, the cerebroprotective effects and mechanism of CAG on SAH were evaluated both in vivo and in vitro. Our results indicated that CAG significantly suppressed SAH-triggered oxidative insults, inflammatory mediators production, microglia activation, and the neutrophil infiltration in the brain. In addition, CAG improved neurological function and ameliorated neuronal apoptosis and degeneration after SAH. In vitro results also revealed the therapeutic effects of CAG on neurons and microglia co-culture system. Mechanistically, CAG treatment upregulated sirtuin 1 (SIRT1) expression, inhibited the levels of FoxO1, nuclear factor-kappa B, and p53 acetylation, and suppressed the subsequent oxidative, inflammatory, and apoptotic pathways. In contrast, inhibiting SIRT1 by pretreatment with Ex527 abrogated the protective actions of CAG both in vivo and in vitro models of SAH. Collectively, our findings indicated that CAG could be a promising and effective drug candidate for SAH.
Collapse
|
26
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
27
|
Zhang Y, Xing CJ, Liu X, Li YH, Jia J, Feng JG, Yang CJ, Chen Y, Zhou J. Thioredoxin-Interacting Protein (TXNIP) Knockdown Protects against Sepsis-Induced Brain Injury and Cognitive Decline in Mice by Suppressing Oxidative Stress and Neuroinflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8645714. [PMID: 35571246 PMCID: PMC9098358 DOI: 10.1155/2022/8645714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/17/2022] [Accepted: 04/23/2022] [Indexed: 11/19/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is linked to increased morbidity and mortality rates in patients with sepsis. Increased cytokine production and neuronal apoptosis are implicated in the pathogenesis of the SAE. Neuroinflammation plays a major role in sepsis-induced brain injury. Thioredoxin-interacting protein (TXNIP), an inhibitor of thioredoxin, is associated with oxidative stress and inflammation. However, whether the TXNIP is involved in the sepsis-induced brain injury and the underlying mechanism is yet to be elucidated. Therefore, the present study was aimed at elucidating the effects of TXNIP knockdown on sepsis-induced brain injury and cognitive decline in mice. Lipopolysaccharide (LPS) was injected intraperitoneally to induce sepsis brain injury in mice. The virus-carrying control or TXNIP shRNA was injected into the lateral ventricle of the brain 4 weeks before the LPS treatment. The histological changes in the hippocampal tissues, encephaledema, and cognitive function were detected, respectively. Also, the 7-day survival rate was recorded. Furthermore, the alterations in microglial activity, oxidative response, proinflammatory factors, apoptosis, protein levels (TXNIP and NLRP3 inflammasome), and apoptosis were examined in the hippocampal tissues. The results demonstrated that the TXNIP and NLRP3 inflammasome expression levels were increased at 6, 12, and 24 h post-LPS injection. TXNIP knockdown dramatically ameliorated the 7-day survival rate, cognitive decline, brain damage, neuronal apoptosis, and the brain water content, inhibited the activation of microglia, downregulated the NLRP3/caspase-1 signaling pathway, and reduced the oxidative stress and the neuroinflammatory cytokine levels at 24 h post-LPS injection. These results suggested a crucial effect of TXNIP knockdown on the mechanism of brain injury and cognitive decline in sepsis mice via suppressing oxidative stress and neuroinflammation. Thus, TXNIP might be a potential therapeutic target for SAE patients.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng-Jun Xing
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ya-Hong Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Jian-Guo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Cheng-Jie Yang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
28
|
Ye X, Song G, Huang S, Liang Q, Fang Y, Lian L, Zhu S. Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Front Mol Neurosci 2022; 15:856372. [PMID: 35370546 PMCID: PMC8971909 DOI: 10.3389/fnmol.2022.856372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) acts as a physical and biochemical barrier that plays a fundamental role in regulating the blood-to-brain influx of endogenous and exogenous components and maintaining the homeostatic microenvironment of the central nervous system (CNS). Acute stroke leads to BBB disruption, blood substances extravasation into the brain parenchyma, and the consequence of brain edema formation with neurological impairment afterward. Caspase-1, one of the evolutionary conserved families of cysteine proteases, which is upregulated in acute stroke, mainly mediates pyroptosis and compromises BBB integrity via lytic cellular death and inflammatory cytokines release. Nowadays, targeting caspase-1 has been proven to be effective in decreasing the occurrence of hemorrhagic transformation (HT) and in attenuating brain edema and secondary damages during acute stroke. However, the underlying interactions among caspase-1, BBB, and stroke still remain ill-defined. Hence, in this review, we are concerned about the roles of caspase-1 activation and its associated mechanisms in stroke-induced BBB damage, aiming at providing insights into the significance of caspase-1 inhibition on stroke treatment in the near future.
Collapse
|
29
|
Role of Molecular Hydrogen in Ageing and Ageing-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2249749. [PMID: 35340218 PMCID: PMC8956398 DOI: 10.1155/2022/2249749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Ageing is a physiological process of progressive decline in the organism function over time. It affects every organ in the body and is a significant risk for chronic diseases. Molecular hydrogen has therapeutic and preventive effects on various organs. It has antioxidative properties as it directly neutralizes hydroxyl radicals and reduces peroxynitrite level. It also activates Nrf2 and HO-1, which regulate many antioxidant enzymes and proteasomes. Through its antioxidative effect, hydrogen maintains genomic stability, mitigates cellular senescence, and takes part in histone modification, telomere maintenance, and proteostasis. In addition, hydrogen may prevent inflammation and regulate the nutrient-sensing mTOR system, autophagy, apoptosis, and mitochondria, which are all factors related to ageing. Hydrogen can also be used for prevention and treatment of various ageing-related diseases, such as neurodegenerative disorders, cardiovascular disease, pulmonary disease, diabetes, and cancer. This paper reviews the basic research and recent application of hydrogen in order to support hydrogen use in medicine for ageing prevention and ageing-related disease therapy.
Collapse
|
30
|
Xiao X, Zheng Y, Mo Y, Wang W, Li X, Wang J. Astragaloside IV alleviates oxidative stress‑related damage via inhibiting NLRP3 inflammasome in a MAPK signaling dependent pathway in human lens epithelial cells. Drug Dev Res 2022; 83:1016-1023. [PMID: 35253245 DOI: 10.1002/ddr.21929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xili Xiao
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Yanlin Zheng
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Ya Mo
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Wanjie Wang
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Xiang Li
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Juan Wang
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| |
Collapse
|
31
|
Abstract
Molecular hydrogen exerts biological effects on nearly all organs. It has anti-oxidative, anti-inflammatory, and anti-aging effects and contributes to the regulation of autophagy and cell death. As the primary organ for gas exchange, the lungs are constantly exposed to various harmful environmental irritants. Short- or long-term exposure to these harmful substances often results in lung injury, causing respiratory and lung diseases. Acute and chronic respiratory diseases have high rates of morbidity and mortality and have become a major public health concern worldwide. For example, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. An increasing number of studies have revealed that hydrogen may protect the lungs from diverse diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma, lung cancer, pulmonary arterial hypertension, and pulmonary fibrosis. In this review, we highlight the multiple functions of hydrogen and the mechanisms underlying its protective effects in various lung diseases, with a focus on its roles in disease pathogenesis and clinical significance.
Collapse
Affiliation(s)
- Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
32
|
Huang Y, Xiao FM, Tang WJ, Qiao J, Wei HF, Xie YY, Wei YZ. Hydrogen inhalation promotes recovery of a patient in persistent vegetative state from intracerebral hemorrhage: A case report and literature review. World J Clin Cases 2022; 10:1311-1319. [PMID: 35211564 PMCID: PMC8855194 DOI: 10.12998/wjcc.v10.i4.1311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/05/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Persistent vegetative state (PVS) is a devastating and long-lasting clinical condition with high morbidity and mortality; currently, there are no available effective interventions.
CASE SUMMARY We report the case of an 11-year-old boy with PVS caused by severe intracerebral bleeding in the left hemisphere following anticoagulation treatment. The patient’s PVS severity showed no notable improvement after 2-mo neuroprotective treatment and rehabilitation, including nerve growth factor and baclofen, hyperbaric oxygen, and comprehensive bedside rehabilitation therapies. Daily inhalation treatment (4-6 h) of high-concentration hydrogen (H2) gas (66.6% H2 + 33.3% O2) was provided. Surprisingly, the patient’s orientation, consciousness, ability to speak, facial expressions, and locomotor function were significantly restored, along with improvements in essential general health status, after H2 gas inhalation treatment, which was consistent with stabilized neuropathology in the left hemisphere and increased Hounsfield unit values of computed tomography in the right hemisphere. The patient finally recovered to a near normal conscious state with a Coma Recovery Scale-Revised Score of 22 from his previous score of 3.
CONCLUSION Phase 1 clinical trials are needed to explore the safety and efficacy of H2 gas inhalation in patients with PVS.
Collapse
Affiliation(s)
- Yan Huang
- Department of Rehabilitation, Qilu Children’s Hospital of Shandong University, Jinan 250022, Shandong Province, China
| | - Feng-Ming Xiao
- Department of Rehabilitation, Qilu Children’s Hospital of Shandong University, Jinan 250022, Shandong Province, China
| | - Wen-Jie Tang
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, Shanghai Province, China
| | - Jing Qiao
- Department of Pediatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, Shanghai Province, China
| | - Hai-Feng Wei
- Department of Clinical Imaging, The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250022, Shandong Province, China
| | - Yuan-Yun Xie
- National Clinic and Medicine Research Institute for Geriatric Diseases, Gannan Health Promotion and Translational Laboratory, The First Affiliated Hospital, Gannan University of Medical Sciences, Ganzhou 341000, Jiangxi Province, China
| | - You-Zhen Wei
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, Shanghai Province, China
| |
Collapse
|
33
|
Schisandrin B Inhibits NLRP3 Inflammasome Pathway and Attenuates Early Brain Injury in Rats of Subarachnoid Hemorrhage. Chin J Integr Med 2022; 28:594-602. [PMID: 35015222 DOI: 10.1007/s11655-021-3348-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To determine whether Schisandrin B (Sch B) attenuates early brain injury (EBI) in rats with subarachnoid hemorrhage (SAH). METHODS Sprague-Dawley rats were divided into sham (sham operation), SAH, SAH+vehicle, and SAH+Sch B groups using a random number table. Rats underwent SAH by endovascular perforation and received Sch B (100 mg/kg) or normal saline after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evan's blue extravasation, and terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining were carried out 24 h after SAH. Immunofluorescent staining was performed to detect the expressions of ionized calcium binding adapter molecule 1 (Iba-1) and myeloperoxidase (MPO) in the rat brain, while the expressions of B-cell lymphoma 2 (Bcl-2), Bax, Caspase-3, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated specklike protein containing the caspase-1 activator domain (ASC), Caspase-1, interleukin (IL)-1β, and IL-18 in the rat brains were detected by Western blot. RESULTS Compared with the SAH group, Sch B significantly improved the neurological function, reduced brain water content, Evan's blue content, and apoptotic cells number in the brain of rats (P<0.05 or P<0.01). Moreover, Sch B decreased SAH-induced expressions of Iba-1 and MPO (P<0.01). SAH caused the elevated expressions of Bax, Caspase-3, NLRP3, ASC, Caspase-1, IL-1β, and IL-18 in the rat brain (P<0.01), all of which were inhibited by Sch B (P<0.01). In addition, Sch B increased the Bcl-2 expression (P<0.01). CONCLUSION Sch B attenuated SAH-induced EBI, which might be associated with the inhibition of neuroinflammation, neuronal apoptosis, and the NLRP3 inflammatory signaling pathway.
Collapse
|
34
|
Tian Y, Zhang Y, Wang Y, Chen Y, Fan W, Zhou J, Qiao J, Wei Y. Hydrogen, a Novel Therapeutic Molecule, Regulates Oxidative Stress, Inflammation, and Apoptosis. Front Physiol 2022; 12:789507. [PMID: 34987419 PMCID: PMC8721893 DOI: 10.3389/fphys.2021.789507] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Molecular hydrogen (H2) is a colorless and odorless gas. Studies have shown that H2 inhalation has the therapeutic effects in many animal studies and clinical trials, and its application is recommended in the novel coronavirus pneumonia treatment guidelines in China recently. H2 has a relatively small molecular mass, which helps it quickly spread and penetrate cell membranes to exert a wide range of biological effects. It may play a role in the treatment and prevention of a variety of acute and chronic inflammatory diseases, such as acute pancreatitis, sepsis, respiratory disease, ischemia reperfusion injury diseases, autoimmunity diseases, etc.. H2 is primarily administered via inhalation, drinking H2-rich water, or injection of H2 saline. It may participate in the anti-inflammatory and antioxidant activity (mitochondrial energy metabolism), immune system regulation, and cell death (apoptosis, autophagy, and pyroptosis) through annihilating excess reactive oxygen species production and modulating nuclear transcription factor. However, the underlying mechanism of H2 has not yet been fully revealed. Owing to its safety and potential efficacy, H2 has a promising potential for clinical use against many diseases. This review will demonstrate the role of H2 in antioxidative, anti-inflammatory, and antiapoptotic effects and its underlying mechanism, particularly in coronavirus disease-2019 (COVID-19), providing strategies for the medical application of H2 for various diseases.
Collapse
Affiliation(s)
- Yan Tian
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Yafang Zhang
- Department of Pediatrics, Taian City Central Hospital, Taian, China
| | - Yu Wang
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China.,Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Yunxi Chen
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| | - Jing Qiao
- Department of Pediatrics, Tongji University Affiliated East Hospital, Shanghai, China
| | - Youzhen Wei
- Research Center for Translational Medicine, Tongji University Affiliated East Hospital, Shanghai, China
| |
Collapse
|
35
|
He F, Cheng Q, Li N, Shang Y. Carbenoxolone ameliorates allergic airway inflammation through NF-κB/NLRP3 pathway in mice. Biol Pharm Bull 2022; 45:743-750. [PMID: 35431287 DOI: 10.1248/bpb.b21-01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fanghan He
- Department of Pediatrics, Shengjing Hospital of China Medical University
| | - Qi Cheng
- Department of Pediatrics, Shengjing Hospital of China Medical University
| | - Na Li
- Department of Pediatrics, Shengjing Hospital of China Medical University
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University
| |
Collapse
|
36
|
Attenuation in Proinflammatory Factors and Reduction in Neuronal Cell Apoptosis and Cerebral Vasospasm by Minocycline during Early Phase after Subarachnoid Hemorrhage in the Rat. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5545727. [PMID: 34912890 PMCID: PMC8668279 DOI: 10.1155/2021/5545727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/31/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022]
Abstract
Background Subarachnoid hemorrhage (SAH) is an important subcategory of stroke due to its high mortality rate as well as severe complications such as neurological deficit. It has been suggested that cerebral inflammation is a major factor in advanced brain injury after SAH. Microglia and astrocytes are known supporting cells in the development and maintenance of inflammation in central nervous system. However, the role of microglia and astrocytes in the development of inflammation and neuronal cell apoptosis during the early phase after SAH has not been thoroughly investigated. Materials and Methods Sprague-Dawley rats were divided into 4 groups (n = 6/group): sham group, animals subjected to SAH without treatment, SAH animals pretreated with the microglia inhibitor minocycline (50 mg/kg, ip), and SAH animals pretreated with the astrocyte inhibitor fluorocitrate (50 mg/kg, ip). SAH was induced by injecting autologous blood (1 ml/kg) into the cistern magna on day 0. Pretreatment with minocycline or fluorocitrate was given three days prior to the induction of SAH. Rats were sacrificed 6 hr after SAH, and their cerebral spinal fluids were used to measure protein levels of neuroinflammatory cytokines IL-1β, IL-6, and TNF-α by ELISA. In addition, the cerebral cortex was utilized to determine the levels of caspase-3 by western blot and to evaluate neuronal cell apoptosis by immunohistochemistry staining and detect microglia and astrocyte by immunofluorescence staining for Iba-1 and GFAP. In this study, all SAH animals were given an injection of autologous blood and SAH rats treated with minocycline or fluorocitrate received ip injections on day 1, 2, and 3 before inducing SAH. Neurological outcome was assessed by ambulation and placing/stepping reflex responses on day 7. Results Immunofluorescence staining showed that SAH induced proliferation of microglia and astrocyte and minocycline inhibited the proliferation of both microglia and astrocyte. However, fluorocitrate inhibited only the proliferation of astrocyte. ELISA analysis showed that SAH upregulated TNF-α and IL-1β, but not IL-6 at 6 hr after SAH. Minocycline, but not fluorocitrate, attenuated the upregulation of TNF-α and IL-1β. Western blot analysis and immunohistochemistry staining showed that SAH induced neuronal cell apoptosis. Pretreatment with minocycline, but not fluorocitrate, decreased SAH-induced neuronal death and cerebral vasospasm. Furthermore, significant improvements in neurobehavioral outcome were seen in the minocycline treatment group, but not in animals treated with fluorocitrate. Conclusions Microglia may play an important role to regulate neuronal cell apoptosis and cerebral vasospasm through inhibiting inflammation at an early phase after SAH in the rat.
Collapse
|
37
|
Jeong ES, Bajgai J, You IS, Rahman MH, Fadriquela A, Sharma S, Kwon HU, Lee SY, Kim CS, Lee KJ. Therapeutic Effects of Hydrogen Gas Inhalation on Trimethyltin-Induced Neurotoxicity and Cognitive Impairment in the C57BL/6 Mice Model. Int J Mol Sci 2021; 22:ijms222413313. [PMID: 34948107 PMCID: PMC8703468 DOI: 10.3390/ijms222413313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/04/2022] Open
Abstract
Oxidative stress (OS) is one of the causative factors in the pathogenesis of various neurodegenerative diseases, including Alzheimer’s disease (AD) and cognitive dysfunction. In the present study, we investigated the effects of hydrogen (H2) gas inhalation in trimethyltin (TMT)-induced neurotoxicity and cognitive dysfunction in the C57BL/6 mice. First, mice were divided into the following groups: mice without TMT injection (NC), TMT-only injection group (TMT only), TMT injection + lithium chloride-treated group as a positive control (PC), and TMT injection + 2% H2 inhalation-treated group (H2). The TMT injection groups were administered a single dosage of intraperitoneal TMT injection (2.6 mg/kg body weight) and the H2 group was treated with 2% H2 for 30 min once a day for four weeks. Additionally, a behavioral test was performed with Y-maze to test the cognitive abilities of the mice. Furthermore, multiple OS- and AD-related biomarkers such as reactive oxygen species (ROS), nitric oxide (NO), calcium (Ca2+), malondialdehyde (MDA), glutathione peroxidase (GPx), catalase, inflammatory cytokines, apolipoprotein E (Apo-E), amyloid β (Aβ)-40, phospho-tau (p-tau), Bcl-2, and Bcl-2- associated X (Bax) were investigated in the blood and brain. Our results demonstrated that TMT exposure alters seizure and spatial recognition memory. However, after H2 treatment, memory deficits were ameliorated. H2 treatment also decreased AD-related biomarkers, such as Apo-E, Aβ-40, p-tau, and Bax and OS markers such as ROS, NO, Ca2+, and MDA in both serum and brain. In contrast, catalase and GPx activities were significantly increased in the TMT-only group and decreased after H2 gas treatment in serum and brain. In addition, inflammatory cytokines such as granulocyte colony-stimulating factors (G-CSF), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) were found to be significantly decreased after H2 treatment in both serum and brain lysates. In contrast, Bcl-2 and vascular endothelial growth factor (VEGF) expression levels were found to be enhanced after H2 treatment. Taken together, our results demonstrated that 2% H2 gas inhalation in TMT-treated mice exhibits memory enhancing activity and decreases the AD, OS, and inflammatory-related markers. Therefore, H2 might be a candidate for repairing neurodegenerative diseases with cognitive dysfunction. However, further mechanistic studies are needed to fully clarify the effects of H2 inhalation on TMT-induced neurotoxicity and cognitive dysfunction.
Collapse
Affiliation(s)
- Eun-Sook Jeong
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
| | - Johny Bajgai
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
| | - In-Soo You
- GOOTZ Co., Ltd., 79-6, Yuljeong-ro 247 beon-gil, Yangju-si, Suwon 11457, Korea; (I.-S.Y.); (H.-U.K.); (S.-Y.L.)
| | - Md. Habibur Rahman
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Ailyn Fadriquela
- Department of Laboratory Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Subham Sharma
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Hwang-Un Kwon
- GOOTZ Co., Ltd., 79-6, Yuljeong-ro 247 beon-gil, Yangju-si, Suwon 11457, Korea; (I.-S.Y.); (H.-U.K.); (S.-Y.L.)
| | - So-Yeon Lee
- GOOTZ Co., Ltd., 79-6, Yuljeong-ro 247 beon-gil, Yangju-si, Suwon 11457, Korea; (I.-S.Y.); (H.-U.K.); (S.-Y.L.)
| | - Cheol-Su Kim
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea; (E.-S.J.); (J.B.); (M.H.R.); (S.S.); (C.-S.K.)
- Correspondence: ; Tel.: +82-(033)-741-331
| |
Collapse
|
38
|
Lin F, Li R, Tu WJ, Chen Y, Wang K, Chen X, Zhao J. An Update on Antioxidative Stress Therapy Research for Early Brain Injury After Subarachnoid Hemorrhage. Front Aging Neurosci 2021; 13:772036. [PMID: 34938172 PMCID: PMC8686680 DOI: 10.3389/fnagi.2021.772036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
The main reasons for disability and death in aneurysmal subarachnoid hemorrhage (aSAH) may be early brain injury (EBI) and delayed cerebral ischemia (DCI). Despite studies reporting and progressing when DCI is well-treated clinically, the prognosis is not well-improved. According to the present situation, we regard EBI as the main target of future studies, and one of the key phenotype-oxidative stresses may be called for attention in EBI after laboratory subarachnoid hemorrhage (SAH). We summarized the research progress and updated the literature that has been published about the relationship between experimental and clinical SAH-induced EBI and oxidative stress (OS) in PubMed from January 2016 to June 2021. Many signaling pathways are related to the mechanism of OS in EBI after SAH. Several antioxidative stress drugs were studied and showed a protective response against EBI after SAH. The systematical study of antioxidative stress in EBI after laboratory and clinical SAH may supply us with new therapies about SAH.
Collapse
Affiliation(s)
- Fa Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Runting Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- The General Office of Stroke Prevention Project Committee, National Health Commission of the People’s Republic of China, Beijing, China
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yu Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Xiaolin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Yang X, Cheng Q, Li Y, Zheng Z, Liu J, Zhao Z. Clinical Treatment and Prognostic Analysis of Patients with Aneurysmal Subarachnoid Hemorrhage. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1250334. [PMID: 34900174 PMCID: PMC8660210 DOI: 10.1155/2021/1250334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a serious disease caused by blood flow into the subarachnoid space due to rupture of blood vessels. All diseases that cause intracranial hemorrhage are the cause of subarachnoid hemorrhage. Among them, due to the particularity of intracranial blood vessels, intracranial blood vessels are more prone to aneurysms than other parts. Therefore, the incidence of aneurysmal subarachnoid hemorrhage (aSAH) is extremely high. The purpose of this article is to study the clinical treatment and prognosis analysis of aSAH patients. This article first summarizes the current status of SAH research at home and abroad and summarizes its potential value and significance. On this basis, an in-depth study of the clinical treatment of aSAH patients has been carried out. The physiological mechanism and clinical general differences of aSAH were studied and analyzed. This article systematically describes the application of CTP in the treatment and prognosis analysis of aSAH patients. Then, it will use a comparative analysis method, interdisciplinary method, and other research forms to carry out experimental research on the theme of this article. Research shows that rebleeding and blood sodium are the main factors for cerebral ischemia caused by aSAH.
Collapse
Affiliation(s)
- Xue Yang
- Department of Neurology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
- Provincial Clinical Department of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Qiong Cheng
- Department of Neurology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
- Provincial Clinical Department of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Yunfei Li
- Department of Neurology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
- Provincial Clinical Department of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Zheng Zheng
- Department of Neurology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
- Provincial Clinical Department of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Junpeng Liu
- Department of Neurology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
- Provincial Clinical Department of Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Zhenhua Zhao
- Department of Neurology, Fujian Provincial Hospital, Fuzhou 350001, Fujian, China
- Provincial Clinical Department of Fujian Medical University, Fuzhou 350001, Fujian, China
| |
Collapse
|
40
|
Luteolin Improves Cyclophosphamide-Induced Cystitis through TXNIP/NLRP3 and NF- κB Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1718709. [PMID: 34804174 PMCID: PMC8601811 DOI: 10.1155/2021/1718709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
Hemorrhagic cystitis is an important complication of cyclophosphamide chemotherapy, and current therapies for the disease are limited. The natural flavonoid luteolin (LUT) has significant anti-inflammatory and antioxidant properties, but its protective effect on cyclophosphamide (CYP)-induced bladder toxicity has yet to be evaluated. This study aims to explore the protective effect of LUT on CYP-induced acute cystitis in rats. Female Sprague-Dawley rats were randomly assigned to the control (CON) group, CON + LUT group, CYP group, and CYP + LUT group. A single intraperitoneal injection of CYP was administered to establish an acute hemorrhagic cystitis model. HE staining was performed to detect the degree of bladder tissue damage, and TUNEL staining was performed to count apoptotic cells. Oxidative stress indicators were measured using commercial kits, and bladder surgery was performed to assess urinary function. The levels of inflammatory cytokines, apoptosis-related indicators, TXNIP/NLRP3 pathway, and NF-κB pathway were detected by western blot. We found that LUT treatment reduced bladder bleeding, congestion, and edema caused by CYP. Compared with the CYP + LUT group, the level of apoptosis was more highly expressed in the CYP group. We also found that caspase-3, caspase-8, and Bax were significantly upregulated and Bcl-2 was downregulated after LUT treatment. In addition, LUT inhibited the activation of NF-κB signal pathway in the rat bladder tissue after CYP exposure. LUT treatment can also reduce the NLRP3 inflammasome (NLRP3, ASC, and caspase-1) and TXNIP in the bladder. Finally, LUT can reduce the increase in the urination frequency and maximum urination pressure caused by cystitis. These results indicate that LUT displays effective anti-inflammatory, antioxidant, and antiapoptotic properties in CYP-induced acute hemorrhagic cystitis rats by inhibiting the TXNIP/NLRP3 and NF-κB pathways. LUT may be a potent therapeutic agent for the prevention and treatment of hemorrhagic cystitis.
Collapse
|
41
|
Luteolin Confers Cerebroprotection after Subarachnoid Hemorrhage by Suppression of NLPR3 Inflammasome Activation through Nrf2-Dependent Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5838101. [PMID: 34777689 PMCID: PMC8589510 DOI: 10.1155/2021/5838101] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Luteolin (LUT) possesses multiple biologic functions and has beneficial effects for cardiovascular and cerebral vascular diseases. Here, we investigated the protective effects of LUT against subarachnoid hemorrhage (SAH) and the involvement of underlying molecular mechanisms. In a rat model of SAH, LUT significantly inhibited SAH-induced neuroinflammation as evidenced by reduced microglia activation, decreased neutrophil infiltration, and suppressed proinflammatory cytokine release. In addition, LUT markedly ameliorated SAH-induced oxidative damage and restored the endogenous antioxidant systems. Concomitant with the suppressed oxidative stress and neuroinflammation, LUT significantly improved neurologic function and reduced neuronal cell death after SAH. Mechanistically, LUT treatment significantly enhanced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), while it downregulated nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation. Inhibition of Nrf2 by ML385 dramatically abrogated LUT-induced Nrf2 activation and NLRP3 suppression and reversed the beneficial effects of LUT against SAH. In neurons and microglia coculture system, LUT also mitigated oxidative stress, inflammatory response, and neuronal degeneration. These beneficial effects were associated with activation of the Nrf2 and inhibitory effects on NLRP3 inflammasome and were reversed by ML385 treatment. Taken together, this present study reveals that LUT confers protection against SAH by inhibiting NLRP3 inflammasome signaling pathway, which may be modulated by Nrf2 activation.
Collapse
|
42
|
Hydrogen-Rich Water Improves Cognitive Ability and Induces Antioxidative, Antiapoptotic, and Anti-Inflammatory Effects in an Acute Ischemia-Reperfusion Injury Mouse Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9956938. [PMID: 34746315 PMCID: PMC8566066 DOI: 10.1155/2021/9956938] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
Background Cerebral ischemia and its reperfusion injury facilitate serious neurodegenerative diseases such as dementia due to cell death; however, there is currently no treatment for it. Reactive oxygen species is one of the many factors that induce and worsen the development of such diseases, and it can be targeted by hydrogen treatment. This study examined the effect of molecular hydrogen in cerebral ischemia-reperfusion injury, which is emerging as a novel therapeutic agent for various diseases. Methods Ischemia-reperfusion injury was generated through bilateral common carotid artery occlusion in C57BL/6 mice. The test group received hydrogen-rich water orally during the test period. To confirm model establishment and the effect of hydrogen treatment, behavioural tests, biochemical assays, immunofluorescence microscopy, and cytokine assays were conducted. Results Open field and novel object recognition tests revealed that the hydrogen-treated group had improved cognitive function and anxiety levels compared to the nontreated group, while hematoxylin and eosin stain showed abundant pyknotic cells in a model mouse brain, and this was attenuated in the hydrogen-treated mouse brain. Total antioxidant capacity and thiobarbituric acid reactive substance assays revealed that hydrogen treatment induced antioxidative effects in the mouse brain. Immunofluorescence microscopy revealed attenuated apoptosis in the striatum, cerebral cortex, and hippocampus of hydrogen-treated mice. Western blotting showed that hydrogen treatment reduced Bax and TNFα levels. Finally, cytokine assays showed that IL-2 and IL-10 levels significantly differed between the hydrogen-treated and nontreated groups. Conclusion Hydrogen treatment could potentially be a future therapeutic strategy for ischemia and its derived neurodegenerative diseases by improving cognitive abilities and inducing antioxidative and antiapoptotic effects. Hydrogen treatment also decreased Bax and TNFα levels and induced an anti-inflammatory response via regulation of IL-2 and IL-10. These results will serve as a milestone for future studies intended to reveal the mechanism of action of molecular hydrogen in neurodegenerative diseases.
Collapse
|
43
|
Shogenova LV, Truong TT, Kryukova NO, Yusupkhodzhaeva KA, Pozdnyakova DD, Kim TG, Chernyak AV, Kalmanova ЕN, Medvedev OS, Kuropatkina TA, Varfolomeev SD, Ryabokon AM, Svitich OА, Kostinov MP, Kunio I, Hiroki M, Chuchalin AG. Hydrogen inhalation in rehabilitation program of the medical staff recovered from COVID-19. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Active hydrogen inhalation (H(H2O)m) has powerful antioxidant and antiapoptotic effects. In recent years, it has been used in a number of experimental and clinical studies.Aim. To study the safety and effectiveness of inhalation of the “active form of hydrogen” (AFV;(H(H2O)m)) in the rehabilitation program of coronavirus disease 2019 (COVID-19) survivors during the recovery period.Material and methods. This randomized controlled parallel prospective study included 60 COVID-19 survivors with post-COVID-19 syndrome (ICD-10: U09.9) during the recovery period, with clinical manifestations of chronic fatigue syndrome (CFS), who received standard therapy in accordance with the management protocol of patients with CFS (ICD-10: G93.3): physiotherapy and medication therapy with drugs containing magnesium, B vitamins and L-carnitine. The patients were divided into 2 groups. The experimental group (n=30) included patients who received hydrogen inhalation for 90 minutes every day during 10 days (SUISONIA hydrogen inhalation device, Japan). The control group (n=30) consisted of patients who received standard therapy. In both groups, patients were comparable in sex and mean age: in the experimental group — 53 (22; 70) years, in the control group — 51 (25; 70) years. Biological markers of systemic inflammation, oxygen transport, lactate metabolism, intrapulmonary shunting, 6-minute walk test, and vascular endothelial function were determined in all patients on the 1st and 10th days of follow-up.Results. In the experimental group, a decrease in following parameters was revealed: stiffness index (SI), from 8,8±1,8 to 6,8±1,5 (p<0,0001); ALT, from 24,0±12,7 to 20,22±10,61 U/L (p<0,001); venous blood lactate, from 2,5±0,8 to 1,5±1,0 mmol/L (p<0,001); capillary blood lactate, from 2,9±0,8 to 2,0±0,8 mmol/L (p<0,0001); estimated pulmonary shunt fraction (Qs/Qt, Berggren equation, 1942) from 8,98±5,7 to 5,34±3,2 (p<0,01); white blood cells, from 6,64±1,57 to 5,92±1,32 109/L. In addition, we revealed an increase in the refractive index (RI) from 46,67±13,26% to 63,32±13,44% (p<0,0001), minimum blood oxygen saturation (SpO2) from 92,25±2,9 to 94,25±1, 56% (p<0,05), direct bilirubin from 2,99±1,41 to 3,39±1,34 pmol/L (p<0,01), partial oxygen tension (PvO2) from 26,9±5,0 to 34,8±5,6 mm Hg (p<0,0001), venous oxygen saturation (SvO2) from 51,8±020,6 to 61,1±018,1% (p<0,05), partial capillary oxygen tension (PcO2) from 48,7±15,4 to 63,8±21,2 mm Hg (p<0,01), capillary oxygen saturation (ScO2) from 82,2±4,2 to 86,2±4,8% (p<0,01), distance in 6 minute walk test from 429±45,0 to 569±60 m.Conclusion. Inhalation therapy with H(H2O)m in the rehabilitation program of COVID-19 survivors during the recovery period is a safe and highly effective method. Manifestations of silent hypoxemia and endothelial dysfunction decreased, while exercise tolerance increased. As for laboratory tests, a decrease in the white blood cell count, estimated pulmonary shunt fraction and lactate content parameters was revealed.
Collapse
Affiliation(s)
| | | | | | | | | | - T. G. Kim
- Pirogov Russian National Research Medical University; D.D. Pletnev City Clinical Hospital
| | - A. V. Chernyak
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
| | - Е. N. Kalmanova
- Pirogov Russian National Research Medical University; D.D. Pletnev City Clinical Hospital
| | | | | | - S. D. Varfolomeev
- Institute of Physicochemical Foundations of the Functioning of Neural Network and Artificial Intellegence, Lomonosov Moscow State University; N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University
| | - A. M. Ryabokon
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University
| | - O. А. Svitich
- I.I. Mechnikov Scientific Research Institute of Vaccines and Serums
| | - M. P. Kostinov
- I.I. Mechnikov Scientific Research Institute of Vaccines and Serums
| | | | | | | |
Collapse
|
44
|
Xie J, Yuan Y, Yao G, Chen Z, Yu W, Zhu Q. Nucleoporin 160 (NUP160) inhibition alleviates diabetic nephropathy by activating autophagy. Bioengineered 2021; 12:6390-6402. [PMID: 34533106 PMCID: PMC8806760 DOI: 10.1080/21655979.2021.1968777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. Autophagy was reported to be related to the pathogenesis of DN. This research investigated the function of the Nucleoporin 160 (Nup160) gene in regulating autophagy in DN. A mouse model of DN was established through an intraperitoneal injection of streptozotocin (STZ). Normal rat kidney tubular epithelial cells (NRK-52E) were treated with high glucose to induce DN in vitro. Real-time quantitative polymerase chain reaction (RT-qPCR), western blot, immunofluorescence assays were conducted to measure the expression of NUP160, autophagy-associated proteins, and inflammatory cytokines in vitro and in vivo. Pathological changes of kidney and liver tissues were analyzed using hematoxylin and eosin (H&E), Masson and periodic acid-silver (PAS) staining. The body weight, blood glucose, renal and lipid profiles of DN mice were examined. In this study, DN mice showed serious pathological injury. NUP160 expression was upregulated, autophagy was inhibited, and inflammatory response was increased in DN mice. Depletion of NUP160 restored autophagy and inhibited inflammation and fibrosis in high glucose (HG)-treated NRK-52E cells and STZ-induced DN mice by downregulating the expression of p62 and Collagen IV (Col-Ⅳ), increasing the ratio of LC3II/LC3I, and inactivating nuclear factor (NF)-κB signaling. Moreover, NUP160 knockdown could ameliorate pathological damage and glucose tolerance in DN mice. Overall, this study is the first to demonstrate the key role of NUP160 silencing in promoting autophagy against diabetic injury in DN.
Collapse
Affiliation(s)
- Jiayong Xie
- Department of Nephrology, Xinghua People's Hospital, Taizhou Jiangsu, China
| | - Ying Yuan
- Department of Nephrology, Xinghua People's Hospital, Taizhou Jiangsu, China
| | - Gang Yao
- Department of Nephrology, Second Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu, China
| | - Zhi Chen
- Department of Laboratory, Xinghua People's Hospital, Taizhou Jiangsu, China
| | - Wenjuan Yu
- Department of Nephrology, Second Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu, China
| | - Qiang Zhu
- Department of Nephrology, Xinghua People's Hospital, Taizhou Jiangsu, China
| |
Collapse
|
45
|
Yu Q, Zhao T, Liu M, Cao D, Li J, Li Y, Xia M, Wang X, Zheng T, Liu C, Mu X, Sun P. Targeting NLRP3 Inflammasome in Translational Treatment of Nervous System Diseases: An Update. Front Pharmacol 2021; 12:707696. [PMID: 34526897 PMCID: PMC8435574 DOI: 10.3389/fphar.2021.707696] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammatory response is the immune response mechanism of the innate immune system of the central nervous system. Both primary and secondary injury can activate neuroinflammatory response. Among them, the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome plays a key role in the inflammatory response of the central system. Inflammasome is a type of pattern recognition receptor, a cytoplasmic polyprotein complex composed of members of the Nod-like receptor (NLR) family and members of the pyrin and HIN domain (PYHIN) family, which can be affected by a variety of pathogen-related molecular patterns or damage-related molecular patterns are activated. As one of the research hotspots in the field of medical research in recent years, there are increasing researches on immune function abnormalities in the onset of neurological diseases such as depression, AD, ischemic brain injury and cerebral infarction, the NLRP3 inflammasome causes the activated caspase-1 to cleave pre-interleukin-1β and pre-interleukin-18 into mature interleukin-1β and interleukin-18, in turn, a large number of inflammatory factors are produced, which participate in the occurrence and development of the above-mentioned diseases. Targeted inhibition of the activation of inflammasomes can reduce the inflammatory response, promote the survival of nerve cells, and achieve neuroprotective effects. This article reviews NLRP3 inflammasome's role in neurological diseases and related regulatory mechanisms, which providing references for future research in this field.
Collapse
Affiliation(s)
- Qingying Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhao
- School of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Molin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Duo Cao
- College of Life Science, Yan’an University, Yan’an, China
| | - Jiaxin Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanling Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengyao Xia
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Mu
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
46
|
Zheng P, Kang J, Xing E, Zheng B, Wang X, Zhou H. Lung Inflation With Hydrogen During the Cold Ischemia Phase Alleviates Lung Ischemia-Reperfusion Injury by Inhibiting Pyroptosis in Rats. Front Physiol 2021; 12:699344. [PMID: 34408660 PMCID: PMC8365359 DOI: 10.3389/fphys.2021.699344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Lung inflation with hydrogen is an effective method to protect donor lungs from lung ischemia-reperfusion injury (IRI). This study aimed to examine the effect of lung inflation with 3% hydrogen during the cold ischemia phase on pyroptosis in lung grafts of rats. Methods: Adult male Wistar rats were randomly divided into the sham group, the control group, the oxygen (O2) group, and the hydrogen (H2) group. The sham group underwent thoracotomy but no lung transplantation. In the control group, the donor lungs were deflated for 2 h. In the O2 and H2 groups, the donor lungs were inflated with 40% O2 + 60% N2 and 3% H2 + 40% O2 + 57% N2, respectively, at 10 ml/kg, and the gas was replaced every 20 min during the cold ischemia phase for 2 h. Two hours after orthotopic lung transplantation, the recipients were euthanized. Results: Compared with the control group, the O2 and H2 groups improved oxygenation indices, decreases the inflammatory response and oxidative stress, reduced lung injury, and improved pressure-volume (P-V) curves. H2 had a better protective effect than O2. Furthermore, the levels of the pyroptosis-related proteins selective nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), cysteinyl aspartate specific proteinase (caspase)-1 p20, and the N-terminal of gasdermin D (GSDMD-N) were decreased in the H2 group. Conclusion: Lung inflation with 3% hydrogen during the cold ischemia phase inhibited the inflammatory response, oxidative stress, and pyroptosis and improved the function of the graft. Inhibiting reactive oxygen species (ROS) production may be the main mechanism of the antipyroptotic effect of hydrogen.
Collapse
Affiliation(s)
- Panpan Zheng
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiyu Kang
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Entong Xing
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Bin Zheng
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xueyao Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Huacheng Zhou
- Department of Anesthesiology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
47
|
Li Z, Liu Z, Lu H, Dai W, Chen J, He L. RvD1 Attenuated Susceptibility to Ischemic AKI in Diabetes by Downregulating Nuclear Factor-κ B Signal and Inhibiting Apoptosis. Front Physiol 2021; 12:651645. [PMID: 34326777 PMCID: PMC8315138 DOI: 10.3389/fphys.2021.651645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
Background Acute kidney injury (AKI), when occurring in diabetic kidney disease (DKD), is known to be more severe and difficult to recover from. Inflammation and apoptosis may contribute to the heightened sensitivity of, and non-recovery from, AKI in patients with DKD. Resolvin D1 (RvD1) is a potent lipid mediator which can inhibit the inflammatory response and apoptosis in many diseases. However, it has been reported that the RvD1 levels were decreased in diabetes, which may explain why DKD is more susceptible to AKI. Methods For animal experiments, diabetic nephropathy (DN) mice were induced by streptozotocin (STZ) injection intraperitoneally. Renal ischemia–reperfusion was used to induce AKI. Blood urea nitrogen (BUN) and serum creatinine were determined using commercial kits to indicate renal function. Renal apoptosis was examined by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Real-time polymerase chain reaction (PCR) was used to detect the marker of inflammatory response. Western blot was used to detect the expression of nuclear factor-κB (NF-κB)-related proteins. For clinical study, 12 cases diagnosed with DKD were enrolled in this study, and an equal number of non-diabetic renal disease patients (NDKD) were recruited as a control group. The serum RvD1 in DKD or NDKD patients were detected through an ELISA kit. Results In clinical study, we found that the serum RvD1 levels were decreased in DKD patients compared to those in NDKD patients. Decreased serum RvD1 levels were responsible for the susceptibility to ischemic AKI in DKD patients. In animal experiments, both the serum RvD1 and renal ALX levels were downregulated. RvD1 treatment could ameliorate renal function and histological damage after ischemic injury in DN mice. RvD1 treatment also could inhibit the inflammatory response. Di-tert-butyl dicarbonate (BOC-2) treatment could deteriorate renal function and histological damage after ischemic injury in non-diabetic mice. RvD1 could inhibit the NF-κB activation and suppress inflammatory response mainly by inhibiting NF-κB signaling. Conclusion RvD1 attenuated susceptibility to ischemic AKI in diabetes by downregulating NF-κB signaling and inhibiting apoptosis. Downregulated serum RvD1 levels could be the crucial factor for susceptibility to ischemic AKI in diabetes.
Collapse
Affiliation(s)
- Zheng Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hengcheng Lu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenni Dai
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junxiang Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
48
|
Li R, Qu Y, Li X, Tao Y, Yang Q, Wang J, Diao Y, Li Q, Fang Y, Huang Y, Wang L. Molecular Hydrogen Attenuated N-methyl-N-Nitrosourea Induced Corneal Endothelial Injury by Upregulating Anti-Apoptotic Pathway. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 34196654 PMCID: PMC8267183 DOI: 10.1167/iovs.62.9.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Previous work by our group has demonstrated the value of N-methyl-N-nitrosourea (MNU)-induced corneal endothelial decompensation in animal models. The aim of this study was to investigate the effect of molecular hydrogen (H2) on MNU-induced corneal endothelial cell (CEC) injury and the underlying mechanism. Methods MNU-induced animal models of CEC injury were washed with hydrogen-rich saline (HRS) for 14 days. Immunofluorescence staining, immunohistochemical staining, and corneal endothelial assessment were applied to determine architectural and cellular changes on the corneal endothelium following HRS treatment. MNU-induced cell models of CEC injury were co-cultured with H2. The effect of H2 was examined using morphological and functional assays. Results It was shown that MNU could inhibit the proliferation and specific physiological functions of CECs by increasing apoptosis and decreasing the expression of ZO-1 and Na+/K+-ATPase, whereas H2 improved the proliferation and physiological function of CECs by anti-apoptosis. Cell experiments further confirmed that H2 could reverse MNU damage to CECs by decreasing oxidative stress injury, interfering with the NF-κB/NLRP3 pathway and the FOXO3a/p53/p21 pathway. Conclusions This study suggests that topical application of H2 could protect CECs against corneal damage factors through anti-apoptotic effect, reduce the incidence and severity of corneal endothelial decompensation, and maintain corneal transparency.
Collapse
Affiliation(s)
- Runpu Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yingxin Qu
- Department of Ophthalmology, Chinese Aerospace 731 Hospital, Beijing, China
| | - Xiaoqi Li
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ye Tao
- Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Qinghua Yang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junyi Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yumei Diao
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qian Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifan Fang
- Medical School of Chinese PLA, Beijing, China.,Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
49
|
Zhang CS, Han Q, Song ZW, Jia HY, Shao TP, Chen YP. Hydrogen gas post-conditioning attenuates early neuronal pyroptosis in a rat model of subarachnoid hemorrhage through the mitoK ATP signaling pathway. Exp Ther Med 2021; 22:836. [PMID: 34149882 PMCID: PMC8200808 DOI: 10.3892/etm.2021.10268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal pyroptosis serves an important role in the progress of neurologic dysfunction following subarachnoid hemorrhage (SAH), which is predominantly caused by a ruptured aneurysm. Hydrogen gas has been previously reported to be an effective anti-inflammatory agent against ischemia-associated diseases by regulating mitochondrial function. The objective of the present study was to investigate the potential neuroprotective effects of hydrogen gas post-conditioning against neuronal pyroptosis after SAH, with specific focus on the mitochondrial ATP-sensitive K+ (mitoKATP) channels. Following SAH induction by endovascular perforation, rats were treated with inhalation of 2.9% hydrogen gas for 2 h post-perforation. Neurologic deficits, brain water content, reactive oxygen species (ROS) levels, neuronal pyroptosis, phosphorylation of ERK1/2, p38 MAPK and pyroptosis-associated proteins IL-1β and IL-18 were evaluated 24 h after perforation by a modified Garcia method, ratio of wet/dry weight, 2',7'-dichlorofluorescin diacetate, immunofluorescence and western blot assays, respectively. An inhibitor of the mitoKATP channel, 5-hydroxydecanoate sodium (5-HD), was used to assess the potential role of the mitoKATP-ERK1/2-p38 MAPK signal pathway. Hydrogen gas post-conditioning significantly alleviated brain edema and improved neurologic function, reduced ROS production and neuronal pyroptosis, suppressed the expression of IL-1β and IL-18 whilst upregulating ERK1/2 phosphorylation, but downregulated p38 MAPK activation 24 h post-SAH. These aforementioned effects neuroprotective were partially reversed by 5-HD treatment. Therefore, these observations suggest that post-conditioning with hydrogen gas ameliorated SAH-induced neuronal pyroptosis at least in part through the mitoKATP/ERK1/2/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Chuan-Suo Zhang
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Qian Han
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zhao-Wei Song
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Hong-Yan Jia
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Tian-Peng Shao
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yan-Peng Chen
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
50
|
Bai R, Lang Y, Shao J, Deng Y, Refuhati R, Cui L. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases Pathology and Possible Therapeutic Targets. ASN Neuro 2021; 13:17590914211018100. [PMID: 34053242 PMCID: PMC8168029 DOI: 10.1177/17590914211018100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-β, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Deng
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, China
| | - Reyisha Refuhati
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|