1
|
Yang Y, Song S, Wang H, Ma Z, Gao Q. The antioxidative effect of STAT3 involved in cellular vulnerability to isoflurane. BMC Neurosci 2024; 25:75. [PMID: 39633283 PMCID: PMC11619428 DOI: 10.1186/s12868-024-00911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The vulnerable period to neurotoxicity of isoflurane overlaps with a developmental stage characterized by programmed neuronal death. STAT3 has been identified as a crucial molecule involved in survival pathways during this period. We aimed to investigate the role of STAT3 in cellular vulnerability to isoflurane. METHODS C57/BL6 mice on postnatal day 7 or 21, primary neurons derived from mice embryos at gestational days 14-16 and cultured for 5 or 14 days, as well as human neuroglioma U251 cells were treated with isoflurane. A plasmid containing human wild-type STAT3, STAT3 anti-sense oligonucleotide, STAT3 specific inhibitor STA21, proteasome inhibitor MG-132 and calcineurin inhibitor FK506 were utilized to evaluate the influence of STAT3 levels on isoflurane-induced cytotoxicity. The levels of Western blot results, mRNA, intracellular ROS, apoptotic rate, and calcineurin activity were analyzed using unpaired Student's t-test or one-way ANOVA followed by Bonferroni post hoc test, as appropriate. RESULTS Elevated levels of STAT3, reduced activity of calcineurin, as well as a diminished response to isoflurane-induced calcineurin activation and neuroapoptosis were observed in more mature brain or neurons. Isoflurane accelerated the degradation of ubiquitin-conjugated proteins but did not facilitate ubiquitin conjugation to proteins. STAT3 was of particular importance in the all ubiquitin-conjugated proteins degraded by isoflurane. Knockdown or inhibition of STAT3 nuclear translocation exacerbated isoflurane-induced oxidative injury and apoptosis, while STAT3 overexpression mitigated these effects. Finally, this study demonstrated that FK506 pretreatment mitigated the apoptosis, ROS accumulation, and the impairment of neurite growth in primary neurons after exposed to isoflurane. CONCLUSIONS These findings indicate that specific regulation of STAT3 was closely related with the cellular vulnerability to isoflurane via an antioxidative pathway.
Collapse
Affiliation(s)
- Yan Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210093, China
| | - Hongwei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210093, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China.
| | - Qian Gao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China.
| |
Collapse
|
2
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
3
|
Chen M, Yan R, Ding L, Luo J, Ning J, Zhou R. Research Advances of Mitochondrial Dysfunction in Perioperative Neurocognitive Disorders. Neurochem Res 2023; 48:2983-2995. [PMID: 37294392 DOI: 10.1007/s11064-023-03962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
Perioperative neurocognitive disorders (PND) increases postoperative dementia and mortality in patients and has no effective treatment. Although the detailed pathogenesis of PND is still elusive, a large amount of evidence suggests that damaged mitochondria may play an important role in the pathogenesis of PND. A healthy mitochondrial pool not only provides energy for neuronal metabolism but also maintains neuronal activity through other mitochondrial functions. Therefore, exploring the abnormal mitochondrial function in PND is beneficial for finding promising therapeutic targets for this disease. This article summarizes the research advances of mitochondrial energy metabolism disorder, inflammatory response and oxidative stress, mitochondrial quality control, mitochondria-associated endoplasmic reticulum membranes, and cell death in the pathogenesis of PND, and briefly describes the application of mitochondria-targeted therapies in PND.
Collapse
Affiliation(s)
- Mengjie Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruyu Yan
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Lingling Ding
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Jiansheng Luo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Jiaqi Ning
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Ruiling Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| |
Collapse
|
4
|
Pang LX, Cai WW, Chen L, Fu J, Xia CX, Li JY, Li Q. The Diagnostic Value of Mitochondrial Mass of Peripheral T Lymphocytes in Early Sepsis. Front Public Health 2022; 10:928306. [PMID: 35910903 PMCID: PMC9330378 DOI: 10.3389/fpubh.2022.928306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Studies have shown that lymphocyte dysfunction can occur during the early stages of sepsis and that cell dysfunction is associated with mitochondrial dysfunction. Therefore, quantifying the mitochondrial function of lymphocytes in patients with sepsis could be valuable for the early diagnosis of sepsis. Methods Seventy-nine patients hospitalized from September 2020 to September 2021 with Sepsis-3 were retrospectively analyzed and subsequently compared with those without sepsis. Results Univariate analysis showed statistical differences between the data of the two groups regarding age, neutrophil/lymphocyte, procalcitonin (PCT), C-reactive protein, total bilirubin, serum creatinine, type B natriuretic peptide, albumin, prothrombin time, activated partial thromboplastin time, lactic acid, single-cell mitochondrial mass (SCMM)-CD3, SCMM-CD4, SCMM-CD8, and Acute Physiology and Chronic Health Evaluation II score (P < 0.05). Multivariate logistic regression analysis performed on the indicators mentioned above demonstrated a statistical difference in PCT, lactic acid, SCMM-CD4, and SCMM-CD8 levels between the two groups (P < 0.05). The receiver operating characteristic curves of five models were subsequently compared [area under the curve: 0.740 (PCT) vs. 0.933 (SCMM-CD4) vs. 0.881 (SCMM-CD8) vs. 0.961 (PCT + SCMM-CD4) vs. 0.915 (PCT+SCMM-CD8), P < 0.001]. Conclusion SCMM-CD4 was shown to be a better diagnostic biomarker of early sepsis when compared with the traditional biomarker, PCT. Furthermore, the value of the combination of PCT and SCMM-CD4 in the diagnosis of early sepsis was better than that of SCMM-CD4 alone.
Collapse
Affiliation(s)
- Ling-Xiao Pang
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wen-Wei Cai
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lue Chen
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jin Fu
- Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Chun-Xiao Xia
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jia-Yan Li
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qian Li
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Qian Li
| |
Collapse
|
5
|
Yang Y, Liu Y, Zhu J, Song S, Huang Y, Zhang W, Sun Y, Hao J, Yang X, Gao Q, Ma Z, Zhang J, Gu X. Neuroinflammation-mediated mitochondrial dysregulation involved in postoperative cognitive dysfunction. Free Radic Biol Med 2022; 178:134-146. [PMID: 34875338 DOI: 10.1016/j.freeradbiomed.2021.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022]
Abstract
Neuroinflammation following peripheral surgery is a pivotal pathogenic mechanism of postoperative cognitive dysfunction (POCD). However, the key site of inflammation-mediated neural damage remains unclear. Impaired mitochondrial function is a vital feature of degenerated neurons. Dynamin-related protein 1 (DRP1), a crucial regulator of mitochondrial dynamics, has been shown to play an essential role in synapse formation. Here, we designed experiments to assess whether Drp1-regulated mitochondrial dynamics and function are involved in the pathological processes of POCD and elucidate its relationship with neuroinflammation. Aged mice were subjected to experimental laparotomy under isoflurane anesthesia. Primary neurons and SH-SY5Y cells were exposed to tumor necrosis factor (TNF). We found an increase in Drp1 activation as well as mitochondrial fragmentation both in the hippocampus of mice after surgery and primary neurons after TNF exposure. Pretreatment with Mdivi-1, a Drp1 specific inhibitor, reduced this mitochondrial fragmentation. Drp1 knockdown with small interfering RNA blocked TNF-induced mitochondrial fragmentation in SH-SY5Y cells. However, the application of Mdivi-1 exhibited a negative impact on mitochondrial function and neurite growth in primary neurons. Calcineurin activity was increased in primary neurons after TNF exposure and contributed to the Drp1 activation. The calcineurin inhibitor FK506 exhibited a Drp1-independent function that mitigated mitochondrial dysfunction. Finally, we found that FK506 pretreatment ameliorated the neurite growth in neurons treated with TNF and the learning ability of mice after surgery. Overall, our research indicated a crucial role of mitochondrial function in the pathological processes of POCD, and neuronal metabolic modulation may represent a novel and important target for POCD.
Collapse
Affiliation(s)
- Yan Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Yue Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Jixiang Zhu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210093, China
| | - Yulin Huang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Wei Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Yu'e Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Jing Hao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Xuli Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210093, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China.
| | - Juan Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China.
| |
Collapse
|
6
|
Wei H, Sun T, Liu J, Wang X, Zhao G, Shi J, Chen Y. Isoflurane activates AMP-activated protein kinase to inhibit proliferation, and promote apoptosis and autophagy in cervical carcinoma both in vitro and in vivo. J Recept Signal Transduct Res 2020; 41:538-545. [PMID: 33043765 DOI: 10.1080/10799893.2020.1831535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Isoflurane is an extensively used inhalational anesthesia, and its carcinogenic or anti-cancerous effect has been identified recently. However, the specific role of isoflurane in cervical cancer remains unclear. AIM This study aimed to investigate the function of isoflurane in cervical cancer as well as the underlying mechanism. METHODS After isoflurane treatment, HeLa cell viability, percentage of apoptotic cells, expression of active caspase-3/9 were examined by CCK-8 assay, Annexin V-FITC/PI double staining, and Western blot analysis, respectively. ROS generation, ratio of NAD+/NADH, and ATP level after isoflurane stimulation were determined using commercial assay kits. Afterwards, activation of AMPK and autophagy was assessed through Western blot analysis and immunofluorescence. Whether AMPK mediated the isoflurane-induced apoptosis and autophagy was explored by adding an AMPK inhibitor (Compound C). The in vivo function of isoflurane was finally investigated on a HeLa cell xenograft model. RESULTS Isoflurane inhibited cell viability and induced apoptosis evidenced by upregulation of active caspase-3/9 in HeLa cells. Oxidative stress was triggered by isoflurane, as isoflurane elevated ROS level, and lowered ratio of NAD+/NADH and ATP level. Further results showed isoflurane activated the AMPK/mTOR pathway and induced autophagy. In addition, inhibition of AMPK led to ameliorated effects of isoflurane on apoptosis and autophagy. In vivo experiments proved isoflurane could repress tumorigenesis, activate AMPK, and induce autophagy in Xenograft mouse. CONCLUSIONS Isoflurane activated AMPK to inhibit proliferation and promote apoptosis and autophagy both in vitro and in vivo.
Collapse
Affiliation(s)
- Hongfang Wei
- Department of Anesthesiology, HanDan Central Hospital, Handan, China
| | - Tianze Sun
- Department of Anesthesiology, Hebei North University, Zhangjiakou, China
| | - Jie Liu
- Department of Anesthesiology, HanDan Central Hospital, Handan, China
| | - Xiaowei Wang
- Department of Anesthesiology, HanDan Central Hospital, Handan, China
| | - Guangping Zhao
- Department of Anesthesiology, HanDan Central Hospital, Handan, China
| | - Jiong Shi
- Department of Anesthesiology, HanDan Central Hospital, Handan, China
| | - Yongxue Chen
- Department of Anesthesiology, HanDan Central Hospital, Handan, China
| |
Collapse
|
7
|
Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell Biol 2020; 125:105792. [PMID: 32574707 DOI: 10.1016/j.biocel.2020.105792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe key signaling pathways regulating potassium channels present in the inner mitochondrial membrane. The signaling cascades covered here include phosphorylation, redox reactions, modulation by calcium ions and nucleotides. The following types of potassium channels have been identified in the inner mitochondrial membrane of various tissues: ATP-sensitive, Ca2+-activated, voltage-gated and two-pore domain potassium channels. The direct roles of these channels involve regulation of mitochondrial respiration, membrane potential and synthesis of reactive oxygen species (ROS). Changes in channel activity lead to diverse pro-life and pro-death responses in different cell types. Hence, characterizing the signaling pathways regulating mitochondrial potassium channels will facilitate understanding the physiological role of these proteins. Additionally, we describe in this paper certain regulatory mechanisms, which are unique to mitochondrial potassium channels.
Collapse
|
8
|
Zuo CL, Wang CM, Liu J, Shen T, Zhou JP, Hao XR, Pan YZ, Liu HC, Lian QQ, Lin H. Isoflurane anesthesia in aged mice and effects of A1 adenosine receptors on cognitive impairment. CNS Neurosci Ther 2018; 24:212-221. [PMID: 29345054 DOI: 10.1111/cns.12794] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022] Open
Abstract
AIMS Isoflurane may not only accelerate the process of Alzheimer's disease (AD), but increase the risk of incidence of postoperative cognitive dysfunction (POCD). However, the underlying mechanisms remain unknown. This study was designed to investigate whether isoflurane contributed to the POCD occurrence through A1 adenosine receptor (A1AR) in aged mice. METHODS We assessed cognitive function of mice with Morris water maze (MWM) and then measured expression level of two AD biomarkers (P-tau and Aβ) and a subtype of the NMDA receptor (NR2B) in aged wild-type (WT) and homozygous A1 adenosine receptor (A1AR) knockout (KO) mice at baseline and after they were exposed to isoflurane (1.4% for 2 hours). RESULTS For cognitive test, WT mice with isoflurane exposure performed worse than the WT mice without isoflurane exposure. However, A1AR KO mice with isoflurane exposure performed better than WT mice with isoflurane exposure. WT mice exposed to isoflurane had increased levels of Aβ and phosphorylated tau (P-tau). Levels of Aβ and P-tau were decreased in A1AR KO mice, whereas no differences were noted between KO mice with and without isoflurane exposure. NR2B expression was inversely related to that of P-tau, with no differences found between KO mice with and without isoflurane exposure. CONCLUSIONS We found an association between isoflurane exposure, impairment of spatial memory, decreasing level of NR2B, and increasing levels of A-beta and P-tau, presumably via the activation of the A1A receptor.
Collapse
Affiliation(s)
- Chun-Long Zuo
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun-Man Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin Liu
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiang-Ping Zhou
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin-Rui Hao
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Zhao Pan
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hua-Cheng Liu
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing-Quan Lian
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|