1
|
Wang Y, Wu Y, Li L, Gao J, Gao DS, Sun S. GDNF triggers proliferation of rat C6 glioma cells via the NF-κB/CXCL1 signaling pathway. PLoS One 2023; 18:e0289071. [PMID: 37594930 PMCID: PMC10437914 DOI: 10.1371/journal.pone.0289071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/10/2023] [Indexed: 08/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor that is characterized by its high proliferative and migratory potential, leading to a high invasiveness of this tumor type. However, the underlying mechanism of GBM proliferation and migration has not been fully elucidated. In this study, at first, we used RNA-seq together with bioinformatics technology to screen for C-X-C motif ligand 1 (CXCL1) as a proliferation-related gene. And exogenous glial cell line-derived neurotrophic factor (GDNF) induced proliferation and up-regulated the level of CXCL1 in rat C6 glioma cells determined by sqPCR and ELISA. Then, we manipulated the CXCL1 expression by using a lentiviral vector (CXCL1-RNAi) approach. By this, the proliferation of C6 cells was decreased, suggesting that CXCL1 plays a key role in proliferation in these cells. We hypothesized that exogenous GDNF promoted NF-κB nuclear translocation and therefore, analyzed the interaction of CXCL1 with NF-κB by Western Blot and immunofluorescence. Additionally, we used BAY 11-7082, a phosphorylation inhibitor of NF-κB, to elucidate NF-κB mediated the effect of GDNF on CXCL1. These results demonstrated that GDNF enhanced the proliferation of rat C6 glioma cells through activating the NF-κB/CXCL1 signaling pathway. In summary, these studies not only revealed the mechanism of action of exogenous GDNF in promoting the proliferation of C6 glioma cells but may also provide a new biological target for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yue Wang
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Wu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Li
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin Gao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dian Shuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shen Sun
- National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Kanwore K, Kanwore K, Adzika GK, Abiola AA, Guo X, Kambey PA, Xia Y, Gao D. Cancer Metabolism: The Role of Immune Cells Epigenetic Alteration in Tumorigenesis, Progression, and Metastasis of Glioma. Front Immunol 2022; 13:831636. [PMID: 35392088 PMCID: PMC8980436 DOI: 10.3389/fimmu.2022.831636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Glioma is a type of brain and spinal cord tumor that begins in glial cells that support the nervous system neurons functions. Age, radiation exposure, and family background of glioma constitute are risk factors of glioma initiation. Gliomas are categorized on a scale of four grades according to their growth rate. Grades one and two grow slowly, while grades three and four grow faster. Glioblastoma is a grade four gliomas and the deadliest due to its aggressive nature (accelerated proliferation, invasion, and migration). As such, multiple therapeutic approaches are required to improve treatment outcomes. Recently, studies have implicated the significant roles of immune cells in tumorigenesis and the progression of glioma. The energy demands of gliomas alter their microenvironment quality, thereby inducing heterogeneity and plasticity change of stromal and immune cells via the PI3K/AKT/mTOR pathway, which ultimately results in epigenetic modifications that facilitates tumor growth. PI3K is utilized by many intracellular signaling pathways ensuring the proper functioning of the cell. The activation of PI3K/AKT/mTOR regulates the plasma membrane activities, contributing to the phosphorylation reaction necessary for transcription factors activities and oncogenes hyperactivation. The pleiotropic nature of PI3K/AKT/mTOR makes its activity unpredictable during altered cellular functions. Modification of cancer cell microenvironment affects many cell types, including immune cells that are the frontline cells involved in inflammatory cascades caused by cancer cells via high cytokines synthesis. Typically, the evasion of immunosurveillance by gliomas and their resistance to treatment has been attributed to epigenetic reprogramming of immune cells in the tumor microenvironment, which results from cancer metabolism. Hence, it is speculative that impeding cancer metabolism and/or circumventing the epigenetic alteration of immune cell functions in the tumor microenvironment might enhance treatment outcomes. Herein, from an oncological and immunological perspective, this review discusses the underlying pathomechanism of cell-cell interactions enhancing glioma initiation and metabolism activation and tumor microenvironment changes that affect epigenetic modifications in immune cells. Finally, prospects for therapeutic intervention were highlighted.
Collapse
Affiliation(s)
- Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Konimpo Kanwore
- Faculty Mixed of Medicine and Pharmacy, Lomé-Togo, University of Lomé, Lomé, Togo
| | | | - Ayanlaja Abdulrahman Abiola
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxiao Guo
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Piniel Alphayo Kambey
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Key Laboratory of Neurobiology, Department of Anatomy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Kanwore K, Kambey PA, Guo XX, Abiola AA, Xia Y, Gao D. Extracellular and Intracellular Factors in Brain Cancer. Front Cell Dev Biol 2021; 9:699103. [PMID: 34513834 PMCID: PMC8429835 DOI: 10.3389/fcell.2021.699103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/29/2021] [Indexed: 11/15/2022] Open
Abstract
The external and internal factors of the cell are critical to glioma initiation. Several factors and molecules have been reported to be implicated in the initiation and progression of brain cancer. However, the exact sequence of events responsible for glioma initiation is still unknown. Existing reports indicate that glioma stem cells are the cell of glioma origin. During cell division, chromosome breakage, DNA alteration increases the chance of cell genome modifications and oncogene overexpression. Although there is a high risk of gene alteration and oncogene overexpression, not everyone develops cancer. During embryogenesis, the same oncogenes that promote cancers have also been reported to be highly expressed, but this high expression which does not lead to carcinogenesis raises questions about the role of oncogenes in carcinogenesis. The resistance of cancer cells to drugs, apoptosis, and immune cells does not rely solely on oncogene overexpression but also on the defect in cell organelle machinery (mitochondria, endoplasmic reticulum, and cytoskeleton). This review discusses factors contributing to cancer; we report the dysfunction of the cell organelles and their contribution to carcinogenesis, while oncogene overexpression promotes tumorigenesis, maintenance, and progression through cell adhesion. All these factors together represent a fundamental requirement for cancer and its development.
Collapse
Affiliation(s)
- Kouminin Kanwore
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ayanlaja Abdulrahman Abiola
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Xia
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Chaudhary R, Morris RJ, Steinson E. The multifactorial roles of microglia and macrophages in the maintenance and progression of glioblastoma. J Neuroimmunol 2021; 357:577633. [PMID: 34153803 DOI: 10.1016/j.jneuroim.2021.577633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 01/18/2023]
Abstract
The functional characteristics of glial cells, in particular microglia, have attained considerable importance in several diseases, including glioblastoma, the most hostile and malignant type of intracranial tumor. Microglia performs a highly significant role in the brain's inflammatory response mechanism. They exhibit anti-tumor properties via phagocytosis and the activation of a number of different cytotoxic substances. Some tumor-derived factors, however, transform these microglial cells into immunosuppressive and tumor-supportive, facilitating survival and progression of tumorigenic cells. Glioma-associated microglia and/or macrophages (GAMs) accounts for a large proportion of glioma infiltrating cells. Once within the tumor, GAMs exhibit a distinct phenotype of initiation that subsequently supports the growth and development of tumorigenic cells, angiogenesis and stimulates the infiltration of healthy brain regions. Interventions that suppress or prohibit the induction of GAMs at the tumor site or attenuate their immunological activities accommodating anti-tumor actions are likely to exert positive impact on glioblastoma treatment. In the present paper, we aim to summarize the most recent knowledge of microglia and its physiology, as well as include a very brief description of different molecular factors involved in microglia and glioblastoma interplay. We further address some of the major signaling pathways that regulate the baseline motility of glioblastoma progression. Finally, we discussed a number of therapeutic approaches regarding glioblastoma treatment.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India.
| | - Rhianna J Morris
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Emma Steinson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
5
|
SOX1 Is a Backup Gene for Brain Neurons and Glioma Stem Cell Protection and Proliferation. Mol Neurobiol 2021; 58:2634-2642. [PMID: 33481176 DOI: 10.1007/s12035-020-02240-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Failed neuroprotection leads to the initiation of several diseases. SOX1 plays many roles in embryogenesis, oncogenesis, and male sex determination, and can promote glioma stem cell proliferation, invasion, and migration due to its high expression in glioblastoma cells. The functional versatility of the SOX1 gene in malignancy, epilepsy, and Parkinson's disease, as well as its adverse effects on dopaminergic neurons, makes it an interesting research focus. Hence, we collate the most important discoveries relating to the neuroprotective effects of SOX1 in brain cancer and propose hypothesis worthy of SOX1's role in the survival of senescent neuronal cells, its roles in fibroblast cell proliferation, and cell fat for neuroprotection, and the discharge of electrical impulses for homeostasis. Increase in electrical impulses transmitted by senescent cells affects the synthesis of neurotransmitters, which will modify the brain cell metabolism and microenvironment.
Collapse
|
6
|
Huang Y, Zhang B, Haneke H, Haage V, Lubas M, Yuan Y, Xia P, Motta E, Nanvuma C, Dzaye O, Hu F, Kettenmann H. Glial cell line-derived neurotrophic factor increases matrix metallopeptidase 9 and 14 expression in microglia and promotes microglia-mediated glioma progression. J Neurosci Res 2021; 99:1048-1063. [PMID: 33404121 DOI: 10.1002/jnr.24768] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/09/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is released by glioma cells and promotes tumor growth. We have previously found that GDNF released from the tumor cells is a chemoattractant for microglial cells, the immune cells of the central nervous system. Here we show that GDNF increases matrix metalloproteinase (MMP) 9 and MMP14 expression in cultured microglial cells from mixed sexes of neonatal mice. The GDNF-induced microglial MMP9 and MMP14 upregulation is mediated by GDNF family receptor alpha 1 receptors and dependent on p38 mitogen-activated protein kinase signaling. In organotypic brain slices, GDNF promotes the growth of glioma and this effect depends on the presence of microglia. We also previously found that MMP9 and MMP14 upregulation can be mediated by Toll-like receptor (TLR) 2 signaling and here we demonstrate that GDNF increases the expression of TLR1 and TLR2. In conclusion, GDNF promotes the pro-tumorigenic phenotype of microglia.
Collapse
Affiliation(s)
- Yimin Huang
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Baole Zhang
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Neurobiology and Cell Biology, Xuzhou Medical University, Xuzhou, China
| | - Hannah Haneke
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Verena Haage
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Malgorzata Lubas
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Yang Yuan
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Pengfei Xia
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Edyta Motta
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Cynthia Nanvuma
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Omar Dzaye
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Helmut Kettenmann
- Cellular Neurosciences, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
7
|
Zhang B, Han X, Gao Q, Liu J, Li S, Zha W, Wang X, Guo X, Gao D. Enhancer II-targeted dsRNA decreases GDNF expression via histone H3K9 trimethylation to inhibit glioblastoma progression. Brain Res Bull 2020; 167:22-32. [PMID: 33278485 DOI: 10.1016/j.brainresbull.2020.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/01/2020] [Accepted: 11/30/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) is expressed in both astrocytes and glioblastoma (GBM) cells. GDNF expression is significantly increased in GBM, and inhibiting its expression can retard GBM progression. However, there is no known method for specific inhibition of GDNF in GBM cells. METHODS Promoter-targeted dsRNA-induced transcriptional gene silencing or activation was recently achieved in human cells. This approach has the potential to specifically regulate gene transcription via epigenetic modifications. In this study, we designed six candidate dsRNAs targeting the enhancer or silencer in GDNF gene promoter II to check their effects on GDNF transcription and GBM progression. RESULTS Among these dsRNAs, enhancer II-targeted dsRNA significantly inhibited U251 GBM progression by downregulating GDNF (P < 0.05), while silencer II-targeted dsRNA exerted an opposite effect. Moreover, enhancer II-targeted dsRNA did not significantly change GDNF expression in human astrocytes (HA) and the proliferation and migration of HA cells (P > 0.05). Bisulfate PCR and chromatin immunoprecipitation analyses revealed that both DNA methylation and trimethylation of histone 3 at lysine 9 (H3K9me3) at silencer II-targeted region significantly increased, and H3K9me3 at enhancer II-targeted region significantly decreased, in U251 cells compared with HA cells in non-intervention condition (P < 0.05). Both enhancer II- and silencer II-targeted dsRNA significantly increased H3K9me3 methylation rather than DNA at the targeted site in U251 cells (P < 0.05). The expression and activity of histone methyltransferase SETDB1 increased dramatically in U251 cells compared with HA cells, and it was recruited to enhancer II targeting region after enhancer II-targeted dsRNA treatment in U251 cells (P < 0.05). CONCLUSIONS Our results demonstrate that a promoter-targeted dsRNA can silence or promote gene transcription depending on its targeted site in different cis-acting elements in the gene promoter. Targeted inhibition of GDNF by enhancer II-targeted dsRNA may be explored as a novel treatment for GBM.
Collapse
Affiliation(s)
- Baole Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.
| | - Xiao Han
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Qing Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Jie Liu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Saisai Li
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Wei Zha
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoyu Wang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoxiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.
| |
Collapse
|
8
|
Li J, Quan XJ, Chen G, Hong JW, Wang Q, Xu LL, Wang BH, Yu ZH, Yu HM. PFOS-induced placental cell growth inhibition is partially mediated by lncRNA H19 through interacting with miR-19a and miR-19b. CHEMOSPHERE 2020; 261:127640. [PMID: 32738709 DOI: 10.1016/j.chemosphere.2020.127640] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 05/15/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS), a persistent environmental pollutant, has been associated with decreased birth weight. The dysregulation of long non-coding RNA (lncRNA) H19 has been implicated in pregnancy complications such as intra-uterine growth retardation (IUGR), preeclampsia (PE), however, the expression and function of H19 in PFOS-exerted detrimental effects in the placenta remains to be unveiled. Here, we explored the role of H19 in PFOS-induced placental toxicity. Results showed that PFOS caused decreased cell growth in human HTR-8/SVneo cells. Expression of H19 was increased, while miR-19a and miR-19b expression were decreased in mice placenta tissues and in HTR-8/SVneo cells exposed to PFOS. A significant hypomethylation was observed at the H19 promoter in the placentas of mice that were gestational exposed to high dose of PFOS. H19 was confirmed to bind with miR-19a and miR-19b, targeting SMAD4. Furthermore, H19 appeared to partially improve the cell growth of HTR-8/SVneo cells exposed to PFOS via upregulation of miR-19a and miR-19b. In summary, our findings revealed that H19/miR-19a and miR-19b/SMAD4 axis exerted important functions in PFOS-induced placenta cell toxicity.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Xiao-Jie Quan
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Gang Chen
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Jia-Wei Hong
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Qi Wang
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Lin-Lin Xu
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Bing-Hua Wang
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Ze-Hua Yu
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| | - Hong-Min Yu
- School of Public Health, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
9
|
Shan Q, Li S, Cao Q, Yue C, Niu M, Chen X, Shi L, Li H, Gao S, Liang J, Yu R, Liu X. Inhibition of chromosomal region maintenance 1 suppresses the migration and invasion of glioma cells via inactivation of the STAT3/MMP2 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:193-201. [PMID: 32392910 PMCID: PMC7193913 DOI: 10.4196/kjpp.2020.24.3.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/07/2023]
Abstract
Chromosomal region maintenance 1 (CRM1) is associated with an adverse prognosis in glioma. We previously reported that CRM1 inhibition suppressed glioma cell proliferation both in vitro and in vivo. In this study, we investigated the role of CRM1 in the migration and invasion of glioma cells. S109, a novel reversible selective inhibitor of CRM1, was used to treat Human glioma U87 and U251 cells. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. The results showed that S109 significantly inhibited the migration and invasion of U87 and U251 cells. However, mutation of Cys528 in CRM1 abolished the inhibitory activity of S109 in glioma cells. Furthermore, we found that S109 treatment decreased the expression level and activity of MMP2 and reduced the level of phosphorylated STAT3 but not total STAT3. Therefore, the inhibition of migration and invasion induced by S109 may be associated with the downregulation of MMP2 activity and expression, and inactivation of the STAT3 signaling pathway. These results support our previous conclusion that inhibition of CRM1 is an attractive strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Qianqian Shan
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shengsheng Li
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Qiyu Cao
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Chenglong Yue
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Mingshan Niu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiangyu Chen
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Lin Shi
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Huan Li
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shangfeng Gao
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jun Liang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
10
|
Zhang B, Gu X, Han X, Gao Q, Liu J, Guo T, Gao D. Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells. Clin Epigenetics 2020; 12:47. [PMID: 32183903 PMCID: PMC7079383 DOI: 10.1186/s13148-020-00835-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) is highly expressed in glioblastoma (GBM) and blocking its expression can inhibit the initiation and development of GBM. GDNF is a dual promoter gene, and the promoter II with two enhancers and two silencers plays a major role in transcription initiation. We had previously reported that histone hyperacetylation and DNA hypermethylation in GDNF promoter II region result in high transcription of GDNF in GBM cells, but the mechanism remains unclear. In this study, we investigated whether these modifications synergistically regulate high GDNF transcription in GBM. RESULTS Cyclic AMP response element binding protein (CREB) expression and phosphorylation at S133 were significantly increased in human GBM tissues and GBM cell lines (U251 and U343). In U251 GBM cells, high expressed CREB significantly enhanced GDNF transcription and promoter II activity. CREB regulated GDNF transcription via the cyclic AMP response elements (CREs) in enhancer II and silencer II of GDNF promoter II. However, the two CREs played opposite regulatory roles. Interestingly, hypermethylation of CRE in silencer II occurred in GBM tissues and cells which led to decreased and increased phosphorylated CREB (pCREB) binding to silencer II and enhancer II, respectively. Moreover, pCREB recruited CREB binding protein (CBP) with histone acetylase activity to the CRE of GDNF enhancer II, thereby increasing histone H3 acetylation and RNA polymerase II recruitment there and at the transcription start site (TSS), and promoted GDNF high transcription in U251 cells. The results indicated that high GDNF transcription was attributable to DNA hypermethylation in CRE of GDNF silencer II increasing pCREB binding to CRE in enhancer II, which enhanced CBP recruitment, histone H3 acetylation, and RNA polymerase II recruitment there and at the TSS. CONCLUSIONS Our results demonstrate that pCREB-induced crosstalk between DNA methylation and histone acetylation at the GDNF promoter II enhanced GDNF high transcription, providing a new perspective for GBM treatment.
Collapse
Affiliation(s)
- Baole Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiaohe Gu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiao Han
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Qing Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jie Liu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tingwen Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
11
|
Saracino R, Capponi C, Di Persio S, Boitani C, Masciarelli S, Fazi F, Fera S, Vicini E. Regulation of
Gdnf
expression by retinoic acid in Sertoli cells. Mol Reprod Dev 2020; 87:419-429. [DOI: 10.1002/mrd.23323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Rossana Saracino
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Chiara Capponi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Sara Di Persio
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Carla Boitani
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Silvia Masciarelli
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Francesco Fazi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Stefania Fera
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| | - Elena Vicini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of HistologySapienza University of RomeRoma Italy
| |
Collapse
|
12
|
Zhang L, Wang D, Han X, Tang F, Gao D. Mechanism of methylation and acetylation of high GDNF transcription in glioma cells: A review. Heliyon 2019; 5:e01951. [PMID: 31294105 PMCID: PMC6595186 DOI: 10.1016/j.heliyon.2019.e01951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023] Open
Abstract
Gliomas are the most common primary malignant tumors in the central nervous system. High expression of glial cell line-derived neurotrophic factor (GDNF) is an important prerequisite for the initiation and development of gliomas. However, the underlying transcription mechanism is poorly understood. Epigenetic alterations are common and important hallmarks of various types of tumors, and lead to abnormal expression of genes. Several recent studies have suggested that epigenetic modifications contribute to increased GDNF transcription. Specifically, aberrant DNA methylation and histone acetylation in the promoter regions of GDNF are related to high GDNF transcription in glioma cells, where transcription factors have extremely important roles. Therefore, elucidating the importance and features of this underlying molecular mechanism will enhance our understanding and provide clues for the accurate diagnosis and efficacious treatment of gliomas. This review summarizes the latest thinking on the potential epigenetic mechanisms of high expression of GDNF in glioma cells focusing primarily on DNA methylation and histone acetylation.
Collapse
Affiliation(s)
- Lin Zhang
- School of Nursing of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China.,Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Dan Wang
- School of Medical Information of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Xiao Han
- Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Furong Tang
- Department of Psychiatry of Xuzhou Oriental People's Hospital, Xuzhou, Jiangsu province, 221004, China
| | - Dianshuai Gao
- Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| |
Collapse
|
13
|
Zhao J, Li FZ, Wu J, Yang H, Zheng J, Pang J, Meng FX, Wang F, Zhang YL. Effect of CREB1 promoter non-CpG island methylation on its differential expression profile on sheep ovaries associated with prolificacy. Tissue Cell 2019; 58:61-69. [PMID: 31133247 DOI: 10.1016/j.tice.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 12/01/2022]
Abstract
This study aimed to investigate the effect of different methylated regions of cyclic-AMP response element binding protein 1 (CREB1) by comparing the high prolificacy (HP) group and low prolificacy (LP) group, which was detected in our previous study. The expression level of CREB1 mRNA in the ovaries of the HP group was higher than in the LP group (P < 0.05). The differential methylated region (DMR) had 4 methylated CG dinucleotides(CGs): -1546, -1544, -1494 and -1464. The DNA methylation levels of -1546 CGs and -1464 CGs were significantly higher in the HP group than in the LP group (P < 0.05). The activity from -1296 to +26 (without DMR) was significantly higher than the activity from -1598 to +26 (with DMR) (P < 0.05). The result of 5-aza-2'-deoxycytidine treatment indicated that the inhibition DNA methylation of DMR reduced the transcription of CREB1. The bioinformatics predictive analysis were found that the -1546 CG site was located in the CCAAT/enhancer-binding protein alpha (CEBPA) binding site and the -1464 CG site was located in the Sp1 binding site. Finally, this study revealed the relationship between the methylation of non-CpG sites of the promoter and transcription of CREB1. This study will provide a theoretical basis of the Hu sheep ovaries associated with DNA methylation.
Collapse
Affiliation(s)
- Jie Zhao
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng-Zhe Li
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Wu
- Lang Fang Polytechnic Institute, Hebei, 065001, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Zheng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan-Xing Meng
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan-Li Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
14
|
Ayanlaja AA, Zhang B, Ji G, Gao Y, Wang J, Kanwore K, Gao D. The reversible effects of glial cell line-derived neurotrophic factor (GDNF) in the human brain. Semin Cancer Biol 2018; 53:212-222. [PMID: 30059726 DOI: 10.1016/j.semcancer.2018.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor, and a member of the transforming growth factor β (TGF-β) superfamily acting on different neuronal activities. GDNF was originally identified as a neurotrophic factor crucially involved in the survival of dopaminergic neurons of the nigrostriatal pathway and is currently an established therapeutic target in Parkinson's disease. However, GDNF was later reported to be highly expressed in gliomas, especially in glioblastomas, and was demonstrated as a potent proliferation factor involved in the development and migration of gliomas. Here, we review our current understanding and progress made so far by researchers in our laboratories with references to relevant articles to support our discoveries. We present past and recent discoveries on the mechanisms involved in the protection of neurons by GDNF and examine its emerging roles in gliomas, as well as reasons for the abnormal expression in Glioblastoma Multiforme (GBM). Collectively, our work establishes a paradigm by which the ability of GDNF to protect dopaminergic neurons from degradation and its corresponding effects on glioma cells points to an underlying biological vulnerability in the effects of GDNF in the normal brain which can be subverted for use by cancer cells. Hence, presenting novel opportunities for intervention in glioma therapies.
Collapse
Affiliation(s)
- Abiola Abdulrahman Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Baole Zhang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - GuangQuan Ji
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yue Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Jie Wang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Kouminin Kanwore
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - DianShuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
15
|
Abstract
Adult diffuse gliomas account for the majority of primary malignant brain tumours, and are in most cases lethal. Current therapies are often only marginally effective, and improved options will almost certainly benefit from further insight into the various processes contributing to gliomagenesis and pathology. While molecular characterization of these tumours classifies them on the basis of genetic alterations and chromosomal abnormalities, DNA methylation patterns are increasingly understood to play a role in glioma pathogenesis. Indeed, a subset of gliomas associated with improved survival is characterized by the glioma CpG island methylator phenotype (G-CIMP), which can be induced by the expression of mutant isocitrate dehydrogenase (IDH1/2). Aberrant methylation of particular genes or regulatory elements, within the context of G-CIMP-positive and/or negative tumours, has also been shown to be associated with differential survival. In this review, we provide an overview of the current knowledge regarding the role of DNA methylation in adult diffuse gliomas. In particular, we discuss IDH mutations and G-CIMP, MGMT promoter methylation, DNA methylation-mediated microRNA regulation and aberrant methylation of specific genes or groups of genes.
Collapse
|