1
|
Ashwlayan VD, Ratnesh RK, Sharma D, Sharma A, Sangal A, Saifi A, Singh J. A Comprehensive Review on Plant-Based Medications and Chemical Approaches for Autism Spectrum Disorders (ASDs) Psychopharmacotherapy. Indian J Microbiol 2025; 65:15-31. [PMID: 40371019 PMCID: PMC12069777 DOI: 10.1007/s12088-024-01265-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/16/2024] [Indexed: 05/16/2025] Open
Abstract
Gastrointestinal impairment induced sleep, behavioral and psychiatric disorders were reported in patients of autism spectrum disorders (ASDs). These may be life-long neuro-developmental disorders. Standardized diagnostic criteria for ASDs include: restricted and repetitive behavior, ongoing deficiencies in social interaction and communication. Pro-antioxidant and anti-inflammatory effects of dietry polyphenols/poly-phenol-rich derivatives as bioactive compounds enhanced permeability of blood brain barrier, consequently leads to delay in the onset of ASDs symptoms and can be effectively used in the management of ASDs. During the research on ASDs numerous therapeutic modalities, such as chemical and plant-based therapies, have been investigated. Due to their possible neuro-psychopharmacological benefits, plant-based treatments have attracted interest. These natural source therapies have demonstrated potential in reducing ASDs-related symptoms. Plant-based psycho-pharmaceuticals have been thoroughly investigated, and the investigations have confirmed their therapeutic effects. The therapeutic qualities of plants not only address the complex neurological aspects of ASDs but also provide a comprehensive approach to treatment. These substances may restore neurochemical equilibrium by focusing on particular biochemical pathways associated with the illness. Advancements in pharmacology and neurochemistry have enabled targeted interventions through chemical approaches. The treatment of ASDs approached through a combination of plant-based solutions and chemical methods can be better than one alone. By targeting the restorative properties of both natural compounds and synthesized chemicals, researchers aim to address the diverse range of symptoms and underlying neurobiological abnormalities associated with ASDs. Further clinical studies are required to validate the potential of bioactive molecules scientifically. Graphical Abstract
Collapse
Affiliation(s)
- Vrish Dhwaj Ashwlayan
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, U.P. 250005 India
| | - Ratneshwar Kumar Ratnesh
- Department of Electronics and Communication Engineering, Meerut Institute of Engineering and Technology, Meerut, U.P. 250005 India
| | - Divya Sharma
- Department of Computer Science, Deva Nagri College, Delhi Road, Meerut, U.P. 250002 India
| | - Alok Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, U.P. 250005 India
| | - Akansha Sangal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, U.P. 250005 India
| | - Alimuddin Saifi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, U.P. 250005 India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P. 221005 India
| |
Collapse
|
2
|
Li W, Kong Q, Guo M, Wang L, Tian P, Lu J, Zhao J, Chen W, Wang G. Butyrylated modification of corn starch alleviates autism-like behaviors by modulating 5-hydroxytryptamine metabolism and gut-brain neural activity. Carbohydr Polym 2025; 351:123073. [PMID: 39779003 DOI: 10.1016/j.carbpol.2024.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
This study was conducted to elucidate the effects of different degrees of substitution (DS) on the properties of propionylated and butyrylated starches and to investigate their efficacy and mechanisms in ameliorating autism-like phenotypes. Fourier transform infrared spectra of propionylated and butyrylated starches revealed the presence of the CO absorption peak at 1730 cm-1. Additionally, as the DS increased, the surface of the starch granules became rougher, and the crystallinity decreased. Moreover, in vitro digestion tests demonstrated that propionylated and butyrylated starches with a DS of approximately 0.25 exhibited enhanced resistance to digestion. Animal experiments indicated that butyrylated starch significantly improved abnormal behaviors in autism-like rats and increased butyrate accumulation in the colon. Furthermore, butyrylated starch normalized aberrant expression of G protein-coupled receptor 41 and tryptophan hydroxylase 1 in the colon, promoting 5-hydroxytryptamine metabolism and suppressing the expression of ionized calcium binding adaptor molecule 1 and glial fibrillary acidic protein in the gut and brain. These findings demonstrate that butyrylated starch effectively alleviates autism-like phenotypes in rats, supporting strategies to mitigate autism and develop new applications for natural corn starch.
Collapse
Affiliation(s)
- Wentian Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingmin Kong
- School of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Jingyu Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China.
| |
Collapse
|
3
|
Duarte RMF, Ribeiro-Barbosa ER, Ferreira FR, Espindola FS, Spini VBMG. Resveratrol prevents offspring's behavioral impairment associated with immunogenic stress during pregnancy. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111188. [PMID: 39522792 DOI: 10.1016/j.pnpbp.2024.111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Evidence suggests that prenatal maternal immunological stress is associated with an increased risk of neurological and psychiatric disorders in the developing offspring. Protecting the embryo during this critical period of neurodevelopment, when the brain is especially vulnerable, is therefore crucial. Polyphenols, with their antioxidant and anti-inflammatory properties, offer promising therapeutic approaches. This study demonstrated a series of behavioral changes induced by maternal immune activation (MIA) triggered by an antigenic solution derived from the H1N1 virus. These changes include significant differences in anxiety and risk assessment behaviors, increased immobility in the forced swim test, impairments in memory and object recognition, and social deficits resembling autism. The phenolic compound resveratrol (RSV) was evaluated for its in vitro antioxidant capacity and characterized using infrared spectroscopy. Administering RSV from embryonic day 14 (E14) to embrionyc day 19 (E19) during MIA effectively reduced its harmful effects on the offspring. This was evidenced by a significant restoration of social behaviors, memory, and recognition, as well as anxiolytic and antidepressant effects in the adult offspring. These findings contribute to new therapeutic strategies for preventing psychiatric disorders associated with neurodevelopmental stressors.
Collapse
Affiliation(s)
- Rener Mateus Francisco Duarte
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.
| | - Erika Renata Ribeiro-Barbosa
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Foued Salmen Espindola
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
4
|
Hussein MH, Alameen AA, Ansari MA, AlSharari SD, Ahmad SF, Attia MSM, Sarawi WS, Nadeem A, Bakheet SA, Attia SM. Semaglutide ameliorated autism-like behaviors and DNA repair efficiency in male BTBR mice by recovering DNA repair gene expression. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111091. [PMID: 39032854 DOI: 10.1016/j.pnpbp.2024.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is marked by impaired social interactions, and increased repetitive behaviors. There is evidence of genetic changes in ASD, and several of these altered genes are linked to the process of DNA repair. Therefore, individuals with ASD must have improved DNA repair efficiency to mitigate risks associated with ASD. Despite numerous milestones in ASD research, the disease remains incurable, with a high occurrence rate and substantial financial burdens. This motivates scientists to search for new drugs to manage the disease. Disruption of glucagon-like peptide-1 (GLP-1) signaling, a regulator in neuronal development and maintains homeostasis, has been associated with the pathogenesis and progression of several neurological disorders, such as ASD. Our study aimed to assess the impact of semaglutide, a new GLP-1 analog antidiabetic medication, on behavioral phenotypes and DNA repair efficiency in the BTBR autistic mouse model. Furthermore, we elucidated the underlying mechanism(s) responsible for the ameliorative effects of semaglutide against behavioral problems and DNA repair deficiency in BTBR mice. The current results demonstrate that repeated treatment with semaglutide efficiently decreased autism-like behaviors in BTBR mice without affecting motor performance. Semaglutide also mitigated spontaneous DNA damage and enhanced DNA repair efficiency in the BTBR mice as determined by comet assay. Moreover, administering semaglutide recovered oxidant-antioxidant balance in BTBR mice. Semaglutide restored the disrupted DNA damage/repair pathways in the BTBR mice by reducing Gadd45a expression and increasing Ogg1 and Xrcc1 expression at both the mRNA and protein levels. This suggests that semaglutide holds great potential as a novel therapeutic candidate for treating ASD traits.
Collapse
Affiliation(s)
- Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Alaa A Alameen
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Jhanji M, Krall CL, Guevara A, Yoon B, Sajish M, Boccuto L, Lizarraga SB. The intersection of inflammation and DNA damage as a novel axis underlying the pathogenesis of autism spectrum disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627854. [PMID: 39713319 PMCID: PMC11661205 DOI: 10.1101/2024.12.11.627854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Autism spectrum disorders (ASD) affects 1 in 36 children and is characterized by repetitive behaviors and difficulties in social interactions and social communication. The etiology of ASD is extremely heterogeneous, with a large number of ASD cases that are of unknown or complex etiology, which suggests the potential contribution of epigenetic risk factors. In particular, epidemiological and animal model studies suggest that inflammation during pregnancy could lead to an increased risk of ASD in the offspring. However, the molecular mechanisms that contribute to ASD pathogenesis in relation to maternal inflammation during pregnancy in humans are underexplored. Several pro-inflammatory cytokines have been associated with increased autistic-like behaviors in animal models of maternal immune activation, including IL-17A. Using a combination of ASD patient lymphocytes and stem cell-derived human neurons exposed to IL-17A we discovered a shared molecular signature that highlights a metabolic and translational node that could lead to altered neuronal excitability. Further, our work on human neurons brings forward the possibility that defects in the DNA damage response could be underlying the effect of IL-17A on human excitatory neurons, linking exacerbated unrepaired DNA damage to the pathogenicity of maternal inflammation in connection to ASD.
Collapse
|
6
|
Zeng X, Fan L, Li M, Qin Q, Pang X, Shi S, Zheng D, Jiang Y, Wang H, Wu L, Liang S. Resveratrol regulates Thoc5 to improve maternal immune activation-induced autism-like behaviors in adult mouse offspring. J Nutr Biochem 2024; 129:109638. [PMID: 38583499 DOI: 10.1016/j.jnutbio.2024.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Maternal infection during pregnancy is an important cause of autism spectrum disorder (ASD) in offspring, and inflammatory infiltration caused by maternal immune activation (MIA) can cause neurodevelopmental disorders in the fetus. Medicine food homologous (MFH) refers to a traditional Chinese medicine (TCM) concept, which effectively combines food functions and medicinal effects. However, no previous study has screened, predicted, and validated the potential targets of MFH herbs for treating ASD. Therefore, in this study, we used comprehensive bioinformatics methods to screen and analyze MFH herbs and drug targets on a large scale, and identified resveratrol and Thoc5 as the best small molecular ingredient and drug target, respectively, for the treatment of MIA-induced ASD. Additionally, the results of in vitro experiments revealed that resveratrol increased the expression of Thoc5 and effectively inhibited lipopolysaccharide-induced inflammatory factor production by BV2 cells. Moreover, in vivo, resveratrol increased the expression of Thoc5 and effectively inhibited placental and fetal brain inflammation in MIA pregnancy mice, and improved ASD-like behaviors in offspring.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Linlin Fan
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Mengyue Li
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Qian Qin
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Xiuming Pang
- Outpatient Department, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Shanyi Shi
- Traditional Chinese Medicine Prevention and Treatment Center, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Danyang Zheng
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Yutong Jiang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Han Wang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Lijie Wu
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| | - Shuang Liang
- Department of Child and Adolescent Health, Public Health College, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
7
|
Ryabushkina YA, Ayriyants KA, Sapronova AA, Mutovina AS, Kolesnikova MM, Mezhlumyan EV, Bondar NP, Reshetnikov VV. Effects of different types of induced neonatal inflammation on development and behavior of C57BL/6 and BTBR mice. Physiol Behav 2024; 280:114550. [PMID: 38614416 DOI: 10.1016/j.physbeh.2024.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Neuroinflammation in the early postnatal period can disturb trajectories of the completion of normal brain development and can lead to mental illnesses, such as depression, anxiety disorders, and personality disorders later in life. In our study, we focused on evaluating short- and long-term effects of neonatal inflammation induced by lipopolysaccharide, poly(I:C), or their combination in female and male C57BL/6 and BTBR mice. We chose the BTBR strain as potentially more susceptible to neonatal inflammation because these mice have behavioral, neuroanatomical, and physiological features of autism spectrum disorders, an abnormal immune response, and several structural aberrations in the brain. Our results indicated that BTBR mice are more sensitive to the influence of the neonatal immune activation (NIA) on the formation of neonatal reflexes than C57BL/6 mice are. In these experiments, the injection of lipopolysaccharide had an effect on the formation of the cliff aversion reflex in female BTBR mice. Nonetheless, NIA had no delayed effects on either social behavior or anxiety-like behavior in juvenile and adolescent BTBR and C57BL/6 mice. Altogether, our data show that NIA has mimetic-, age-, and strain-dependent effects on the development of neonatal reflexes and on exploratory activity in BTBR and C57BL/6 mice.
Collapse
Affiliation(s)
- Yuliya A Ryabushkina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Kseniya A Ayriyants
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Anna A Sapronova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Anastasia S Mutovina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Maria M Kolesnikova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Eva V Mezhlumyan
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Natalya P Bondar
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia.
| | - Vasiliy V Reshetnikov
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia; Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia.
| |
Collapse
|
8
|
Nasiry D, Khalatbary AR. Natural polyphenols for the management of autism spectrum disorder: a review of efficacy and molecular mechanisms. Nutr Neurosci 2024; 27:241-251. [PMID: 36800230 DOI: 10.1080/1028415x.2023.2180866] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Natural polyphenols have been found to have some protective effects against neurodegenerative and neurodevelopmental disorders, which are attributed to a variety of biological properties, particularly antioxidant, immunomodulatory, and anti-inflammatory effects. Autism spectrum disorder is a complex neurological and neurodevelopmental disorder with no currently effective clinical treatment for its core symptoms. Regarding the management of autism spectrum disorder core symptoms, a number of experimental and clinical studies have been made using well-known dietary polyphenols with different effects and molecular mechanisms. The aim of this paper is to present the most effective natural polyphenols with the relevant molecular mechanisms in preclinical and clinical autism spectrum disorder studies.
Collapse
Affiliation(s)
- Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Socała K, Żmudzka E, Lustyk K, Zagaja M, Brighenti V, Costa AM, Andres-Mach M, Pytka K, Martinelli I, Mandrioli J, Pellati F, Biagini G, Wlaź P. Therapeutic potential of stilbenes in neuropsychiatric and neurological disorders: A comprehensive review of preclinical and clinical evidence. Phytother Res 2024; 38:1400-1461. [PMID: 38232725 DOI: 10.1002/ptr.8101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Neuropsychiatric disorders are anticipated to be a leading health concern in the near future, emphasizing an outstanding need for the development of new effective therapeutics to treat them. Stilbenes, with resveratrol attracting the most attention, are an example of multi-target compounds with promising therapeutic potential for a broad array of neuropsychiatric and neurological conditions. This review is a comprehensive summary of the current state of research on stilbenes in several neuropsychiatric and neurological disorders such as depression, anxiety, schizophrenia, autism spectrum disorders, epilepsy, traumatic brain injury, and neurodegenerative disorders. We describe and discuss the results of both in vitro and in vivo studies. The majority of studies concentrate on resveratrol, with limited findings exploring other stilbenes such as pterostilbene, piceatannol, polydatin, tetrahydroxystilbene glucoside, or synthetic resveratrol derivatives. Overall, although extensive preclinical studies show the potential benefits of stilbenes in various central nervous system disorders, clinical evidence on their therapeutic efficacy is largely missing.
Collapse
Affiliation(s)
- Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Mirosław Zagaja
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Lublin, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
10
|
Albekairi TH, Alanazi MM, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Mazroua HA, Aldossari AA, Almanaa TN, Alwetaid MY, Alqinyah M, Alnefaie HO, Ahmad SF. Cadmium exposure exacerbates immunological abnormalities in a BTBR T + Itpr3 tf/J autistic mouse model by upregulating inflammatory mediators in CD45R-expressing cells. J Neuroimmunol 2024; 386:578253. [PMID: 38064869 DOI: 10.1016/j.jneuroim.2023.578253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by behavior, learning, communication, and social interaction abnormalities in various situations. Individuals with impairments usually exhibit restricted and repetitive actions. The actual cause of ASD is yet unknown. It is believed, however, that a mix of genetic and environmental factors may play a role in its development. Certain metals have been linked to the development of neurological diseases, and the prevalence of ASD has shown a positive association with industrialization. Cadmium chloride (Cd) is a neurotoxic chemical linked to cognitive impairment, tremors, and neurodegenerative diseases. The BTBR T+ Itpr3tf/J (BTBR) inbred mice are generally used as a model for ASD and display a range of autistic phenotypes. We looked at how Cd exposure affected the signaling of inflammatory mediators in CD45R-expressing cells in the BTBR mouse model of ASD. In this study, we looked at how Cd affected the expression of numerous markers in the spleen, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. Furthermore, we investigated the effect of Cd exposure on the expression levels of numerous mRNA molecules in brain tissue, including IFN-γ, IL-6, NF-κB p65, GM-CSF, iNOS, MCP-1, and Notch1. The RT-PCR technique was used for this analysis. Cd exposure increased the number of CD45R+IFN-γ+, CD45R+IL-6+, CD45R+NF-κB p65+, CD45R+GM-CSF+, CD45R+GM-CSF+, CD45R+iNOS+, and CD45R+Notch1+ cells in the spleen of BTBR mice. Cd treatment also enhanced mRNA expression in brain tissue for IFN-γ, IL-6, NF-κB, GM-CSF, iNOS, MCP-1, and Notch1. In general, Cd increases the signaling of inflammatory mediators in BTBR mice. This study is the first to show that Cd exposure causes immune function dysregulation in the BTBR ASD mouse model. As a result, our study supports the role of Cd exposure in the development of ASD.
Collapse
Affiliation(s)
- Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hajar O Alnefaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
11
|
Assiri MA, Albekairi TH, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Shahid M, Aldossari AA, Almutairi MM, Almanaa TN, Alwetaid MY, Ahmad SF. The Exposure to Lead (Pb) Exacerbates Immunological Abnormalities in BTBR T + Itpr 3tf/J Mice through the Regulation of Signaling Pathways Relevant to T Cells. Int J Mol Sci 2023; 24:16218. [PMID: 38003408 PMCID: PMC10671427 DOI: 10.3390/ijms242216218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental illness characterized by abnormal social interactions, communication difficulties, and repetitive and limited behaviors or interests. The BTBR T+ Itpr3tf/J (BTBR) mice have been used extensively to research the ASD-like phenotype. Lead (Pb) is a hazardous chemical linked to organ damage in the human body. It is regarded as one of the most common metal exposure sources and has been connected to the development of neurological abnormalities. We used flow cytometry to investigate the molecular mechanism behind the effect of Pb exposure on subsets of CD4+ T cells in the spleen expressing IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Furthermore, using RT-PCR, we studied the effect of Pb on the expression of numerous genes in brain tissue, including IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Pb exposure increased the population of CD4+IFN-γ+, CD4+T-bet+, CD4+STAT1+, CD4+STAT4+, CD4+IL-9+, CD4+IRF4+, CD4+IL-22+, and CD4+AhR+ cells in BTBR mice. In contrast, CD4+IL-10+ and CD4+Foxp3+ cells were downregulated in the spleen cells of Pb-exposed BTBR mice compared to those treated with vehicle. Furthermore, Pb exposure led to a significant increase in IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, and AhR mRNA expression in BTBR mice. In contrast, IL-10 and Foxp3 mRNA expression was significantly lower in those treated with the vehicle. Our data suggest that Pb exposure exacerbates immunological dysfunctions associated with ASD. These data imply that Pb exposure may increase the risk of ASD.
Collapse
Affiliation(s)
- Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.Y.A.)
| | - Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.Y.A.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| |
Collapse
|
12
|
Menegas S, Keller GS, Possamai-Della T, Aguiar-Geraldo JM, Quevedo J, Valvassori SS. Potential mechanisms of action of resveratrol in prevention and therapy for mental disorders. J Nutr Biochem 2023; 121:109435. [PMID: 37669710 DOI: 10.1016/j.jnutbio.2023.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
There is a growing body of evidence about the potential of diet and nutrients to improve the population's mental health and the treatment of psychiatric disorders. Some studies have suggested that resveratrol has therapeutic properties in mental disorders, such as major depressive disorder, bipolar disorder, Alzheimer's disease, and autism. In addition, resveratrol is known to induce several benefits modulated by multiple synergistic pathways, which control oxidative stress, inflammation, and cell death. This review collects the currently available data from animal and human studies and discusses the potential mechanisms of action of resveratrol in prevention and therapy for psychiatric disorders.
Collapse
Affiliation(s)
- Samira Menegas
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Gabriela S Keller
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA; Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavior Sciences, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil.
| |
Collapse
|
13
|
Alwetaid MY, Almanaa TN, Bakheet SA, Ansari MA, Nadeem A, Attia SM, Hussein MH, Ahmad SF. Aflatoxin B 1 Exposure Aggravates Neurobehavioral Deficits and Immune Dysfunctions of Th1, Th9, Th17, Th22, and T Regulatory Cell-Related Transcription Factor Signaling in the BTBR T +Itpr3 tf/J Mouse Model of Autism. Brain Sci 2023; 13:1519. [PMID: 38002479 PMCID: PMC10669727 DOI: 10.3390/brainsci13111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by impaired communication, reciprocal social interactions, restricted sociability deficits, and stereotyped behavioral patterns. Environmental factors and genetic susceptibility have been implicated in an increased risk of ASD. Aflatoxin B1 (AFB1) is a typical contaminant of food and feed that causes severe immune dysfunction in humans and animals. Nevertheless, the impact of ASD on behavioral and immunological responses has not been thoroughly examined. To investigate this phenomenon, we subjected BTBR T+Itpr3tf/J (BTBR) mice to AFB1 and evaluated their marble-burying and self-grooming behaviors and their sociability. The exposure to AFB1 resulted in a notable escalation in marble-burying and self-grooming activities while concurrently leading to a decline in social contacts. In addition, we investigated the potential molecular mechanisms that underlie the impact of AFB1 on the production of Th1 (IFN-γ, STAT1, and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A, IL-21, RORγT, and STAT3), Th22 (IL-22, AhR, and TNF-α), and T regulatory (Treg) (IL-10, TGF-β1, and FoxP3) cells in the spleen. This was achieved using RT-PCR and Western blot analyses to assess mRNA and protein expression in brain tissue. The exposure to AFB1 resulted in a significant upregulation of various immune-related factors, including IFN-γ, STAT1, T-bet, IL-9, IRF4, IL-17A, IL-21, RORγ, STAT3, IL-22, AhR, and TNF-α in BTBR mice. Conversely, the production of IL-10, TGF-β1, and FoxP3 by CD4+ T cells was observed to be downregulated. Exposure to AFB1 demonstrated a notable rise in Th1/Th9/Th22/Th17 levels and a decrease in mRNA and protein expression of Treg. The results above underscore the significance of AFB1 exposure in intensifying neurobehavioral and immunological abnormalities in BTBR mice, hence indicating the necessity for a more comprehensive investigation into the contribution of AFB1 to the development of ASD.
Collapse
Affiliation(s)
- Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H. Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Cheng J, Wang S, Lv SQ, Song Y, Guo NH. Resveratrol inhibits AhR/Notch axis and reverses Th17/Treg imbalance in purpura by activating Foxp3. Toxicol Res (Camb) 2023; 12:381-391. [PMID: 37397914 PMCID: PMC10311159 DOI: 10.1093/toxres/tfad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 07/04/2023] Open
Abstract
Background Resveratrol has been reported to reverse the imbalance of T helper 17/regulatory T (Th17/Treg) by inhibiting the aryl hydrocarbon receptor pathway to treat immune thrombocytopenia. However, the regulation mechanism of the Notch signaling pathway by resveratrol has not been reported in purpura. This study is aimed to explore the mechanism of resveratrol ultrafine nanoemulsion (Res-mNE) in immune thrombocytopenia. Methods The immune thrombocytopenia mouse model was constructed to explore the effect of RES-mNE on immune thrombocytopenia. Cluster of differentiation 4 (CD4+) T cells were isolated and treated with different medications. CD4+ T cells were induced to differentiate into Th17 cells and Treg cells. Flow cytometry was used to detect the proportion of Th17 cells and Treg cells. The secretion was measured by the enzyme-linked immunosorbent assay (ELISA). Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein levels. Results Th17 cells, IL-17A and IL-22 increased in the immune thrombocytopenia mouse model, and the Treg cells and IL-10 decreased. Res-mNE promoted Treg cell differentiation and IL-10 secretion in CD4+ T cells while inhibiting Th17 cell differentiation and IL-17A and IL-22 levels. The AhR activator 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reversed the effect of Res-mNE. Notch inhibitors reduced the ratio of Th17/Treg differentiation. Res-mNE activated the expression of Foxp3 by mediating AhR/Notch signaling to reverse the imbalance of Th17/Treg differentiation in immune thrombocytopenia. Conclusion Taken together, our findings demonstrated that RES-mNE inhibited the AhR/Notch axis and reversed Th17/Treg imbalance by activating Foxp3.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| | - Sheng Wang
- Department of Psychiatry, Jiangxi Mental Hospital, Shangfang Road, Nanchang 330008, Jiangxi Province, P.R. China
| | - Shi-Qin Lv
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| | - Yuan Song
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| | - Ning-Hong Guo
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, No.1, Minde Road, Nanchang 330006, Jiangxi Province, P.R. China
| |
Collapse
|
15
|
Castellani G, Croese T, Peralta Ramos JM, Schwartz M. Transforming the understanding of brain immunity. Science 2023; 380:eabo7649. [PMID: 37023203 DOI: 10.1126/science.abo7649] [Citation(s) in RCA: 158] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Contemporary studies have completely changed the view of brain immunity from envisioning the brain as isolated and inaccessible to peripheral immune cells to an organ in close physical and functional communication with the immune system for its maintenance, function, and repair. Circulating immune cells reside in special niches in the brain's borders, the choroid plexus, meninges, and perivascular spaces, from which they patrol and sense the brain in a remote manner. These niches, together with the meningeal lymphatic system and skull microchannels, provide multiple routes of interaction between the brain and the immune system, in addition to the blood vasculature. In this Review, we describe current ideas about brain immunity and their implications for brain aging, diseases, and immune-based therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Castellani
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tommaso Croese
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Michal Schwartz
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
16
|
Alanazi MM, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Mazroua HA, Aldossari AA, Almutairi MM, Albekairi TH, Hussein MH, Al-Hamamah MA, Ahmad SF. Cadmium Exposure Is Associated with Behavioral Deficits and Neuroimmune Dysfunction in BTBR T+ Itpr3tf/J Mice. Int J Mol Sci 2023; 24:ijms24076575. [PMID: 37047547 PMCID: PMC10095149 DOI: 10.3390/ijms24076575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Autism spectrum disorders (ASD) are neurobehavioral disabilities characterized by impaired social interactions, poor communication skills, and restrictive/repetitive behaviors. Cadmium is a common heavy metal implicated in ASD. In this study, we investigated the effects of Cd exposure on BTBR T+ Itpr3tf/J (BTBR) mice, an ASD model. We looked for changes in repetitive behaviors and sociability through experiments. We also explored the molecular mechanisms underlying the effects of Cd exposure, focusing on proinflammatory cytokines and pathways. Flow cytometry measured IL-17A-, IL-17F-, IL-21-, TNF-α-, STAT3-, and RORγt-expressing CD4+ T cells from the spleens of experimental mice. We then used RT-PCR to analyze IL-17A, IL-17F, IL-21, TNF-α, STAT3, and RORγ mRNA expression in the brain. The results of behavioral experiments showed that Cd exposure significantly increased self-grooming and marble-burying in BTBR mice while decreasing social interactions. Cd exposure also significantly increased the number of CD4+IL-17A+, CD4+IL-17F+, CD4+IL-21+, CD4+TNF-α+, CD4+STAT3+, and CD4+RORγt+ cells, while upregulating the mRNA expression of the six molecules in the brain. Overall, our results suggest that oral exposure to Cd aggravates behavioral and immune abnormalities in an ASD animal model. These findings have important implications for ASD etiology and provide further evidence of heavy metals contributing to neurodevelopmental disorders through proinflammatory effects.
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A. Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H. Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Al-Hamamah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
17
|
Alomar HA, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Mazroua HA, Hussein MH, Alqarni SA, Ahmad SF. A potent and selective CXCR2 antagonist improves neuroimmune dysregulation through the inhibition of NF-κB and notch inflammatory signaling in the BTBR mouse model of autism. J Neuroimmunol 2023; 377:578069. [PMID: 36931207 DOI: 10.1016/j.jneuroim.2023.578069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Autism comprises a broad range of neurodevelopmental disorders characterized by social communication deficits and repetitive and stereotyped behaviors. Chemokine receptor CXCR2 is expressed on neurons and is upregulated in neurological disorders. BTBR T+ Itpr3tf/J (BTBR) mice, a model for autism that shows the core features of ASD. Here, we studied the anti-inflammatory effect of a potent and selective CXCR2 antagonist SB332235 in the BTBR mice. The CXCR2 antagonist represents a promising therapeutic agent for several neuroinflammatory disorders. In this study, we investigated the effects of SB332235 administration on NF-κB-, Notch-1-, Notch-3-, GM-CSF-, MCP-1-, IL-6-, and IL-2- and TGF-β1-expressing CD40+ cells in BTBR and C57BL/6 (C57) mice in the spleen cells by flow cytometry. We further assessed the effect of SB332235 treatment on NF-κB, Notch-1, GM-CSF, MCP-1, IL-6, and IL-2 mRNA expression levels in the brain tissue by RT-PCR. We also explored the effect of SB332235 administration on NF-κB, GM-CSF, IL-6, and TGF-β1 protein expression levels in the brain tissue by western blotting. The SB332235-treated BTBR mice significantly decreases in CD40 + NF-κB+, CD40 + Notch-1+, CD40 + Notch-3+, CD40 + GM-CSF+, CD40 + MCP-1+, CD40 + IL-6+, and CD40 + IL-2+, and increases in CD40 + TGF-β1+ in the spleen cells. Our results further demonstrated that BTBR mice treated with SB332235 effectively decreased NF-κB, Notch-1, GM-CSF, MCP-1, IL-6, and IL-2, increasing TGF-β1 mRNA and protein expression levels in the brain tissue. In conclusion, these results indicate that SB332235 elicits an anti-inflammatory response by downregulating the inflammatory mediators and NF-κB/Notch inflammatory signaling in BTBR mice. This could represent a promising novel therapeutic target for autism treatment.
Collapse
Affiliation(s)
- Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
18
|
Mutovina A, Ayriyants K, Mezhlumyan E, Ryabushkina Y, Litvinova E, Bondar N, Khantakova J, Reshetnikov V. Unique Features of the Immune Response in BTBR Mice. Int J Mol Sci 2022; 23:15577. [PMID: 36555219 PMCID: PMC9779573 DOI: 10.3390/ijms232415577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation plays a considerable role in the pathogenesis of many diseases, including neurodegenerative and psychiatric ones. Elucidation of the specific features of an immune response in various model organisms, and studying the relation of these features with the behavioral phenotype, can improve the understanding of the molecular mechanisms of many psychopathologies. In this work, we focused on BTBR mice, which have a pronounced autism-like behavioral phenotype, elevated levels of oxidative-stress markers, an abnormal immune response, several structural aberrations in the brain, and other unique traits. Although some studies have already shown an abnormal immune response in BTBR mice, the existing literature data are still fragmentary. Here, we used inflammation induced by low-dose lipopolysaccharide, polyinosinic:polycytidylic acid, or their combinations, in mice of strains BTBR T+Itpr3tf/J (BTBR) and C57BL6/J. Peripheral inflammation was assessed by means of a complete blood count, lymphocyte immunophenotyping, and expression levels of cytokines in the spleen. Neuroinflammation was evaluated in the hypothalamus and prefrontal cortex by analysis of mRNA levels of proinflammatory cytokines (tumor necrosis factor, Tnf), (interleukin-1 beta, Il-1β), and (interleukin-6, Il-6) and of markers of microglia activation (allograft inflammatory factor 1, Aif1) and astroglia activation (glial fibrillary acidic protein, Gfap). We found that in both strains of mice, the most severe inflammatory response was caused by the administration of polyinosinic:polycytidylic acid, whereas the combined administration of the two toll-like receptor (TLR) agonists did not enhance this response. Nonetheless, BTBR mice showed a more pronounced response to low-dose lipopolysaccharide, an altered lymphocytosis ratio due to an increase in the number of CD4+ lymphocytes, and high expression of markers of activated microglia (Aif1) and astroglia (Gfap) in various brain regions as compared to C57BL6/J mice. Thus, in addition to research into mechanisms of autism-like behavior, BTBR mice can be used as a model of TLR3/TLR4-induced neuroinflammation and a unique model for finding and evaluating the effectiveness of various TLR antagonists aimed at reducing neuroinflammation.
Collapse
Affiliation(s)
- Anastasia Mutovina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Kseniya Ayriyants
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Eva Mezhlumyan
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Yulia Ryabushkina
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Ekaterina Litvinova
- Physical Engineering Faculty, Novosibirsk State Technical University, Prospekt Karl Marx, 20, 630073 Novosibirsk, Russia
| | - Natalia Bondar
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Julia Khantakova
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Vasiliy Reshetnikov
- Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia
| |
Collapse
|
19
|
Jing H, Yan N, Fan R, Li Z, Wang Q, Xu K, Hu X, Zhang L, Duan X. Arsenic Activates the NLRP3 Inflammasome and Disturbs the Th1/Th2/Th17/Treg Balance in the Hippocampus in Mice. Biol Trace Elem Res 2022; 201:3395-3403. [PMID: 36100822 DOI: 10.1007/s12011-022-03421-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/08/2022] [Indexed: 11/02/2022]
Abstract
Arsenic exerts neurotoxicity and immunomodulatory effects. Studies have shown that the nervous system is not considered to be an immune-privileged site. However, the effect of arsenic-induced neuroimmune toxicity has rarely been reported. We aimed to investigate the toxic effects of arsenic on the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and the Th1/Th2/Th17/Treg balance in the brain tissue of mice. Mice were exposed to NaAsO2 (0, 2.5, 5, and 10 mg/kg) for 24 h. Our results showed that 10 mg/kg arsenic exposure significantly decreased brain and hippocampal indices (p < 0.05). The mRNA and protein levels of the blood‒brain barrier (BBB) tight junction protein occludin were decreased in the 5 and 10 mg/kg arsenic-treated groups. Compared with those in the control group, NLRP3 protein levels in 10 mg/kg arsenic-treated mice, caspase-1 protein levels in 2.5, 5, and 10 mg/kg arsenic-treated mice, and IL-1β protein levels in 5 and 10 mg/kg arsenic-treated mice were increased in the hippocampus (p < 0.05). In addition, arsenic induced a hippocampal inflammatory response by upregulating the mRNA levels of the proinflammatory factors IL-6 and TNF-α and downregulating the mRNA level of the anti-inflammatory factor IL-10. Moreover, arsenic decreased the mRNA levels of the Th1 and Th2 transcription factors T-bet and GATA3 and the cytokines IFN-γ and IL-4 and increased the mRNA levels of the Th17 transcription factor RORγt and the cytokine IL-22 (p < 0.05). Collectively, our study demonstrated that arsenic could induce immune-inflammatory responses by regulating the NLRP3 inflammasome and CD4+ T lymphocyte differentiation. These results provide a novel strategy to block the arsenic-induced impairment of neuroimmune responses.
Collapse
Affiliation(s)
- Hui Jing
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang, 110034, China
| | - Ronghua Fan
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Zhou Li
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Kangjie Xu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China
| | - Xinkang Hu
- Clinical Medicine ("5+3" integrated Training), The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Lifeng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
20
|
Lim S, Lee S. Chemical Modulators for Targeting Autism Spectrum Disorders: From Bench to Clinic. Molecules 2022; 27:molecules27165088. [PMID: 36014340 PMCID: PMC9414776 DOI: 10.3390/molecules27165088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by diverse behavioral symptoms such as repetitive behaviors, social deficits, anxiety, hyperactivity, and irritability. Despite their increasing incidence, the specific pathological mechanisms of ASD are still unknown, and the degree and types of symptoms that vary from patient to patient make it difficult to develop drugs that target the core symptoms of ASD. Although various atypical antipsychotics and antidepressants have been applied to regulate ASD symptoms, these drugs can only alleviate the symptoms and do not target the major causes. Therefore, development of novel drugs targeting factors directly related to the onset of ASD is required. Among the various factors related to the onset of ASD, several chemical modulators to treat ASD, focused on serotonin (5-hydroxytryptamine, 5-HT) and glutamate receptors, microbial metabolites, and inflammatory cytokines, are explored in this study. In particular, we focus on the chemical drugs that have improved various aspects of ASD symptoms in animal models and in clinical trials for various ages of patients with ASD.
Collapse
Affiliation(s)
- Songhyun Lim
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Sanghee Lee
- Creative Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
- Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-958-5138
| |
Collapse
|
21
|
Sadik A, Dardani C, Pagoni P, Havdahl A, Stergiakouli E, Khandaker GM, Sullivan SA, Zammit S, Jones HJ, Davey Smith G, Dalman C, Karlsson H, Gardner RM, Rai D. Parental inflammatory bowel disease and autism in children. Nat Med 2022; 28:1406-1411. [PMID: 35654906 PMCID: PMC9307481 DOI: 10.1038/s41591-022-01845-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 04/28/2022] [Indexed: 01/30/2023]
Abstract
Evidence linking parental inflammatory bowel disease (IBD) with autism in children is inconclusive. We conducted four complementary studies to investigate associations between parental IBD and autism in children, and elucidated their underlying etiology. Conducting a nationwide population-based cohort study using Swedish registers, we found evidence of associations between parental diagnoses of IBD and autism in children. Polygenic risk score analyses of the Avon Longitudinal Study of Parents and Children suggested associations between maternal genetic liability to IBD and autistic traits in children. Two-sample Mendelian randomization analyses provided evidence of a potential causal effect of genetic liability to IBD, especially ulcerative colitis, on autism. Linkage disequilibrium score regression did not indicate a genetic correlation between IBD and autism. Triangulating evidence from these four complementary approaches, we found evidence of a potential causal link between parental, particularly maternal, IBD and autism in children. Perinatal immune dysregulation, micronutrient malabsorption and anemia may be implicated.
Collapse
Affiliation(s)
- Aws Sadik
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Avon and Wiltshire Partnership NHS Mental Health Trust, Bath, UK
| | - Christina Dardani
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Panagiota Pagoni
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alexandra Havdahl
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diakonale Hospital, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Evie Stergiakouli
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Golam M Khandaker
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Avon and Wiltshire Partnership NHS Mental Health Trust, Bath, UK
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Sarah A Sullivan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Stan Zammit
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Hannah J Jones
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Christina Dalman
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- Centre for Epidemiology and Community Medicine, Stockholm County Council, Stockholm, Sweden
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Renee M Gardner
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Dheeraj Rai
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Avon and Wiltshire Partnership NHS Mental Health Trust, Bath, UK
- National Institute of Health and Care Research Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, UK
| |
Collapse
|
22
|
Liu W, Fan M, Lu W, Zhu W, Meng L, Lu S. Emerging Roles of T Helper Cells in Non-Infectious Neuroinflammation: Savior or Sinner. Front Immunol 2022; 13:872167. [PMID: 35844577 PMCID: PMC9280647 DOI: 10.3389/fimmu.2022.872167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in the periphery and in the central nervous system (CNS). At least seven subsets of Th cells along with their signature cytokines have been identified nowadays. Neuroinflammation denotes the brain’s immune response to inflammatory conditions. In recent years, various CNS disorders have been related to the dysregulation of adaptive immunity, especially the process concerning Th cells and their cytokines. However, as the functions of Th cells are being discovered, it’s also found that their roles in different neuroinflammatory conditions, or even the participation of a specific Th subset in one CNS disorder may differ, and sometimes contrast. Based on those recent and contradictory evidence, the conflicting roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy, traumatic brain injury as well as some typical mental disorders will be reviewed herein. Research progress, limitations and novel approaches concerning different neuroinflammatory conditions will also be mentioned and compared.
Collapse
Affiliation(s)
- Wenbin Liu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Lu
- Department of Psychiatry, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Shemin Lu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an, China
| |
Collapse
|
23
|
Thawley AJ, Veneziani LP, Rabelo-da-Ponte FD, Riederer I, Mendes-da-Cruz DA, Bambini-Junior V. Aberrant IL-17 Levels in Rodent Models of Autism Spectrum Disorder: A Systematic Review. Front Immunol 2022; 13:874064. [PMID: 35757754 PMCID: PMC9226456 DOI: 10.3389/fimmu.2022.874064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/04/2022] [Indexed: 12/09/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterised by stereotyped behaviours, specific interests, and impaired communication skills. Elevated levels of pro-inflammatory cytokines, such as interleukin-17A (IL-17A or IL-17), have been implicated as part of immune alterations that may contribute to this outcome. In this context, rodent models have helped elucidate the role of T-cell activation and IL-17 secretion in the pathogenesis of ASD. Regarding the preclinical findings, the data available is contradictory in offspring but not in the pregnant dams, pointing to IL-17 as one of the main drivers of altered behaviour in some models ASD, whilst there are no alterations described in IL-17 levels in others. To address this gap in the literature, a systematic review of altered IL-17 levels in rodent models of ASD was conducted. In total, 28 studies that explored IL-17 levels were included and observed that this cytokine was generally increased among the different models of ASD. The data compiled in this review can help the choice of animal models to study the role of cytokines in the development of ASD, seeking a parallel with immune alterations observed in individuals with this condition.
Collapse
Affiliation(s)
- Alexandra Jade Thawley
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Luciana Peixoto Veneziani
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom.,Laboratory on Thymus Research, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Francisco Diego Rabelo-da-Ponte
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom.,Laboratory of Molecular Psychiatry, Centro de Pesquisa Experimental (CPE) and Centro de Pesquisa Clínica (CPC), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre (RS), Brazil
| | - Ingo Riederer
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom.,Laboratory on Thymus Research, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Daniella Areas Mendes-da-Cruz
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom.,Laboratory on Thymus Research, Oswaldo Cruz Foundation, Oswaldo Cruz Institute, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Victorio Bambini-Junior
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
24
|
Almutairi MM, Nadeem A, Ansari MA, Bakheet SA, Attia SM, Albekairi TH, Alhosaini K, Algahtani M, Alsaad AMS, Al-Mazroua HA, Ahmad SF. Lead (Pb) exposure exacerbates behavioral and immune abnormalities by upregulating Th17 and NF-κB-related signaling in BTBR T + Itpr3 tf/J autistic mouse model. Neurotoxicology 2022; 91:340-348. [PMID: 35760230 DOI: 10.1016/j.neuro.2022.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder that are characterized by abnormal social interaction impairments in communication and repetitive and restricted activities or interests. Even though the exact etiology of ASD remains unknown. Lead (Pb) is a toxin known to harm many organs in the body, it is one of the most ubiquitous metal exposures which is associated with neurological deficits. Previous studies have shown that the exposure to Pb may play a role in ASD. BTBR T+ Itpr3tf/J (BTBR) mouse model is commonly used as a preclinical model for ASD. In this study, we investigated the effects of Pb exposure on sociability, self-grooming and marble burying behaviors tests in BTBR mice. We further examined the effects of Pb on IL-17A- RORγT-, STAT3-, NF-κB p65-, iNOS-, TLR-2- and TLR-4-producing CD45+ cells in spleen using flow cytometry. We also explored the effects of Pb on IL-17A, RORγT, STAT3, NF-κB p65, and TLR-2 mRNA expression in the brain tissue using RT-PCR analysis. Our results demonstrated that Pb exposure substantially increased repetitive behavior, marble burying and decrease social interactions in BTBR mice. In addition, in spleen cells, Pb exposure exaggerated CD45+IL-17A+, CD45+RORγT+, CD45+STAT3+, CD45+NF-κB p65+, CD45+iNOS+, CD45+TLR-2+ and CD45+TLR-4+ in BTBR mice. We also found that Pb significantly increased IL-17A, RORγT, STAT3, NF-κB p65, and TLR-2 mRNA in the brain tissue. Therefore, Pb exposure exacerbates behavioral and neuroimmune function in BTBR mice, suggesting a potentially strong role for Pb in ASD.
Collapse
Affiliation(s)
- Mashal M Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Khaled Alhosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Mohammad Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Abdulaziz M S Alsaad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia.
| |
Collapse
|
25
|
CXCR2 antagonist SB332235 mitigates deficits in social behavior and dysregulation of Th1/Th22 and T regulatory cell-related transcription factor signaling in male BTBR T+ Itpr3tf/J mouse model of autism. Pharmacol Biochem Behav 2022; 217:173408. [DOI: 10.1016/j.pbb.2022.173408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
|
26
|
Li H, Wang X, Hu C, Li H, Xu Z, Lei P, Luo X, Hao Y. JUN and PDGFRA as Crucial Candidate Genes for Childhood Autism Spectrum Disorder. Front Neuroinform 2022; 16:800079. [PMID: 35655651 PMCID: PMC9152672 DOI: 10.3389/fninf.2022.800079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/19/2022] [Indexed: 01/11/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, characterized by marked genetic heterogeneity. In this study, two independent microarray datasets of cerebellum of ASD were integrative analyzed by NetworkAnalyst to screen candidate crucial genes. NetworkAnalyst identified two up-regulated genes, Jun proto-oncogene (JUN) and platelet derived growth factor receptor alpha (PDGFRA), as the most crucial genes in cerebellum of ASD patients. Based on KEGG pathway database, genes associated with JUN in the cerebellum highlight the pathways of Th17 cell differentiation and Th1 and Th2 cell differentiation. Genes associated with PDGFRA in the cerebellum were found enriched in pathways in EGFR tyrosine kinase inhibitor resistance and Rap1 signaling pathway. Analyzing all differentially expressed genes (DEGs) from the two datasets, Gene Set Enrichment Analysis (GSEA) brought out IL17 signaling pathway, which is related to the expression of JUN and PDGFRA. The ImmuCellAI found the elevated expression of JUN and PDGFRA correlating with increased Th17 and monocytes suggests JUN and PDGFRA may regulate Th17 cell activation and monocytes infiltrating. Mice model of maternal immune activation demonstrated that JUN and PDGFRA are up-regulated and related to the ASD-like behaviors that provide insights into the molecular mechanisms underlying the altered IL17 signaling pathway in ASD and may enable novel therapeutic strategies.
Collapse
Affiliation(s)
- Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyuan Wang
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoshuo Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yan Hao
| |
Collapse
|
27
|
Methylmercury chloride exposure exacerbates existing neurobehavioral and immune dysfunctions in the BTBR T+ Itpr3tf/J mouse model of autism. Immunol Lett 2022; 244:19-27. [DOI: 10.1016/j.imlet.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
|
28
|
Kefir ameliorates specific microbiota-gut-brain axis impairments in a mouse model relevant to autism spectrum disorder. Brain Behav Immun 2021; 97:119-134. [PMID: 34252569 DOI: 10.1016/j.bbi.2021.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is one of the most severe developmental disorders, affecting on average 1 in 150 children worldwide. There is a great need for more effective strategies to improve quality of life in ASD subjects. The gut microbiome has emerged as a potential therapeutic target in ASD. A novel modulator of the gut microbiome, the traditionally fermented milk drink kefir, has recently been shown to modulate the microbiota and decrease repetitive behaviour, one of the hallmarks of ASD, in mice. As such, we hypothesized that kefir could ameliorate behavioural deficits in a mouse model relevant to ASD; the BTBR T+ Itpr3tf/J mouse strain. To this end, adult mice were administered either kefir (UK4) or a milk control for three weeks as treatment lead-in, after which they were assessed for their behavioural phenotype using a battery of tests. In addition, we assessed systemic immunity by flow cytometry and the gut microbiome using shotgun metagenomic sequencing. We found that indeed kefir decreased repetitive behaviour in this mouse model. Furthermore, kefir prolonged stress-induced increases in corticosterone 60 min post-stress, which was accompanied by an ameliorated innate immune response as measured by LY6Chi monocyte levels. In addition, kefir increased the levels of anti-inflammatory Treg cells in mesenteric lymph nodes (MLNs). Kefir also increased the relative abundance of Lachnospiraceae bacterium A2, which correlated with reduced repetitive behaviour and increased Treg cells in MLNs. Functionally, kefir modulated various predicted gut microbial pathways, including the gut-brain module S-Adenosylmethionine (SAM) synthesis, as well as L-valine biosynthesis and pyruvate fermentation to isobutanol, which all correlated with repetitive behaviour. Taken together our data show that kefir modulates peripheral immunoregulation, can ameliorate specific ASD behavioural dysfunctions and modulates selective aspects of the composition and function of the gut microbiome, indicating that kefir supplementation might prove a viable strategy in improving quality of life in ASD subjects.
Collapse
|
29
|
Cruz-Martins N, Quispe C, Kırkın C, Şenol E, Zuluğ A, Özçelik B, Ademiluyi AO, Oyeniran OH, Semwal P, Kumar M, Sharopov F, López V, Les F, Bagiu IC, Butnariu M, Sharifi-Rad J, Alshehri MM, Cho WC. Paving Plant-Food-Derived Bioactives as Effective Therapeutic Agents in Autism Spectrum Disorder. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1131280. [PMID: 34471461 PMCID: PMC8405324 DOI: 10.1155/2021/1131280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, where social and communication deficits and repetitive behaviors are present. Plant-derived bioactives have shown promising results in the treatment of autism. In this sense, this review is aimed at providing a careful view on the use of plant-derived bioactive molecules for the treatment of autism. Among the plethora of bioactives, curcumin, luteolin, and resveratrol have revealed excellent neuroprotective effects and can be effectively used in the treatment of neuropsychological disorders. However, the number of clinical trials is limited, and none of them have been approved for the treatment of autism or autism-related disorder. Further clinical studies are needed to effectively assess the real potential of such bioactive molecules.
Collapse
Affiliation(s)
- Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Celale Kırkın
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Ezgi Şenol
- Department Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Beyoglu, 34427 Istanbul, Turkey
| | - Aslı Zuluğ
- Department of Gastronomy and Culinary Arts, School of Applied Sciences, Ozyegin University, Cekmekoy, 34794 Istanbul, Turkey
| | - Beraat Özçelik
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade Ltd. Co., Maslak, Istanbul 34469, Turkey
| | - Adedayo O. Ademiluyi
- Functional Foods, Nutraceuticals, and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure 340001, Nigeria
| | - Olubukola Helen Oyeniran
- Functional Foods, Nutraceuticals, and Phytomedicine Unit, Department of Biochemistry, Federal University of Technology, Akure 340001, Nigeria
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand, India
- Uttarakhand State Council for Science and Technology, Dehradun, Uttarakhand, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, 734003 Dushanbe, Tajikistan
| | - Victor López
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Francisco Les
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Iulia-Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
30
|
Weissberg O, Elliott E. The Mechanisms of CHD8 in Neurodevelopment and Autism Spectrum Disorders. Genes (Basel) 2021; 12:genes12081133. [PMID: 34440307 PMCID: PMC8393912 DOI: 10.3390/genes12081133] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Chromodomain-helicase-DNA-binding protein 8 (CHD8) has been identified as one of the genes with the strongest association with autism. The CHD8 protein is a transcriptional regulator that is expressed in nearly all cell types and has been implicated in multiple cellular processes, including cell cycle, cell adhesion, neuronal development, myelination, and synaptogenesis. Considering the central role of CHD8 in the genetics of autism, a deeper understanding of the physiological functions of CHD8 is important to understand the development of the autism phenotype and potential therapeutic targets. Different CHD8 mutant mouse models were developed to determine autism-like phenotypes and to fully understand their mechanisms. Here, we review the current knowledge on CHD8, with an emphasis on mechanistic lessons gained from animal models that have been studied.
Collapse
|
31
|
Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021; 81:545-578. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| |
Collapse
|
32
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
33
|
Leite JA, Ghirotto B, Targhetta VP, de Lima J, Câmara NOS. Sirtuins as pharmacological targets in neurodegenerative and neuropsychiatric disorders. Br J Pharmacol 2021; 179:1496-1511. [PMID: 34029375 DOI: 10.1111/bph.15570] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate several processes, such as transcription, cell proliferation, differentiation and development. HDACs are classified as either Zn2+ -dependent or NAD+ -dependent enzymes. Over the years, experimental and clinical evidence has demonstrated that HDAC modulation is a critical process in neurodegenerative and psychiatric disorders. Nevertheless, most of the studies have focused on the role of Zn2+ -dependent HDACs in the development of these diseases, although there is growing evidence showing that the NAD+ -dependent HDACs, known as sirtuins, are also very promising targets. This possibility has been strengthened by reports of decreased levels of NAD+ in CNS disorders, which can lead to alterations in sirtuin activation and therefore result in increased pathology. In this review, we discuss the role of sirtuins in neurodegenerative and neuropsychiatric disorders as well the possible rationale for them to be considered as pharmacological targets in future therapeutic interventions.
Collapse
Affiliation(s)
- Jefferson A Leite
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor P Targhetta
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jean de Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
5-Aminoisoquinolinone, a PARP-1 Inhibitor, Ameliorates Immune Abnormalities through Upregulation of Anti-Inflammatory and Downregulation of Inflammatory Parameters in T Cells of BTBR Mouse Model of Autism. Brain Sci 2021; 11:brainsci11020249. [PMID: 33671196 PMCID: PMC7922312 DOI: 10.3390/brainsci11020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 12/02/2022] Open
Abstract
Autism spectrum disorder (ASD) covers a range of neurodevelopmental disorders involving impairments in communication and repetitive and stereotyped patterns of behavior and reciprocal social interaction. 5-Aminoisoquinolinone (5-AIQ), a PARP-1 inhibitor, has neuroprotective and anti-inflammatory effects. We investigated the influence of 5-AIQ-treatment in BTBR T+ Itpr3tf/J (BTBR) mice as an autism model and used flow cytometry to assess the effect of 5-AIQ on FOXP3, Helios, GATA3, IL-9, IL-10 and IL-17A production by CXCR6+ and CD4+ T cells in the spleen. We also confirmed the effect of 5-AIQ treatment on expression of FOXP3, Helios, GATA3, IL-17A, IL-10, and IL-9 mRNA and protein expression levels in the brain tissue by quantitative PCR and western blotting. Our results demonstrated that 5-AIQ-treated BTBR mice had significantly increased numbers of CXCR6+FOXP3+, CXCR6+IL-10+, and CXCR6+Helios+ cells and decreased numbers of CD4+GATA3+, CD4+IL-9+, and CD4+IL-17A+ cells as compared with those in untreated BTBR mice. Our results further demonstrated that treatment with 5-AIQ in BTBR mice increased expression for FOXP3, IL-10, and Helios, and decreased expression for GATA3, IL-17A, and IL-9 mRNA. Our findings support the hypotheses that 5-AIQ has promising novel therapeutic effects on neuroimmune dysfunction in autism and is associated with modulation of Treg and Th17 cells.
Collapse
|
35
|
O'Connor R, van De Wouw M, Moloney GM, Ventura-Silva AP, O'Riordan K, Golubeva AV, Dinan TG, Schellekens H, Cryan JF. Strain differences in behaviour and immunity in aged mice: Relevance to Autism. Behav Brain Res 2020; 399:113020. [PMID: 33227245 DOI: 10.1016/j.bbr.2020.113020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 08/28/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
The BTBR mouse model has been shown to be associated with deficits in social interaction and a pronounced engagement in repetitive behaviours. Autism spectrum disorder (ASD) is the most prevalent neurodevelopmental condition globally. Despite its ubiquity, most research into the disorder remains focused on childhood, with studies in adulthood and old age relatively rare. To this end, we explored the differences in behaviour and immune function in an aged BTBR T + Itpr3tf/J mouse model of the disease compared to a similarly aged C57bl/6 control. We show that while many of the alterations in behaviour that are observed in young animals are maintained (repetitive behaviours, antidepressant-sensitive behaviours, social deficits & cognition) there are more nuanced effects in terms of anxiety in older animals of the BTBR strain compared to C57bl/6 controls. Furthermore, BTBR animals also exhibit an activated T-cell system. As such, these results represent confirmation that ASD-associated behavioural deficits are maintained in ageing, and that that there may be need for differential interventional approaches to counter these impairments, potentially through targeting the immune system.
Collapse
Affiliation(s)
- Rory O'Connor
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | | | - Ken O'Riordan
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | | | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland.
| |
Collapse
|
36
|
Shayganfard M. Molecular and biological functions of resveratrol in psychiatric disorders: a review of recent evidence. Cell Biosci 2020; 10:128. [PMID: 33292508 PMCID: PMC7648996 DOI: 10.1186/s13578-020-00491-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Mental disorders including depression, anxiety, schizophrenia, autism spectrum disorders, bipolar and etc. have a considerable proportion of global disorder burden. Many nutritional psychiatry investigations have been conducted to evaluate the relationship between several individual nutrients such as herbal compounds with mental health. Resveratrol, a famous polyphenol compound, is known as an antioxidant, anti-inflammatory, anti-apoptotic, and neuroprotective agent regulating the function of brain and improves the behavioral factors associated with learning, anxiety, depression, and memory. In addition, this natural compound can cross the blood–brain barrier representing neurological influences. The pharmacological interest of utilizing resveratrol in mental disorders is due to its anti-inflammatory and antioxidant features. The aim of this paper was to review the studies evaluated the potential effects of resveratrol on mental disorders.
Collapse
Affiliation(s)
- Mehran Shayganfard
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
37
|
Ahmad SF, Bakheet SA, Ansari MA, Nadeem A, Alobaidi AF, Attia SM, Alhamed AS, Aldossari AA, Mahmoud MA. Methylmercury chloride exposure aggravates proinflammatory mediators and Notch-1 signaling in CD14 + and CD40 + cells and is associated with imbalance of neuroimmune function in BTBR T + Itpr3tf/J mice. Neurotoxicology 2020; 82:9-17. [PMID: 33166615 DOI: 10.1016/j.neuro.2020.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder characterized by deficits in social interaction, communication, and repetitive behaviors. A key role for immune dysfunction has been suggested in ASD. Recent studies have indicated that inflammatory mediators and Notch-1 signaling may contribute to the development of ASD. Methylmercury chloride (MeHgCl) is an environmental pollutant that primarily affects the central nervous system, causing neurological alterations. Its effects on immunological responses have not been fully investigated in ASD. In this study, we examined the influence of MeHgCl exposure on inflammatory mediators and Notch-1 signaling in BTBR T+ Itpr3tf/J (BTBR) mice, a model of ASD. We examined the effects of MeHgCl on the IL-6-, GM-CSF-, NF-κB p65-, Notch-1-, and IL-27-producing CD14+ and CD40+ cells in the spleen. We assessed the effect of MeHgCl on IL-6, GM-CSF, NF-κB p65, Notch-1, and IL-27 mRNA levels in brain tissue. We also measured IL-6, GM-CSF, and NF-κB p65 protein expression levels in brain tissue. MeHgCl exposure of BTBR mice significantly increased IL-6-, GM-CSF-, NF-κB p65-, and Notch-1-, and decreased IL-27-producing CD14+, and CD40+ cells in the spleen. MeHgCl exposure of BTBR mice upregulated IL-6, GM-CSF, NF-κB p65, and Notch-1, and decreased IL-27 mRNA expression levels in brain tissue. Moreover, MeHgCl resulted in elevated expression of the IL-6, GM-CSF, and NF-κB p65 proteins in brain tissue. Taken together, these results indicate that MeHgCl exposure aggravates proinflammatory mediators and Notch-1 signaling which are associated with imbalance of neuroimmune function in BTBR mice.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulelah F Alobaidi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Mahmoud
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
38
|
Ciernia AV, Link VM, Careaga M, LaSalle JM, Ashwood P. Genetic variants drive altered epigenetic regulation of endotoxin response in BTBR macrophages. Brain Behav Immun 2020; 89:20-31. [PMID: 32454135 PMCID: PMC7572655 DOI: 10.1016/j.bbi.2020.05.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
The BTBR T+Itpr3tf/J (BTBR) mouse has been used as a complex genetic model of Autism Spectrum Disorders (ASD). While the specific mechanisms underlying BTBR behavioral phenotypes are poorly understood, prior studies have implicated profound differences in innate immune system control of pro-inflammatory cytokines. Innate immune activation and elevated pro-inflammatory cytokines are also detected in blood of children with ASD. In this study, we examined how underlying BTBR genetic variants correspond to strain-specific changes in chromatin accessibility, resulting in a pro-inflammatory response specifically in BTBR bone marrow derived macrophages (BMDM). In response to repeated lipopolysaccharide (LPS) treatments, C57BL/6J (C57) BMDM exhibited intact endotoxin tolerance. In contrast, BTBR BMDM exhibited hyper-responsive expression of genes that were normally tolerized in C57. This failure in formation of endotoxin tolerance in BTBR was mirrored at the level of chromatin accessibility. Using ATAC-seq, we specifically identified promoter and enhancer regions with strain-specific differential chromatin accessibility both at baseline and in response to LPS. Regions with strain-specific differences in chromatin accessibility were significantly enriched for BTBR genetic variants, such that an average of 22% of the differential chromatin regions had at least one variant. Together, these results demonstrate that BTBR genetic variants contribute to altered chromatin responsiveness to endotoxin challenge resulting in hyper-responsive innate immunity in BTBR. These findings provide evidence for an interaction between complex genetic variants and differential epigenetic regulation of innate immune responses.
Collapse
Affiliation(s)
- Annie Vogel Ciernia
- Department Biochemistry and Molecular Biology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver V6T2A1, Canada.
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
39
|
Anderson G, Betancort Medina SR. Autism Spectrum Disorders: Role of Pre- and Post-Natal GammaDelta (γδ) T Cells and Immune Regulation. Curr Pharm Des 2020; 25:4321-4330. [PMID: 31682211 DOI: 10.2174/1381612825666191102170125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND It is widely accepted that alterations in immune functioning are an important aspect of the pathoetiology and pathophysiology of autism spectrum disorders (ASD). A relatively under-explored aspect of these alterations is the role of gammaDelta (γδ) T cells, prenatally and in the postnatal gut, which seem important hubs in driving the course of ASD. METHODS The present article describes the role of γδ T cells in ASD, including their interactions with other immune cells shown to be altered in this spectrum of conditions, including natural killer cells and mast cells. RESULTS Other risk factors in ASD, such as decreased vitamins A & D, as well as toxin-associated activation of the aryl hydrocarbon receptor, may also be intimately linked to γδ T cells, and alterations in the regulation of these cells. A growing body of data has highlighted an important role for alterations in mitochondria functioning in the regulation of immune cells, including natural killer cells and mast cells. This is an area that requires investigation in γδ T cells and their putative subtypes. CONCLUSION It is also proposed that maternal stress may act through alterations in the maternal microbiome, leading to changes in how the balance of short-chain fatty acids, such as butyrate, which may act to regulate the placenta and foetal development. Following an overview of previous research on immune, especially γδ T cells, effects in ASD, the future research implications are discussed in detail.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | |
Collapse
|
40
|
Attia SM, Al-Khalifa MK, Al-Hamamah MA, Alotaibi MR, Attia MSM, Ahmad SF, Ansari MA, Nadeem A, Bakheet SA. Vorinostat is genotoxic and epigenotoxic in the mouse bone marrow cells at the human equivalent doses. Toxicology 2020; 441:152507. [PMID: 32512035 DOI: 10.1016/j.tox.2020.152507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/10/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
Vorinostat was approved as the first histone deacetylase inhibitor for the management of cutaneous T cell lymphoma. However, it's in vivo genetic and epigenetic effects on non-cancerous cells remain poorly understood. As genetic and epigenetic changes play a critical role in the pathogenesis of carcinogenesis, we investigated whether vorinostat induces genetic and epigenetic alterations in mouse bone marrow cells. Bone marrow cells were isolated 24 h following the last oral administration of vorinostat at the doses of 25, 50, or 100 mg/kg/day for five days (approximately equal to the recommended human doses). The cells were then used to assess clastogenicity and aneugenicity by the micronucleus test complemented by fluorescence in situ hybridization assay; DNA strand breaks, oxidative DNA strand breaks, and DNA methylation by the modified comet assay; apoptosis by annexin V/PI staining analysis and the occurrence of the hypodiploid DNA content; and DNA damage/repair gene expression by polymerase chain reaction (PCR) Array. The expression of the mRNA transcripts were also confirmed by real-time PCR and western blot analysis. Vorinostat caused structural chromosomal damage, numerical chromosomal abnormalities, DNA strand breaks, oxidative DNA strand breaks, DNA hypomethylation, and programed cell death in a dose-dependent manner. Furthermore, the expression of numerous genes implicated in DNA damage/repair were altered after vorinostat treatment. Accordingly, the genetic/epigenetic mechanism(s) of action of vorinostat may play a role in its carcinogenicity and support the continued study and development of new compounds with lower toxicity.
Collapse
Affiliation(s)
- Sabry M Attia
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia.
| | - Mohamed K Al-Khalifa
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Al-Hamamah
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Moureq R Alotaibi
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S M Attia
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- College of Pharmacy, Pharmacology and Toxicology Department, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Paladino RA, Miller SN, Kleiber KF, Byers DM. Resveratrol reverses the effect of TNF-α on inflammatory markers in a model of autoimmune uveitis. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Ferreira FR, de Moura NSB, Hassib L, Pombo TR. Resveratrol ameliorates the effect of maternal immune activation associated with schizophrenia in adulthood offspring. Neurosci Lett 2020; 734:135100. [PMID: 32473196 DOI: 10.1016/j.neulet.2020.135100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022]
Abstract
Maternal exposure to infectious agents such as arboviruses, bacteria, or other protozoans has been associated with an elevated risk of schizophrenia (SZ). Evidence suggests that immunological processes occurring during infection may disturb the neural progenitor, impacting the central nervous system (CNS) functions. Moreover, growing evidence suggests that resveratrol (RSV) has neuroprotective activity through anti-oxidant and anti-inflammatory mechanisms. Therefore, we investigated if the treatment with RSV during pregnancy would prevent the abnormalities associated with a SZ-like phenotype induced by maternal immune activation (MIA). Pregnant dams stimulated with a subcutaneous (s.c.) injection of polyriboinosinic-polyribocytidylic acid (poly I:C; 50 mg/kg), a viral nucleic acid mimetic or vehicle, on gestational day (GD) 12.5, were treated with RSV (40 mg/kg, s.c.) or saline, from GD 9.5 to GD 14.5. On day 45 after birth, the offspring was evaluated using a three-compartment social interaction test, elevated plus maze, and hyperlocomotion test induced by amphetamine. After the behavioral tests, the relative expression of mRNA to synapsin 1 (Syn1), oligodendrocyte transcription factor 1 (Olig1), and SRY (sex-determining region Y)-box 2 (Sox2) was determined in the hippocampus and cortex. Treatment with RSV restored the social behavior and attenuated the hyperlocomotion of the offspring bred by dams submitted to MIA. RSV prevented the effects of MIA on Syn1 and Olig1 expression in the hippocampus and Syn1 in the cortex. The present study showed that maternal treatment with RSV attenuates some of the negative behavioral impacts caused by MIA, with modulation of synaptic and oligodendrogenesis processes.
Collapse
Affiliation(s)
| | - Nathalia Souza Barros de Moura
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucas Hassib
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thatiane Rebelo Pombo
- Lab. of Cardiovascular Investigations, Oswaldo Cruz Institute, Rio de Janeiro, Brazil; Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
De Simone R, Butera A, Armida M, Pezzola A, Boirivant M, Potenza RL, Ricceri L. Beneficial Effects of Fingolimod on Social Interaction, CNS and Peripheral Immune Response in the BTBR Mouse Model of Autism. Neuroscience 2020; 435:22-32. [PMID: 32229233 DOI: 10.1016/j.neuroscience.2020.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/01/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Autism Spectrum Disorders (ASD) are neurodevelopmental disorders characterized by social communication deficits and repetitive/stereotyped behaviours. We evaluated the effects of a chronic treatment with the immunomodulator drug Fingolimod (FTY720 - a non-selective Sphingosine 1-Phosphate Receptor ligand) in an ASD model, the BTBR T+tf/J (BTBR) mouse strain. In adult BTBR males, chronic FTY720 treatment (4 weeks) increased social and vocal response during a male-female interaction and hippocampal expression of BDNF and Neuregulin 1, two trophic factors reduced in BTBR when compared to control C57 mice. FTY720 also re-established the expression of IL-1β and MnSOD in the hippocampus, whereas it did not modify IL-6 mRNA content. In addition to its central effect, FTY720 modulated the activation state of peripheral macrophages in the BTBR model, both in basal conditions and after stimulation with an immune challenge. Furthermore, IL-6 mRNA colonic content of BTBR mice, reduced when compared with C57 mice, was normalized by chronic treatment with FTY720. Our study, while indicating FTY720 as a tool to attenuate relevant alterations of the BTBR neurobehavioural phenotype, emphasizes the importance of gut mucosal immune evaluation as an additional target that deserve to be investigated in preclinical studies of anti-inflammatory therapeutic approaches in ASD.
Collapse
Affiliation(s)
- Roberta De Simone
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia Butera
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Armida
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Pezzola
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Boirivant
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Luisa Potenza
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Ricceri
- Centre for Behavioural Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
44
|
Uddin MN, Yao Y, Mondal T, Matala R, Manley K, Lin Q, Lawrence DA. Immunity and autoantibodies of a mouse strain with autistic-like behavior. Brain Behav Immun Health 2020; 4:100069. [PMID: 34589851 PMCID: PMC8474232 DOI: 10.1016/j.bbih.2020.100069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Female and male mice of the BTBR T + Itpr3 tf /J (BTBR) strain have behaviors that resemble autism spectrum disorder. In comparison to C57BL/6 (B6) mice, BTBR mice have elevated humoral immunity, in that they have naturally high serum IgG levels and generate high levels of IgG antibodies, including autoantibodies to brain antigens. This study focused on the specificities of autoantibodies and the immune cells and their transcription factors that might be responsible for the autoantibodies. BTBR IgG autoantibodies bind to neurons better than microglia and with highest titer to nuclear antigens. Two of the antigens identified were alpha-enolase (ENO1) and dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial (DLST). Surprisingly based on IgG levels, the blood and spleens of BTBR mice have more CD4+ and CD8+ T cells, but fewer B cells than B6 mice. The high levels of autoantibodies in BTBR relates to their splenic T follicular helper (Tfh) cell levels, which likely are responsible for the higher number of plasma cells in BTBR mice than B6 mice. BTBR mice have increased gene expression of interleukin-21 receptor (I l -21 r) and Paired Box 5 (Pax5), which are known to aid B cell differentiation to plasma cells, and an increased Lysine Demethylase 6B (Kdm6b)/DNA Methyltransferase 1 (Dnmt1) ratio, which increases gene expression. Identification of gene expression and immune activities of BTBR mice may aid understanding of mechanisms associated with autism since neuroimmune network interactions have been posited and induction of autoantibodies may drive the neuroinflammation associated with autism.
Collapse
Key Words
- ASD, autism spectrum disorder
- Ab, antibody
- Ag, antigen
- Alpha-enolase
- Autism
- Autoantibody
- BM, bone marrow
- BTBR
- Dlst, dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex, mitochondrial
- Dnmt1
- Dnmt1, DNA Methyltransferase 1
- Eno1, alpha-enolase
- IL-21r
- IL21R, interleukin-21 receptor
- Kdm6b
- Kdm6b, Lysine Demethylase 6B
- Pax5
- Pax5, Paired Box 5
- Plasma cell
- T follicular helper cell
- Tfh, T follicular helper cell
Collapse
Affiliation(s)
- Mohammad Nizam Uddin
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Yunyi Yao
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Tapan Mondal
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Rosemary Matala
- University at Albany School of Public Health, Rensselaer, NY, USA
| | - Kevin Manley
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA
| | - David A Lawrence
- Wadsworth Center/New York State Department of Health, RNA Epitranscriptomics & Proteomics Resource, SUNY at Albany, Albany, NY, USA.,University at Albany School of Public Health, Rensselaer, NY, USA
| |
Collapse
|
45
|
Rafe T, Shawon PA, Salem L, Chowdhury NI, Kabir F, Bin Zahur SM, Akhter R, Noor HB, Mohib MM, Sagor MAT. Preventive Role of Resveratrol Against Inflammatory Cytokines and Related Diseases. Curr Pharm Des 2020; 25:1345-1371. [PMID: 30968773 DOI: 10.2174/1381612825666190410153307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immunity is the ultimate barrier between foreign stimuli and a host cell. Unwanted immune responses can threaten the host cells and may eventually damage a vital organ. Overproduction of inflammatory cytokines may also lead to autoimmune diseases. Inflammatory cells and pro-inflammatory cytokines can eventually progress to renal, cardiac, brain, hepatic, pancreatic and ocular inflammation that can result in severe damage in the long run. Evidence also suggests that inflammation may lead to atherosclerosis, Alzheimer's, hypertension, stroke, cysts and cancers. METHODS This study was designed to correlate the possible molecular mechanisms for inflammatory diseases and prevent biochemical changes owing to inflammatory cytokines by using Resveratrol. Therefore, we searched and accumulated very recent literature on inflammatory disorders and Resveratrol. We scoured PubMed, Scopus, Science Direct, PLoS One and Google Scholar to gather papers and related information. RESULTS Reports show that inflammatory diseases are very complex, as multiple cascade systems are involved; therefore, they are quite difficult to cure. However, our literature search also correlates some possible molecular interactions by which inflammation can be prevented. We noticed that Resveratrol is a potent lead component and has multiple activities against harmful inflammatory cytokines and related microRNA. Our study also suggests that the anti-inflammatory properties of Resveratrol have been highly studied on animal models, cell lines and human subjects and proven to be very effective in reducing inflammatory cell production and pro-inflammatory cytokine accumulation. Our tables and figures also demonstrate recent findings and possible preventive activities to minimize inflammatory diseases. CONCLUSION This study would outline the role of harmful inflammatory cytokines as well as how they accelerate pathophysiology and progress to an inflammatory disorder. Therefore, this study might show a potential therapeutic value of using Resveratrol by health professionals in preventing inflammatory disorders.
Collapse
Affiliation(s)
- Tanzir Rafe
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Parvez Ahmed Shawon
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Liyad Salem
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Nafij Imtiyaj Chowdhury
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Farjana Kabir
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | | | - Rowshon Akhter
- Department of Pharmacy, East West University, Aftabnagar, Dhaka-1212, Bangladesh
| | - Humaira Binte Noor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| | - Md Mohabbulla Mohib
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh.,Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Md Abu Taher Sagor
- Department of Pharmaceutical Sciences, School of Life Sciences, North South University, Dhaka-1229, Bangladesh
| |
Collapse
|
46
|
Malaguarnera M, Khan H, Cauli O. Resveratrol in Autism Spectrum Disorders: Behavioral and Molecular Effects. Antioxidants (Basel) 2020; 9:E188. [PMID: 32106489 PMCID: PMC7139867 DOI: 10.3390/antiox9030188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (RSV) is a polyphenolic stillbenoid with significant anti-oxidative and anti-inflammatory properties recently tested in animal models of several neurological diseases. Altered immune alteration and oxidative stress have also been found in patients with autism spectrum disorders (ASD), and these alterations could add to the pathophysiology associated with ASD. We reviewed the current evidence about the effects of RSV administration in animal models and in patients with ASD. RSV administration improves the core-symptoms (social impairment and stereotyped activity) in animal models and it also displays beneficial effects in other behavioral abnormalities such as hyperactivity, anxiety and cognitive function. The molecular mechanisms by which RSV restores or improves behavioral abnormalities in animal models encompass both normalization of central and peripheral immune alteration and oxidative stress markers and new molecular mechanisms such as expression of cortical gamma-amino butyric acid neurons, certain type of miRNAs that regulate spine growth. One randomized, placebo-controlled clinical trial (RCT) suggested that RSV add-on risperidone therapy improves comorbid hyperactivity/non-compliance, whereas no effects where seen in core symptoms of ASD No RCTs about the effect of RSV as monotherapy have been performed and the results from preclinical studies encourage its feasibility. Further clinical trials should also identify those ASD patients with immune alterations and/or with increased oxidative stress markers that would likely benefit from RSV administration.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Research Center “The Great Senescence”, University of Catania, 95100 Catania, Italy;
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Marden 23200, Pakistan;
| | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
47
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alqahtani F, Alhoshani AR, Alasmari F, Alsaleh NB, Attia SM. 5-aminoisoquinolinone attenuates social behavior deficits and immune abnormalities in the BTBR T + Itpr3 tf/J mouse model for autism. Pharmacol Biochem Behav 2020; 189:172859. [PMID: 31982447 DOI: 10.1016/j.pbb.2020.172859] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is diagnosed by core symptoms including impaired social communication and the presence of repetitive and stereotypical behaviors. There is also evidence for immune dysfunction in individuals with ASD, but it is a disease that is still insufficiently controlled by current treatment strategies. The use of 5-aminoisoquinolinone (5-AIQ) ameliorates several immune-mediated symptoms including rheumatoid arthritis and colitis, and has neuroprotective properties; however, its role in ASD is not yet characterized. In this study, we investigated the effect of 5-AIQ on sociability tests, self-grooming, marble burying, and locomotor activities in BTBR T+ Itpr3tf/J (BTBR) mice, which serve as an ASD animal model. We further investigated the possible molecular mechanism of 5-AIQ administration on CXCR4-, CXCR6-, IFN-γ-, IL-22-, NOS2-, STAT1-, T-bet-, and RORγT-producing CD3+ T cells isolated from the spleens of treated mice. We also explored its effects on mRNA expression in brain tissue. Our results showed that in BTBR mice, 5-AIQ treatment significantly prevented self-grooming and marble burying behaviors and enhanced social interactions without any adverse effects on locomotor activity/anxiety level. Additionally, 5-AIQ treatment substantially decreased CXCR4-, CXCR6-, IFN-γ-, IL-22-, NOS2-, STAT1-, T-bet-, and RORγT-producing CD3+ T cells in the spleen. Furthermore, 5-AIQ treatment decreased CXCR4, IFN-γ, IL-22, STAT1, and RORγT mRNA expression levels in brain tissue. Our findings demonstrated that 5-AIQ improved behavioral and immune abnormalities associated with ASD, which supports the hypothesis that 5-AIQ has important therapeutic potential for the treatment of behavioral and neuroimmune dysfunctions in ASD.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali R Alhoshani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nasser B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
48
|
Li C, Peng G, Long J, Xiao P, Zeng X, Yang H. Protective effects of resveratrol and SR1001 on hypoxia-induced pulmonary hypertension in rats. Clin Exp Hypertens 2020; 42:519-526. [PMID: 31973589 DOI: 10.1080/10641963.2020.1714643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypoxic pulmonary hypertension (HPH) is a fatal disease with limited therapeutic strategies. Combination therapy is regarded as the standard of care in PH and becoming widely used in clinical practice. However, many PH patients treated with combinations of available clinical drugs still have a poor prognosis. Therefore, identifying innovative therapeutic strategies is essential for PH. This study is designed to examine the effects of combined prevention with resveratrol and SR1001 on HPH in rats. The effects of combined prevention with resveratrol and SR1001 and each mono-prevention on the development of HPH, Th17 cells differentiation, expression of guanine nucleotide exchange factor-H1 (GEF-H1), Ras homolog gene family member A (RhoA) and Phosphorylated myosin phosphatase target subunit (MYPT1) were examined. HPH and RV hypertrophy occurred in rats exposed to hypoxia. Compared with normoxia group, the hypoxia group showed significantly increased ratio of Th17 cells. After treatment with resveratrol, HPH rats showed an obvious reduction of Th17 cells. SR1001 significantly reduced the increased p-MYPY1, RhoA, and GEF-H1 expression in the hypoxic rats. The mono-prevention with resveratrol or SR1001 significantly inhibited the Th17 cells differentiation, p-STAT3, p-MYPY1, RhoA, and GEF-H1 protein expression, which was further inhibited by their combination prevention. The combination of resveratrol and SR1001 has a synergistic interaction, suggesting that combined use of these pharmacological targets may be an alternative to exert further beneficial effects on HPH.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| | - Ganlin Peng
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| | - Jing Long
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| | - Pan Xiao
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| | - Xiaoyuan Zeng
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| | - Hongzhong Yang
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China , Changsha, Hunan, P.R. China
| |
Collapse
|
49
|
Yang J, Fu X, Liao X, Li Y. Nrf2 Activators as Dietary Phytochemicals Against Oxidative Stress, Inflammation, and Mitochondrial Dysfunction in Autism Spectrum Disorders: A Systematic Review. Front Psychiatry 2020; 11:561998. [PMID: 33329102 PMCID: PMC7714765 DOI: 10.3389/fpsyt.2020.561998] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder with limited available treatments and diverse causes. In ASD patients, numerous researches demonstrated various alterations in inflammation/immune, oxidative stress, and mitochondrial dysfunction, and these alterations could be regulated by Nrf2. Hence, we aimed to systematically review the current evidence about the effects of Nrf2 activator supplementation on ASD objects from in vitro studies, animal studies, and clinical studies. Relevant articles were retrieved through searching for the Cochrane Library, PubMed, Web of Science, Scope, Embase, and CNKI databases (through September 23, 2020). Ultimately, we identified 22 preclinical studies, one cell culture study, and seven clinical studies, covering a total of five Nrf2 activators. For each Nrf2 activator, we focused on its definition, potential therapeutic mechanisms, latest research progress, research limitations, and future development directions. Our systematic review provided suggestive evidence that Nrf2 activators have a potentially beneficial role in improving autism-like behaviors and abnormal molecular alterations through oxidant stress, inflammation, and mitochondrial dysfunction. These dietary phytochemicals are considered to be relatively safer and effective for ASD treatment. However, there are few clinical studies to support the Nrf2 activators as dietary phytochemicals in ASD, even though several preclinical studies. Therefore, caution should be warranted in attempting to extrapolate their effects in human studies, and better design and more rigorous research are required before they can be determined as a therapeutic option.
Collapse
Affiliation(s)
- Jiaxin Yang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| | - Xi Fu
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| | - Xiaoli Liao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| |
Collapse
|
50
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alsanea S, Al-Hosaini KA, Mahmood HM, Alzahrani MZ, Attia SM. Inhibition of tyrosine kinase signaling by tyrphostin AG126 downregulates the IL-21/IL-21R and JAK/STAT pathway in the BTBR mouse model of autism. Neurotoxicology 2019; 77:1-11. [PMID: 31811869 DOI: 10.1016/j.neuro.2019.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorder (ASD) comprises a broad range of neurodevelopmental disorders that are associated with deficits in social interaction and communication. The tyrosine kinase inhibitor tyrphostin AG126 represents a promising therapeutic agent for several neuroinflammatory disorders. There are currently no treatments available that can improve ASD and we previously showed that AG126 treatment exerts beneficial effects on BTBR T+ Itpr3tf/J (BTBR) mice, a model for autism that shows the core features of ASD; however, the immunological mechanisms and molecular targets associated with this effect were previously unclear. This study was undertaken to delineate the neuroprotective effect of AG126 on BTBR mice. Here, using this mouse model, we investigated the effects of AG126 administration on IL-21R, IL-21, IL-22, TNF-α, NOS2, STAT3, IL-27, and Foxp3 production by CD8+ T cells in the spleen by flow cytometry. We further explored the mRNA and protein expression of IL-21, IL-22, IL-1β, TNF-α, NOS2, JAK1, STAT3, IL-27, and Foxp3 in brain tissue by RT-PCR, and western blotting. We found that BTBR mice treated with AG126 exhibited significant decreases in IL-21R-, IL-21-, IL-22-, TNF-α-, NOS2-, STAT3-producing, and increases in IL-27- and Foxp3-producing, CD8+ T cells. Our results further demonstrated that AG126 treatment effectively decreased IL-21, IL-22, IL-1β, TNF-α, NOS2, JAK1, and STAT3, and increased IL-27 and Foxp3 mRNA and protein expression in brain tissues. Our findings suggest that AG126 elicits a neuroprotective response through downregulation of the IL-21/IL-21R and JAK/STAT pathway in BTBR mice, which could represent a promising novel therapeutic target for ASD treatment.
Collapse
Affiliation(s)
- Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaled A Al-Hosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz M Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Z Alzahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|