1
|
Ruggiero S, Guida N, Mascolo L, Serani A, Ferrante A, Galasso F, Sanguigno L, Piemonte E, De Rosa E, Montuori P, Triassi M, Di Renzo G, Galgani M, Formisano L. Sp4/HD11 and Sp1/HAT-p300 complexes induce apoptotic cell death in CuCl 2-treated neurons by modulating histone acetylation on BCL-W and BAX promoters. Neurochem Int 2025; 186:105973. [PMID: 40185277 DOI: 10.1016/j.neuint.2025.105973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Copper is a metal physiologically present in the brain that becomes neurotoxic at high concentrations; on the other hand, pharmacological inhibition of Histone Deacetylases (HDs) or of Histone Acetyltransferases (HATs) reduce neuronal death caused by several neurotoxicants. Herein, we found that CuCl2 (300 μM in SH-SY5Y cells or 100 μM in cortical neurons) determined apoptotic cell death, that was counteracted by the class IV HDs inhibitor Mocetinostat (MOCE) and by the HAT-p300 inhibitor C646, but not by the class I and II HDs inhibitors. Interestingly, HD11 and HAT-p300 protein levels increased after both 12 and 24 h of CuCl2 exposure and their silencing partially limited CuCl2-neurodetrimental effect. Furthermore, in CuCl2-treated cells the transcriptional factor Sp4 co-localized with HD11 on the promoter of anti-apoptotic gene BCL-W, determining histone H3 hypo-acetylation, a marker of gene repression. Contrarily, Sp1 co-localized with HAT-p300 on the pro-apoptotic gene BAX, determining histone H4 hyper-acetylation, a hallmark of transcriptional activation. In addition, siRNA against Sp4 prevented HD11 binding on BCL-W promoter and its consequent down-regulation, whereas Sp1 knocking-down, by reducing HAT-p300 interaction on BAX gene promoter counteracted its up-regulation. Importantly, while the single knocking-down of Sp1, Sp4, HD11 and HAT-p300 partially mitigated CuCl2-induced cell death, the double-transfection of siRNAs for Sp1 and Sp4, or for HD11 and HAT-p300, completely reverted the neurotoxic effect of CuCl2. Collectively, we found that CuCl2-induced neuronal apoptosis is determined by the binding of Sp1/HAT-p300 and of Sp4/HD11 transcriptional complexes on the BAX and BCL-W gene, respectively, unraveling a new pathway involved in Copper-induced neurotoxicity.
Collapse
Affiliation(s)
- Silvia Ruggiero
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 8013, Naples, Italy
| | - Natascia Guida
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 8013, Naples, Italy
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 8013, Naples, Italy
| | - Angelo Serani
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego, 30, 16163, Genova, Italy
| | - Anna Ferrante
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 8013, Naples, Italy
| | - Francesca Galasso
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 8013, Naples, Italy
| | - Luca Sanguigno
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 8013, Naples, Italy
| | - Erica Piemonte
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini, 5, 8013, Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore, " Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Elvira De Rosa
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166, Rome, Italy
| | - Paolo Montuori
- Department of Public Health, "Federico II" University, Via Sergio Pansini no 5, 80131, Naples, Italy
| | - Maria Triassi
- Department of Public Health, "Federico II" University, Via Sergio Pansini no 5, 80131, Naples, Italy
| | - Gianfranco Di Renzo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 8013, Naples, Italy
| | - Mario Galgani
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini, 5, 8013, Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore, " Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 8013, Naples, Italy.
| |
Collapse
|
2
|
Lamtai M, Benmhammed H, Azirar S, Rezqaoui A, Zghari O, El Hamzaoui A, El Brouzi MY, Chahirou Y, Bikri S, Mesfioui A, El Hessni A. Subchronic Exposure to Mixture of Cadmium, Copper, and Nickel Induces Neurobehavioral Deficits and Hippocampal Oxidative Stress of Wistar Rats. Biol Trace Elem Res 2025; 203:280-290. [PMID: 38578484 DOI: 10.1007/s12011-024-04166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
The present study was aimed at evaluating the influence of the subchronic exposure of cadmium (Cd), copper (Cu), and nickel (Ni) mixtures on affective behaviors, memory impairment, and oxidative stress (OS) in the hippocampus. Thirty male Wistar rats were divided into 5 equal groups. Group 1 (control) received a saline solution (NaCl 0.9%). Groups 2, 3, and 4 received Cd (0.25 mg/kg), Cu (0.5 mg/kg), and Ni (0.25 mg/kg), respectively, while group 5 received a Cd, Cu, and Ni mixture through intraperitoneal injections for 2 months. After the exposure period, all rats were submitted to behavioral tests. Subsequently, OS markers and histological changes in the rats' hippocampi were assessed. Results showed that a 2-month exposure to the mixtures of metals (MM) has led to higher anxiety-like and depression-like behaviors and cognitive deficits in rats when compared to the control group and the individual metals. Furthermore, the MM induced heightened OS, evidenced by the rise in lipid peroxidation and nitric oxide levels. These effects were accompanied by a decrease in superoxide dismutase and catalase activities in the hippocampus. The histopathological analysis also supported that MM caused a neuronal loss in the CA3 sub-region. Overall, this study underscores that subchronic exposure to the Cd, Cu, and Ni mixture induces an OS status and histological changes in the hippocampus, with important affective and cognitive behavior variations in rats.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
| | - Hajar Benmhammed
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Sofia Azirar
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Yassine Chahirou
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Samir Bikri
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
3
|
Meng Y, Liu S, Yu M, Liang H, Tong Y, Song J, Shi J, Cai W, Wu Q, Wen Z, Wang J, Guo F. The Changes of Blood and CSF Ion Levels in Depressed Patients: a Systematic Review and Meta-analysis. Mol Neurobiol 2024; 61:5369-5403. [PMID: 38191692 DOI: 10.1007/s12035-023-03891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Micronutrient deficiencies and excesses are closely related to developing and treating depression. Traditional and effective antidepressants include tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and lithium. There is no consensus on the fluctuation of zinc (Zn2+), magnesium (Mg2+), calcium (Ca2+), copper (Cu2+), iron (Fe2+), and manganese (Mn2+) ion levels in depressed individuals before and after therapy. In order to determine whether there were changes in blood and cerebrospinal fluid (CSF) levels of these ions in depressed patients compared with healthy controls and depressed patients treated with TCAs, SSRIs, or lithium, we applied a systematic review and meta-analysis. Using the Stata 17.0 software, we performed a systematic review and meta-analysis of the changes in ion levels in human samples from healthy controls, depressive patients, and patients treated with TCAs, SSRIs, and lithium, respectively. By searching the PubMed, EMBASE, Google Scholar, Web of Science, China National Knowledge Infrastructure (CNKI), and WAN FANG databases, 75 published analyzable papers were chosen. In the blood, the levels of Zn2+ and Mg2+ in depressed patients had decreased while the Ca2+ and Cu2+ levels had increased compared to healthy controls, Fe2+ and Mn2+ levels have not significantly changed. After treatment with SSRIs, the levels of Zn2+ and Ca2+ in depressed patients increased while Cu2+ levels decreased. Mg2+ and Ca2+ levels were increased in depressed patients after Lithium treatment. The findings of the meta-analysis revealed that micronutrient levels were closely associated with the onset of depression and prompted more research into the underlying mechanisms as well as the pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- Yulu Meng
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shuangshuang Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Science Experiment Center, China Medical University, Shenyang, 110122, China
| | - Hongyue Liang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Tong
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ji Song
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jian Shi
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wen Cai
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qiong Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhifeng Wen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Jialu Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Feng Guo
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Rieder GS, Zamberlan DC, Aschner M, Silva LFO, da Rocha JBT. Biological effects of a copper-based fungicide on the fruit fly, Drosophila melanogaster. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:341-349. [PMID: 38709203 DOI: 10.1080/03601234.2024.2347167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
The increased consumption of pesticides can have a negative environmental impact by increasing the essential metals to toxic levels. Bordasul® is a commonly used fungicide in Brazil and it is composed of 20% Cu, 10% sulfur, and 3.0% calcium. The study of fungicides in vivo in non-target model organisms can predict their environmental impact more broadly. The Drosophila melanogaster is a unique model due to its ease of handling and maintenance. Here, the potential toxicity of Bordasul® was investigated by assessing the development, survival, and behavior of exposed flies. Exposure to Bordasul® impaired the development (p < 0.01) and caused a significant reduction in memory retention (p < 0.05) and locomotor ability (p < 0.001). Fungicides are needed to assure the world's food demand; however, Bordasul® was highly toxic to D. melanogaster. Therefore, Bordasul® may be potentially toxic to non-target invertebrates and new environmentally-safe biofertilizers have to be developed to preserve the biota.
Collapse
Affiliation(s)
- G S Rieder
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - D C Zamberlan
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - L F O Silva
- Department of Civil and Environmental, Universidad De La Costa, Barranquilla, Atlantico, Colombia
| | - J B T da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Murumulla L, Bandaru LJM, Challa S. Heavy Metal Mediated Progressive Degeneration and Its Noxious Effects on Brain Microenvironment. Biol Trace Elem Res 2024; 202:1411-1427. [PMID: 37462849 DOI: 10.1007/s12011-023-03778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 02/13/2024]
Abstract
Heavy metals, including lead (Pb), cadmium (Cd), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn), and others, have a significant impact on the development and progression of neurodegenerative diseases in the human brain. This comprehensive review aims to consolidate the recent research on the harmful effects of different metals on specific brain cells such as neurons, microglia, astrocytes, and oligodendrocytes. Understanding the potential influence of these metals in neurodegeneration is crucial for effectively combating the ongoing advancement of these diseases. Metal-induced neurodegeneration involves molecular mechanisms such as apoptosis induction, dysregulation of metabolic and signaling pathways, metal imbalance, oxidative stress, loss of synaptic transmission, pathogenic peptide aggregation, and neuroinflammation. This review provides valuable insights by compiling the supportive evidence from recent research findings. Additionally, we briefly discuss the modes of action of natural neuroprotective compounds. While this comprehensive review aims to consolidate the recent research on the harmful effects of various metals on specific brain cells, it may not cover all studies and findings related to metal-induced neurodegeneration. Studies that are done using bioinformatics tools, microRNAs, long non-coding RNAs, emerging disease models, and studies based on the modes of exposure to toxic metals are a future prospect to be explored.
Collapse
Affiliation(s)
- Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Schildroth S, Kordas K, White RF, Friedman A, Placidi D, Smith D, Lucchini RG, Wright RO, Horton M, Claus Henn B. An Industry-Relevant Metal Mixture, Iron Status, and Reported Attention-Related Behaviors in Italian Adolescents. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27008. [PMID: 38363634 PMCID: PMC10871126 DOI: 10.1289/ehp12988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Exposure to environmental metals has been consistently associated with attention and behavioral deficits in children, and these associations may be modified by coexposure to other metals or iron (Fe) status. However, few studies have investigated Fe status as a modifier of a metal mixture, particularly with respect to attention-related behaviors. METHODS We used cross-sectional data from the Public Health Impact of Metals Exposure study, which included 707 adolescents (10-14 years of age) from Brescia, Italy. Manganese, chromium, and copper were quantified in hair samples, and lead was quantified in whole blood, using inductively coupled plasma mass spectrometry. Concentrations of Fe status markers (ferritin, hemoglobin, transferrin) were measured using immunoassays or luminescence assays. Attention-related behaviors were assessed using the Conners Rating Scales Self-Report Scale-Long Form, Parent Rating Scales Revised-Short Form, and Teacher Rating Scales Revised-Short Form. We employed Bayesian kernel machine regression to examine associations of the metal mixture with these outcomes and evaluate Fe status as a modifier. RESULTS Higher concentrations of the metals and ferritin were jointly associated with worse self-reported attention-related behaviors: metals and ferritin set to their 90th percentiles were associated with 3.0% [β = 0.03 ; 95% credible interval (CrI): - 0.01 , 0.06], 4.1% (β = 0.04 ; 95% CrI: 0.00, 0.08), and 4.1% (β = 0.04 ; 95% CrI: 0.00, 0.08) higher T -scores for self-reported attention deficit/hyperactivity disorder (ADHD) index, inattention, and hyperactivity, respectively, compared with when metals and ferritin were set to their 50th percentiles. These associations were driven by hair manganese, which exhibited nonlinear associations with all self-reported scales. There was no evidence that Fe status modified the neurotoxicity of the metal mixture. The metal mixture was not materially associated with any parent-reported or teacher-reported scale. CONCLUSIONS The overall metal mixture, driven by manganese, was adversely associated with self-reported attention-related behavior. These findings suggest that exposure to multiple environmental metals impacts adolescent neurodevelopment, which has significant public health implications. https://doi.org/10.1289/EHP12988.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, USA
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Roberto G. Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Florida International University, Miami, Florida, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Bauer JA, Romano ME, Jackson BP, Bellinger D, Korrick S, Karagas MR. Associations of Perinatal Metal and Metalloid Exposures with Early Child Behavioral Development Over Time in the New Hampshire Birth Cohort Study. EXPOSURE AND HEALTH 2024; 16:135-148. [PMID: 38694196 PMCID: PMC11060719 DOI: 10.1007/s12403-023-00543-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 03/01/2023] [Indexed: 05/04/2024]
Abstract
Research on the neurodevelopmental effects of metal(loid)s has focused mainly on outcomes assessed at one time point, even though brain development progresses over time. We investigated biomarkers of perinatal exposure to metals and changes in child behavior over time. We followed 268 participants from the prospective New Hampshire Birth Cohort Study between birth and age 5 years. We measured arsenic (As), copper (Cu), manganese (Mn), lead (Pb), selenium (Se), and zinc (Zn) in toenails from 6-week-old infants. The Behavioral Symptoms Index (BSI), externalizing, and internalizing symptoms were assessed using the Behavior Assessment System for Children, 2nd edition (BASC-2) at ages 3 and 5 years. Multivariable linear regression was used to estimate associations of metals with behavior change, calculated as the difference in symptom raw scores between 3 and 5 years, in addition to the associations for symptom scores at 3 and 5 years separately. Sex-specific associations were also explored using stratified models and a sex-metal interaction term. Adjusted associations of metals and change in behavior varied by exposure and outcome. Each 1 μg/g increase in ln toenail Cu was associated with improved behavior between 3 and 5 years [BSI: β = - 3.88 (95%CI: - 7.12, - 0.64); Externalizing problems: β = - 2.20 (95%CI: - 4.07, - 0.33)]. Increasing Zn was associated with increased externalizing behavior over time (β = 3.42 (95%CI: 0.60, 6.25). Sex-stratified analyses suggested more pronounced associations among boys compared to girls. Perinatal exposure to metals may alter behavioral development between ages 3 and 5 years. Findings support the need for more research on associations between metals and neurodevelopment over longer time periods.
Collapse
Affiliation(s)
- Julia A. Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, Hanover, NH 03756, USA
| | - Megan E. Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, Hanover, NH 03756, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - David Bellinger
- Departments of Neurology and Psychiatry, Boston Children’s Hospital, Boston, MA, USA
- Departments of Neurology and Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Susan Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, Hanover, NH 03756, USA
| |
Collapse
|
8
|
Jinshi L, Cong Y, Liang S, Dabin R, Ping Z. Cuproptosis-related genes are involved in immunodeficiency following ischemic stroke. Arch Med Sci 2024; 20:321-325. [PMID: 38414482 PMCID: PMC10895967 DOI: 10.5114/aoms/182909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/20/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Accumulating studies have shown that copper has a detrimental effect in cells, and the cuproptosis-related gene signatures have been constructed as clinical tools to predict prognosis in tumors. However, the heterogeneity of cuproptosis has not been fully investigated in ischemic stroke.Methods: Here, we combined the bulk RNA-seq and single cell-RNA-seq data for stroke to investigate the role of cuproptosis in stroke. Results We identified the cuproptosis-related differentially expressed genes (CuDEGs) in ischemic stroke. Then, we tried to find the hub genes with the machine learning method and WGCNA. We highlighted four genes identified by these methods and proposed a potential diagnostic model in ischemic stroke. Conclusions Our findings revealed cuproptosis-related hub genes, which could provide useful biomarkers in ischemic stroke.
Collapse
Affiliation(s)
- Li Jinshi
- Department of Neurology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Yu Cong
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Shu Liang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ren Dabin
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Zheng Ping
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| |
Collapse
|
9
|
Li X, Chen X, Gao X. Copper and cuproptosis: new therapeutic approaches for Alzheimer's disease. Front Aging Neurosci 2023; 15:1300405. [PMID: 38178962 PMCID: PMC10766373 DOI: 10.3389/fnagi.2023.1300405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024] Open
Abstract
Copper (Cu) plays a crucial role as a trace element in various physiological processes in humans. Nonetheless, free copper ions accumulate in the brain over time, resulting in a range of pathological changes. Compelling evidence indicates that excessive free copper deposition contributes to cognitive decline in individuals with Alzheimer's disease (AD). Free copper levels in the serum and brain of AD patients are notably elevated, leading to reduced antioxidant defenses and mitochondrial dysfunction. Moreover, free copper accumulation triggers a specific form of cell death, namely copper-dependent cell death (cuproptosis). This article aimed to review the correlation between copper dysregulation and the pathogenesis of AD, along with the primary pathways regulating copper homoeostasis and copper-induced death in AD. Additionally, the efficacy and safety of natural and synthetic agents, including copper chelators, lipid peroxidation inhibitors, and antioxidants, were examined. These treatments can restore copper equilibrium and prevent copper-induced cell death in AD cases. Another aim of this review was to highlight the significance of copper dysregulation and promote the development of pharmaceutical interventions to address it.
Collapse
Affiliation(s)
- Xiao Li
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinwang Chen
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiyan Gao
- College of Acupuncture-Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Acupuncture Clinic of the Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
10
|
El Youssfi M, Sifou A, Ben Aakame R, Mahnine N, Arsalane S, Halim M, Laghzizil A, Zinedine A. Trace elements in Foodstuffs from the Mediterranean Basin-Occurrence, Risk Assessment, Regulations, and Prevention strategies: A review. Biol Trace Elem Res 2023; 201:2597-2626. [PMID: 35754061 DOI: 10.1007/s12011-022-03334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Trace elements (TEs) are chemical compounds that naturally occur in the earth's crust and in living organisms at low concentrations. Anthropogenic activities can significantly increase the level of TEs in the environment and finally enter the food chain. Toxic TEs like cadmium, lead, arsenic, and mercury have no positive role in a biological system and can cause harmful effects on human health. Ingestion of contaminated food is a typical route of TEs intake by humans. Recent data about the occurrence of TEs in food available in the Mediterranean countries are considered in this review. Analytical methods are also discussed. Furthermore, a discussion of existing international agency regulations will be given. The risk associated with the dietary intake of TEs was estimated by considering consumer exposure and threshold values such as Benchmark dose lower confidence limit and provisional tolerable weekly intake established by the European Food Safety Authority and the Joint FAO/WHO Expert Committee on Food Additives, respectively. Finally, several remediation approaches to minimize TE contamination in foodstuffs were discussed including chemical, biological, biotechnological, and nanotechnological methods. The results of this study proved the occurrence of TEs contamination at high levels in vegetables and fish from some Mediterranean countries. Lead and cadmium are more abundant in foodstuffs than other toxic trace elements. Geographical variations in TE contamination of food crops clearly appear, with a greater risk in developing countries. There is still a need for the regular monitoring of these toxic element levels in food items to ensure consumer protection.
Collapse
Affiliation(s)
- Mourad El Youssfi
- Laboratory of Applied Chemistry of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta BP.1014 Agdal, Rabat, Morocco
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Aicha Sifou
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Rachid Ben Aakame
- Laboratory of Food Toxicology, National Institute of Hygiene (INH), BP 769 Agdal, 27, Avenue Ibn Batouta, Rabat, Morocco
| | - Naima Mahnine
- Laboratory of Food Toxicology, National Institute of Hygiene (INH), BP 769 Agdal, 27, Avenue Ibn Batouta, Rabat, Morocco
| | - Said Arsalane
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Mohammed Halim
- Laboratory of Nanomaterials, Nanotechnologies and Environment, Center of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta, BP.1014, 10000, Rabat, Morocco
| | - Abdelaziz Laghzizil
- Laboratory of Applied Chemistry of Materials, Mohammed V University in Rabat, Faculty of Sciences, Avenue Ibn Battouta BP.1014 Agdal, Rabat, Morocco
| | - Abdellah Zinedine
- BIOMARE Laboratory, Chouaib Doukkali University, Faculty of Sciences, Route Ben Maachou, PO Box 20, 24000, El Jadida, Morocco.
| |
Collapse
|
11
|
Wang Y, Wang Y, Yan C. Gender differences in trace element exposures with cognitive abilities of school-aged children: a cohort study in Wujiang city, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64807-64821. [PMID: 35474433 DOI: 10.1007/s11356-022-20353-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Trace elements persist in the environment, and their early exposure may adversely affect children's intellectual development. To clarify the influence of blood trace element levels in newborns and school-aged children, we used Wechsler Intelligence Scale for children (WISC-CR) to explore intellectual development level of 148 school-aged children based on a population cohort study. Lead (Pb), selenium (Se), arsenic (As), copper (Cu), manganese (Mn) and chromium (Cr) in cord blood and Pb, As, Cu in venous blood were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometer (AAS). Our analysis of the correlation between children's mental development and trace element content found children's cognitive abilities negatively correlate with Pb (PIQ: β=-0.109, P=0.03737) and Cu (PIQ: β=-0.031, P=0.04431; FISQ: β=-0.031, P=0.02137) levels in cord blood. Prenatal low-level As exposure may negatively affect girls' performance intelligence quotient (PIQ) and verbal intelligence quotient (VIQ). There were differences in Se levels in cord blood and venous blood between boys and girls (P=0.010; P=0.073). High Se levels were associated with a lower VIQ in boys and a higher VIQ in girls. Prenatal exposure to Pb, As and Cu may weaken children's cognitive abilities at school age. Se exposure may have opposite effects on cognitive abilities affected by dose and gender.
Collapse
Affiliation(s)
- Yihong Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Shanghai, 200092, China
| | - Yaqian Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Shanghai, 200092, China.
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Arif M, Rauf K, Rehman NU, Tokhi A, Ikram M, Sewell RD. 6-Methoxyflavone and Donepezil Behavioral Plus Neurochemical Correlates in Reversing Chronic Ethanol and Withdrawal Induced Cognitive Impairment. Drug Des Devel Ther 2022; 16:1573-1593. [PMID: 35665194 PMCID: PMC9160976 DOI: 10.2147/dddt.s360677] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
- Correspondence: Khalid Rauf, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan, Tel +923459824468, Email
| | - Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Khyber Pakhtoonkhwa, 22060, Pakistan
| | - Robert D Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
13
|
Liu C, Huang L, Huang S, Wei L, Cao D, Zan G, Tan Y, Wang S, Yang M, Tian L, Tang W, He C, Shen C, Luo B, Zhu M, Liang T, Pang B, Li M, Mo Z, Yang X. Association of both prenatal and early childhood multiple metals exposure with neurodevelopment in infant: A prospective cohort study. ENVIRONMENTAL RESEARCH 2022; 205:112450. [PMID: 34861232 DOI: 10.1016/j.envres.2021.112450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Impaired neurodevelopment of children has become a growing public concern; however, the associations between metals exposure and neurocognitive function have remained largely unknown. OBJECTIVES We systematically evaluated the associations of multiple metals exposure during pregnancy and childhood on the neurodevelopment of children aged 2-3 years. METHODS We measured 22 metals in the serum and urine among703 mother-child pairs from the Guangxi Birth Cohort Study. The neurocognitive development of children was assessed by the Gesell Development Diagnosis Scale (GDDS; Chinese version). Multiple linear regression models were used to evaluate the relationship between the metals (selected by elastic net regression) and the outcomes. The Bayesian kernel machine regression (BKMR) was used to evaluate the possible joint effect between the multiple metal mixture and the outcomes. RESULTS Prenatal aluminum (Al) exposure was negatively associated with the fine motor developmental quotient (DQ) (β = -1.545, 95%CI: 2.231, -0.859), adaption DQ (β = -1.182, 95%CI: 1.632, -0.732), language DQ (β = -1.284, 95% CI: 1.758, -0.809), and social DQ (β = -1.729, 95% CI: 2.406, -1.052) in the multi-metal model. Prenatal cadmium (Cd) exposure was negatively associated with gross motor DQ (β = -2.524, 95% CI: 4.060, -0.988), while postpartum Cd exposure was negatively associated with language DQ (β = -1.678, 95% CI: 3.227, -0.129). In stratified analyses, infants of different sexes had different sensitivities to metal exposure, and neurobehavioral development was more significantly affected by metal exposure in the first and second trimester. BKMR analysis revealed a negative joint effect of the Al, Cd, and selenium (Se) on the language DQ score; postpartum Cd exposure played a major role in this relationship. CONCLUSION Prenatal exposure to Al, Ba, Cd, molybdenum (Mo), lead (Pb), antimony (Sb), and strontium (Sr), and postpartum exposure to cobalt (Co), Cd, stannum (Sn), iron (Fe), nickel (Ni), and Se are associated with neurological development of infants. The first and second trimester might be the most sensitive period when metal exposure affects neurodevelopment.
Collapse
Affiliation(s)
- Chaoqun Liu
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Lulu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Shengzhu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Luyun Wei
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Dehao Cao
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Gaohui Zan
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Yanli Tan
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Sida Wang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Minjing Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Long Tian
- Department of Science and Education, Maternal & Child Health Hospital of Qinzhou, Qinzhou, Guangxi, China
| | - Weijun Tang
- Center for Translational Medicine, Maternal & Child Health Hospital of Qinzhou, Qinzhou, Guangxi, China
| | - Caitong He
- Department of Science and Education, Maternal & Child Health Hospital of Yulin, Yulin, Guangxi, China
| | - Chunhua Shen
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou Institute of Reproduction and Genetics, Affiliated Maternity Hospital and Affiliated Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Bangzhu Luo
- Department of Medical Services Section, Maternal & Child Health Hospital of Guigang, Guigang, Guangxi, China
| | - Maoling Zhu
- Department of Obstetrics, Maternal & Child Health Hospital of Nanning, Nanning, Guangxi, China
| | - Tao Liang
- Department of Pediatrics, Maternal & Child Health Hospital of Wuzhou, Wuzhou, Guangxi, China
| | - Baohong Pang
- Department of Women Health Care, Maternal & Child Health Hospital of Yuzhou, Yulin, Guangxi, China
| | - Mujun Li
- Department of Reproductive Center, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, 530021, Nanning, Guangxi, China; Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China; Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, 530021, Nanning, Guangxi, China.
| |
Collapse
|
14
|
Elsheikh MA, El-Feky YA, Al-Sawahli MM, Ali ME, Fayez AM, Abbas H. A Brain-Targeted Approach to Ameliorate Memory Disorders in a Sporadic Alzheimer's Disease Mouse Model via Intranasal Luteolin-Loaded Nanobilosomes. Pharmaceutics 2022; 14:576. [PMID: 35335952 PMCID: PMC8950550 DOI: 10.3390/pharmaceutics14030576] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Impaired memory and cognitive function are the main features of Alzheimer's disease (AD). Unfortunately, currently available treatments cannot cure or delay AD progression. Moreover, the blood-brain barrier hampers effective delivery of treatment to the brain. Therefore, we aimed to evaluate the impact of intranasally delivered luteolin on AD using bile-salt-based nano-vesicles (bilosomes). Different bilosomes were prepared using 23-factorial design. The variables were defined by the concentration of surfactant, the molar ratio of cholesterol:phospholipid, and the concentration of bile salt. Results demonstrated optimized luteolin-loaded bilosomes with particle size (153.2 ± 0.98 nm), zeta potential (-42.8 ± 0.24 mV), entrapment efficiency% (70.4 ± 0.77%), and % drug released after 8 h (80.0 ± 1.10%). In vivo experiments were conducted on an AD mouse model via intracerebroventricular injection of 3 mg/kg streptozotocin. We conducted behavioral, biochemical marker, histological, and immune histochemistry assays after administering a luteolin suspension or luteolin bilosomes (50 mg/kg) intranasally for 21 consecutive days. Luteolin bilosomes improved short-term and long-term spatial memory. They also exhibited antioxidant properties and reduced levels of proinflammatory mediators. They also suppressed both amyloid β aggregation and hyperphosphorylated Tau protein levels in the hippocampus. In conclusion, luteolin bilosomes are an effective, safe, and non-invasive approach with superior cognitive function capabilities compared to luteolin suspension.
Collapse
Affiliation(s)
- Manal A. Elsheikh
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| | - Yasmin A. El-Feky
- Department of Pharmaceutics, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Majid Mohammad Al-Sawahli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafr Elsheikh University, Kafr Elsheikh 33516, Egypt;
- Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Merhan E. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed M. Fayez
- Department of Pharmacology and Toxicology, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11835, Egypt;
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
15
|
Bernardes RC, Fernandes KM, Bastos DSS, Freire AFPA, Lopes MP, de Oliveira LL, Tavares MG, Dos Santos Araújo R, Martins GF. Impact of copper sulfate on survival, behavior, midgut morphology, and antioxidant activity of Partamona helleri (Apidae: Meliponini). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6294-6305. [PMID: 34449024 DOI: 10.1007/s11356-021-16109-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Copper sulfate (CuSO4) is widely used in agriculture as a pesticide and foliar fertilizer. However, the possible environmental risks associated with CuSO4 use, particularly related to pollinating insects, have been poorly studied. In this study, we evaluated both lethal and sublethal effects of CuSO4 on the stingless bee Partamona helleri. Foragers were orally exposed to five concentrations of CuSO4 (5000, 1666.7, 554.2, 183.4, 58.4 μg mL-1), and the concentration killing 50% (LC50) was estimated. This concentration (142.95 μg mL-1) was subsequently used in behavioral, midgut morphology, and antioxidant activity analyses. Bee mortality increased with the ingestion of increasing concentrations of CuSO4. Ingestion at the estimated LC50 resulted in altered walking behavior and damage to the midgut epithelium and peritrophic matrix of bees. Furthermore, the LC50 increased the catalase or superoxide dismutase activities and levels of the lipid peroxidation biomarker malondialdehyde. Furthermore, the in situ detection of caspase-3 and LC3, proteins related to apoptosis and autophagy, respectively, revealed that these processes are intensified in the midgut of treated bees. These data show that the ingestion of CuSO4 can have considerable sublethal effects on the walking behavior and midgut of stingless bees, and therefore could pose potential risks to pollinators including native bees. Graphical abstract.
Collapse
Affiliation(s)
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | - Marcos Pereira Lopes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Mara Garcia Tavares
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
16
|
Erfanizadeh M, Noorafshan A, Naseh M, Karbalay-Doust S. The effects of copper sulfate on the structure and function of the rat cerebellum: A stereological and behavioral study. IBRO Neurosci Rep 2021; 11:119-127. [PMID: 34604835 PMCID: PMC8463771 DOI: 10.1016/j.ibneur.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
Copper (Cu) is a vital trace element that acts as a cofactor of proteins and enzymes in many molecular pathways including the central nervous system. The accumulation or deficiency of copper could alter neuronal function and lead to neuronal degeneration and brain dysfunction. Intake of high levels of copper can also cause copper toxicosis that affects the brain structure and function. Despite clinical and experimental data indicating the association between abnormal copper homeostasis and brain dysfunction, the effects of copper on cerebellum have remained poorly understood. Hence, this study aimed to evaluate the effects of copper sulfate on the cerebellum via stereological and behavioral methods in rats. Male rats (Sprague-Dawley) were divided to three groups. The rats in the control group orally received distilled water, while those in the Cu groups received 1 mM (159 mg/L) or 8 mM (1272 mg/L) copper sulfate by oral gavage solved in distilled water daily for 4 weeks. Then, the rotarod performance test was recorded and the cerebellum was prepared for stereological assessments. The Cu-administered rats (1 and 8 mM) exhibited a significant reduction in the total volumes of the cerebellum structures. The total number of the cells in the cerebellar cortex and deep cerebellar nuclei were significantly decreased via Cu in a dose-dependent manner. Furthermore, the length of nerve fibers and the number of spines per nerve fiber decreased significantly in the Cu groups. These changes were correlated to the animals' motor performance impairment in the rotarod test. The findings suggested that copper toxicity induced motor performance impairments in the rats, which could be attributed to its deleterious effects on the cerebellum structure.
Collapse
Affiliation(s)
- Mahboobeh Erfanizadeh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saied Karbalay-Doust
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Anatomy Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Nano-Curcumin Prevents Cardiac Injury, Oxidative Stress and Inflammation, and Modulates TLR4/NF-κB and MAPK Signaling in Copper Sulfate-Intoxicated Rats. Antioxidants (Basel) 2021; 10:antiox10091414. [PMID: 34573046 PMCID: PMC8469340 DOI: 10.3390/antiox10091414] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Copper (Cu) is essential for a plethora of biological processes; however, its high redox reactivity renders it potentially toxic. This study investigated the protective effect of curcumin (CUR) and nano-CUR (N-CUR) against Cu cardiotoxicity, emphasizing the role of oxidative stress, TLR4/NF-κB and mitogen-activated protein kinase (MAPK) signaling and cell death in rats. Rats received 100 mg/kg copper sulfate (CuSO4), a pesticide used for repelling pests, and were concurrently treated with CUR or N-CUR for 7 days. Cu caused cardiac injury manifested by elevated serum cardiac troponin I (cTnI), creatine kinase (CK)-MB, and lactate dehydrogenase (LDH), as well as histopathological alterations. Cardiac malondialdehyde (MDA), NF-κB p65, TNF-α, and IL-6 were increased, and reduced glutathione (GSH), superoxide dismutase (SOD) and catalase were decreased in Cu-treated rats. CUR and N-CUR prevented cardiac tissue injury, decreased serum cTnI, CK-MB, and LDH, and cardiac MDA, NF-κB p65, TNF-α, and IL-6, and enhanced cellular antioxidants. CUR and N-CUR downregulated TLR4 and AP-1, and decreased the phosphorylation levels of p38 MAPK, JNK, and ERK1/2. In addition, CUR and N-CUR increased cardiac Bcl-2 and BAG-1, decreased Bax and caspase-3, and prevented DNA fragmentation. In conclusion, N-CUR prevents Cu cardiotoxicity by attenuating oxidative injury, inflammatory response, and apoptosis, and modulating TLR4/NF-κB and MAPK signaling. The cardioprotective effect of N-CUR was more potent than the native form.
Collapse
|
18
|
Neuropsychiatric Manifestations of Wilson Disease: Correlation with MRI and Glutamate Excitotoxicity. Mol Neurobiol 2021; 58:6020-6031. [PMID: 34435331 DOI: 10.1007/s12035-021-02525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
This study aims to identify neuropsychiatric manifestations in neurological Wilson disease (NWD), and their correlation with MRI changes and glutamate excitotoxicity. Forty-three consecutive patients with NWD from a tertiary care teaching hospital were evaluated prospectively who fulfilled the inclusion criteria. The neuropsychiatric evaluation was done using Neuropsychiatric Inventory (NPI) battery that assesses 12 domains including delusion, hallucination, agitation/aggression, dysphoria/depression, anxiety, euphoria, apathy, disinhibition, irritability, aberrant motor activity, appetite change, and abnormal nighttime behavior. Cranial MRI was done using a 3 T machine, and locations of signal changes were noted including the total number of MRI lesions. Serum glutamate level was measured by a fluorescence microplate reader. Abnormal NPI in various domains and total NPI scores were correlated with MRI lesions, serum and urinary copper, and glutamate level. The median age of the patients was 16 years. Forty-one (48.8%) patients had cognitive impairment and 37 (86%) had movement disorder. Neurobehavioral abnormality was detected in all-commonest being agitation (90.7%) followed by appetite change (81.4%), elation (74.4%), irritability (69.8%), anxiety (67.4%), depression (65.1%), apathy (44.2%), night time abnormal behavior (32.6%), aberrant motor behavior (20.9%), delusions (16.3%), and hallucination (18.6%). The thalamic lesion was associated with depression, globus pallidus with depression and anxiety, caudate with anxiety and agitation, brainstem with irritability, and frontal cortex with apathy. Serum glutamate level was higher in NWD. NPI sum score correlated with MRI load and glutamate level. Varying severity of neurobehavioral abnormalities are common in the patients with NWD and correlate with the location of MRI lesion and glutamate level.
Collapse
|
19
|
Castanho NRCM, de Oliveira RA, Batista BL, Freire BM, Lange C, Lopes AM, Jozala AF, Grotto D. Comparative Study on Lead and Copper Biosorption Using Three Bioproducts from Edible Mushrooms Residues. J Fungi (Basel) 2021; 7:jof7060441. [PMID: 34073030 PMCID: PMC8228708 DOI: 10.3390/jof7060441] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/05/2022] Open
Abstract
Agricultural waste products can be used as biosorbents for bioremediation once they are low-cost and high-efficient in pollutants removal. Thus, waste products from mushroom farming such as cutting and substrate of Lentinula edodes (popularly known as shiitake) and Agaricus bisporus (also known as champignon) were evaluated as biosorbents for metallic contaminants copper (Cu) and lead (Pb). Shiitake and champignon stalks, and shiitake substrate (medium in which shiitake was cultivated) were dried, grounded, characterized and experimented to remove Cu and Pb from contaminated water. The Sips model was used to establish the adsorption isotherms. Regarding Cu, champignon stalks have the best removal efficiency (43%), followed by substrate and stalks of shiitake (37 and 30%, respectively). Pb removals were similar among three residues (from 72 to 83%), with the champignon stalks standing out. The maximum adsorption capacities (qmax) for Cu in shiitake and champignon stalks were 22.7 and 31.4 mg/g−1, respectively. For Pb, qmax for shiitake and champignon stalks, and shiitake substrate were 130.0, 87.0 and 84.0 mg/g−1, respectively. The surface morphology of the champignon stalks revealed an organized and continuous structure. After an interaction with metals, the stalk of champignon accumulated the metal ions into interstices. Mushroom residues showed a relevant adsorption efficiency, especially for Pb. Mushroom farming waste are a very low-cost and promising alternative for removing toxic heavy metals from aquatic environment.
Collapse
Affiliation(s)
| | - Renan A. de Oliveira
- University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (N.R.C.M.C.); (R.A.d.O.)
| | - Bruno L. Batista
- Center of Natural and Human Sciences, Federal University of ABC, Santo André 09210-170, SP, Brazil; (B.L.B.); (B.M.F.); (C.L.)
| | - Bruna M. Freire
- Center of Natural and Human Sciences, Federal University of ABC, Santo André 09210-170, SP, Brazil; (B.L.B.); (B.M.F.); (C.L.)
| | - Camila Lange
- Center of Natural and Human Sciences, Federal University of ABC, Santo André 09210-170, SP, Brazil; (B.L.B.); (B.M.F.); (C.L.)
| | - André M. Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, SP, Brazil;
| | - Angela F. Jozala
- University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (N.R.C.M.C.); (R.A.d.O.)
- Correspondence: (A.F.J.); (D.G.); Tel.: +55-15-2101-7104 (A.F.J. & D.G.); Fax: +55-15-2101-7000 (A.F.J. & D.G.)
| | - Denise Grotto
- University of Sorocaba, Sorocaba 18023-000, SP, Brazil; (N.R.C.M.C.); (R.A.d.O.)
- Correspondence: (A.F.J.); (D.G.); Tel.: +55-15-2101-7104 (A.F.J. & D.G.); Fax: +55-15-2101-7000 (A.F.J. & D.G.)
| |
Collapse
|
20
|
Savas HB, Sayar E, Kara T. Thiol Disulfide Balance Oxidative Stress and Paraoxonase 1 Activities in Children and Adolescents Aged 6-16 Years with Specific Learning Disorders. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/10837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Devi S, Kumar V, Singh SK, Dubey AK, Kim JJ. Flavonoids: Potential Candidates for the Treatment of Neurodegenerative Disorders. Biomedicines 2021; 9:biomedicines9020099. [PMID: 33498503 PMCID: PMC7909525 DOI: 10.3390/biomedicines9020099] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders, such as Parkinson's disease (PD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3464 (J.-J.K.)
| | | | | | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3464 (J.-J.K.)
| |
Collapse
|
22
|
Tinaz S, Arora J, Nalamada K, Vives-Rodriguez A, Sezgin M, Robakis D, Patel A, Constable RT, Schilsky ML. Structural and functional brain changes in hepatic and neurological Wilson disease. Brain Imaging Behav 2020; 15:2269-2282. [PMID: 33244627 DOI: 10.1007/s11682-020-00420-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Wilson disease (WD) can manifest with hepatic or neuropsychiatric symptoms. Our understanding of the in vivo brain changes in WD, particularly in the hepatic phenotype, is limited. Thirty subjects with WD and 30 age- and gender-matched controls participated. WD group underwent neuropsychiatric assessment. Unified WD Rating Scale neurological exam scores were used to determine neurological (WDN, score > 0) and hepatic-only (WDH, score 0) subgroups. All subjects underwent 3 Tesla anatomical and resting-state functional MRI. Diffusion tensor imaging (DTI) and susceptibility-weighted imaging (SWI) were performed only in the WD group. Volumetric, DTI, and functional connectivity analyses were performed to determine between-group differences. WDN and WDH groups were matched in demographic and psychiatric profiles. The entire WD group compared to controls showed significant thinning in the bilateral superior frontal cortex. The WDN group compared to control and WDH groups showed prominent structural brain changes including significant striatal and thalamic atrophy, more subcortical hypointense lesions on SWI, and diminished white matter integrity in the bilateral anterior corona radiata and corpus callosum. However, the WDH group also showed significant white matter volume loss compared to controls. The functional connectivity between the frontostriatal nodes was significantly reduced in the WDN group, whereas that of the hippocampus was significantly increased in the WDH group compared to controls. In summary, structural and functional brain changes were present even in neurologically non-manifesting WD patients in this cross-sectional study. Longitudinal brain MRI scans may be useful as biomarkers for prognostication and optimization of treatment strategies in WD.
Collapse
Affiliation(s)
- Sule Tinaz
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA. .,Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Jagriti Arora
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Keerthana Nalamada
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - Ana Vives-Rodriguez
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - Mine Sezgin
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA.,Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Daphne Robakis
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA.,Department of Neurology, State University of New York Downstate College of Medicine, Brooklyn, NY, USA
| | - Amar Patel
- Department of Neurology, Yale University School of Medicine, 15 York St, LCI Suite 710, New Haven, CT, 06510, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Michael L Schilsky
- Departments of Medicine and Surgery, Sections of Digestive Diseases and Transplant and Immunology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
23
|
Lamtai M, Zghari O, Ouakki S, Marmouzi I, Mesfioui A, El Hessni A, Ouichou A. Chronic copper exposure leads to hippocampus oxidative stress and impaired learning and memory in male and female rats. Toxicol Res 2020; 36:359-366. [PMID: 33005595 PMCID: PMC7494722 DOI: 10.1007/s43188-020-00043-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/18/2020] [Accepted: 02/18/2020] [Indexed: 01/12/2023] Open
Abstract
Environmental and occupational exposures to copper (Cu) play a pivotal role in the etiology of some neurological diseases and reduced cognitive functions. However, the precise mechanisms of its effects on cognitive function have not been yet thoroughly established. In our study, we aimed to investigate the behavior and neurochemical alterations in hippocampus of male and female rats, chronically exposed to copper chloride (CuCl2) and the possible involvement of oxidative stress. Twenty-four rats, for each gender, were divided into control and three test groups (n = 6), and were injected intraperitoneally with saline (0.9% NaCl) or CuCl2 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) for 8 weeks. After the treatment period, Y-maze test was used for the evaluation of spatial working memory and the Morris Water Maze (MWM) to test the spatial learning and memory. Biochemical determination of oxidative stress levels in hippocampus was performed. The main results of the present work are working memory impairment in spatial Y-maze which induced by higher Cu intake (1 mg/kg) in male and female rats. Also, In the MWM test, the spatial learning and memory were significantly impaired in rats treated with Cu at dose of 1 mg/kg. Additionally, markers of oxidative stress such as catalase, superoxide dismutase, lipid peroxidation products and nitric oxide levels were significantly altered following Cu treatments. These data propose that compromised behavior following Cu exposure is associated with increase in oxidative stress.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Oussama Zghari
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Sihame Ouakki
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, Rabat Instituts, Rabat, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Ali Ouichou
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| |
Collapse
|
24
|
Bauer JA, Devick KL, Bobb JF, Coull BA, Bellinger D, Benedetti C, Cagna G, Fedrighi C, Guazzetti S, Oppini M, Placidi D, Webster TF, White RF, Yang Q, Zoni S, Wright RO, Smith DR, Lucchini RG, Claus Henn B. Associations of a Metal Mixture Measured in Multiple Biomarkers with IQ: Evidence from Italian Adolescents Living near Ferroalloy Industry. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:97002. [PMID: 32897104 PMCID: PMC7478128 DOI: 10.1289/ehp6803] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Research on the health effects of chemical mixtures has focused mainly on early life rather than adolescence, a potentially important developmental life stage. OBJECTIVES We examined associations of a metal mixture with general cognition in a cross-sectional study of adolescents residing near ferromanganese industry, a source of airborne metals emissions. METHODS We measured manganese (Mn), lead (Pb), copper (Cu), and chromium (Cr) in hair, blood, urine, nails, and saliva from 635 Italian adolescents 10-14 years of age. Full-scale, verbal, and performance intelligence quotient (FSIQ, VIQ, PIQ) scores were assessed using the Wechsler Intelligence Scale for Children-III. Multivariable linear regression and Bayesian kernel machine regression (BKMR) were used to estimate associations of the metal mixture with IQ. In secondary analyses, we used BKMR's hierarchical variable selection option to inform biomarker selection for Mn, Cu, and Cr. RESULTS Median metal concentrations were as follows: hair Mn, 0.08 μ g / g ; hair Cu, 9.6 μ g / g ; hair Cr, 0.05 μ g / g ; and blood Pb, 1.3 μ g / dL . Adjusted models revealed an inverted U-shaped association between hair Cu and VIQ, consistent with Cu as an essential nutrient that is neurotoxic in excess. At low levels of hair Cu (10th percentile, 5.4 μ g / g ), higher concentrations (90th percentiles) of the mixture of Mn, Pb, and Cr (0.3 μ g / g , 2.6 μ g / dL , and 0.1 μ g / g , respectively) were associated with a 2.9 (95% CI: - 5.2 , - 0.5 )-point decrease in VIQ score, compared with median concentrations of the mixture. There was suggestive evidence of interaction between Mn and Cu. In secondary analyses, saliva Mn, hair Cu, and saliva Cr were selected as the biomarkers most strongly associated with VIQ score. DISCUSSION Higher adolescent levels of Mn, Pb, and Cr were associated with lower IQ scores, especially at low Cu levels. Findings also support further investigation into Cu as both beneficial and toxic for neurobehavioral outcomes. https://doi.org/10.1289/EHP6803.
Collapse
Affiliation(s)
- Julia A. Bauer
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Katrina L. Devick
- Division of Biomedical Statistics and Informatics, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Jennifer F. Bobb
- Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David Bellinger
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Departments of Neurology and Psychiatry, Boston Children’s Hospital, Boston, Massachusetts, USA
- Departments of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Chiara Benedetti
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Chiara Fedrighi
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | | | - Manuela Oppini
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Placidi
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Thomas F. Webster
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Neurology, Boston University Medical School, Boston, Massachusetts, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Silvia Zoni
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Roberto G. Lucchini
- Department of Medical-Surgical Specialties, Radiological Science and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Movement Disorder in Wilson Disease: Correlation with MRI and Biomarkers of Cell Injury. J Mol Neurosci 2020; 71:338-346. [DOI: 10.1007/s12031-020-01654-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
|
26
|
Kalita J, Kumar V, Misra UK, Bora HK. Movement Disorder in Copper Toxicity Rat Model: Role of Inflammation and Apoptosis in the Corpus Striatum. Neurotox Res 2019; 37:904-912. [PMID: 31811585 DOI: 10.1007/s12640-019-00140-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Abstract
The pattern of copper (Cu) toxicity in humans is similar to Wilson disease, and they have movement disorders and frequent involvement of corpus striatum. The extent of cell deaths in corpus striatum may be the basis of movement disorder and may be confirmed in the experimental study. To evaluate the extent of apoptosis and glial activation in corpus striatum following Cu toxicity in a rat model, and correlate these with spontaneous locomotor activity (SLA), six male Wistar rats were fed normal saline (group I) and another six were fed copper sulfate 100 mg/kgBWt/daily orally (group II). At 1 month, neurobehavioral studies including SLA, rotarod, and grip strength were done. Corpus striatum was removed and was subjected to glial fibrillary acidic protein (GFAP) and caspase-3 immunohistochemistry. The concentration of tissue Cu, total antioxidant capacity (TAC), glutathione (GSH), malondialdehyde (MDA), and glutamate were measured. Group II rats had higher expression of caspase-3 (Mean ± SEM 32.67 ± 1.46 vs 4.47 ± 1.08; p < 0.01) and GFAP (41.81 ± 1.68 vs 31.82 ± 1.27; p < 0.01) compared with group I. Neurobehavioral studies revealed reduced total distance traveled, time moving, the number of rearing, latency to fall on the rotarod, grip strength, and increased resting time compared with group I. The expression of GFAP and caspase-3 correlated with SLA parameters, tissue Cu, GSH, MDA, TAC, and glutamate levels. The impaired locomotor activity in Cu toxicity rats is due to apoptotic and inflammatory-mediated cell death in the corpus striatum because of Cu-mediated oxidative stress and excitotoxicity.
Collapse
Affiliation(s)
- Jayantee Kalita
- Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Raebareily Road, Lucknow, 226014, India.
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Usha K Misra
- Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Raebareily Road, Lucknow, 226014, India
| | - Himangsu K Bora
- National Laboratory Animal Centre, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
27
|
Kalita J, Kumar V, Misra UK, Parashar V, Ranjan A. Adjunctive Antioxidant Therapy in Neurologic Wilson’s Disease Improves the Outcomes. J Mol Neurosci 2019; 70:378-385. [DOI: 10.1007/s12031-019-01423-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022]
|
28
|
Squitti R, Siotto M, Assenza G, Giannantoni NM, Rongioletti M, Zappasodi F, Tecchio F. Prognostic Value of Serum Copper for Post-Stroke Clinical Recovery: A Pilot Study. Front Neurol 2018; 9:333. [PMID: 29899723 PMCID: PMC5988843 DOI: 10.3389/fneur.2018.00333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
The clinical course after ischemic stroke can vary considerably despite similar lesions and clinical status at the onset of symptoms, suggesting that individual factors modulate clinical recovery. Here, we sought to test the working hypothesis that elevated copper values provide prognostic information, and specifically predict worse clinical recovery. We further sought to support previous findings regarding metal metabolism in acute stroke. We assessed total antioxidant status, oxidative stress factors (peroxides) and metal metabolism markers (iron, copper, ceruloplasmin concentration and activity, ferritin, and transferrin) in the acute phase (2–10 days from symptom onset) in 30 patients affected by unilateral middle cerebral artery (MCA) stroke. A longitudinal assessment of clinical deficit was performed in the acute and stabilized phases (typically 6 months post-stroke) using the National Institutes of Health Stroke Scale (NIHSS). In identifying recovery-related factors, we considered effective recovery (ER), calculated as the ratio between actual NIHSS recovery and the total potential recovery. This allows an estimation of the actual recovery adjusted for the patient’s initial condition. In the acute phase, clinical severity was correlated with increased peroxide concentrations, and lower iron levels. Less successful clinical recovery was correlated with increased acute copper levels, which entered a multiple regression model that explained 24% of ER variance. These pilot data suggest that, in the acute phase of an ischemic stroke, copper may provide useful information about clinical recovery.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Giovanni Assenza
- Clinical Neurology, Campus Biomedico University of Rome, Rome, Italy
| | - Nadia M Giannantoni
- Neurocenter of Southern Switzerland, Civic Hospital, Lugano, Switzerland.,Laboratory of Electrophysiology for Translational neuroScience (LET'S), ISTC-CNR, Rome, Italy
| | - Mauro Rongioletti
- Department of Biology Medicine, Research and Development Division, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience (LET'S), ISTC-CNR, Rome, Italy.,Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
29
|
Salles FJ, Sato APS, Luz MS, Fávaro DIT, Ferreira FJ, da Silva Paganini W, Olympio KPK. The environmental impact of informal and home productive arrangement in the jewelry and fashion jewelry chain on sanitary sewer system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10701-10713. [PMID: 29392608 DOI: 10.1007/s11356-018-1357-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
The outsourcing informal home practices adopted in jewelry and fashion jewelry chain can cause toxic substance elimination in the effluents and raise a concern for its environmental impact. This study evaluates if this informal work alters the concentration of potentially toxic elements (PTEs: As, Cd, Cr total and Cr-VI, Cu, Hg, Ni, Pb, Sn, and Zn) in the sewage network. The sanitary sewage samples (n = 540) were collected in 15 manholes during two campaigns in three different areas of Limeira-SP, Brazil (industrial area, with informal work and without known industrial/informal activity). The sewage sludge (n = 12), raw (n = 12), and treated sewage (n = 12) were collected in two wastewater treatment plants (WWT: AS and TATU) operating with different treatment process. The PTE determination was performed by ICP-OES, direct mercury analysis, and UV-Vis spectroscopy. Cr-VI, Cu, Ni, and Zn were the only elements above the quantification limit. Four samples exceeded Cu or Zn values permitted to be discharged into sewage system; however, the concentration average was lower than that established by Brazilian legislation. A difference was found between values above and below the 75th percentile for campaign and total organic carbon values (p < 0.015). The AS-treated sewage presented low concentrations of Cu (p < 0.05), Zn (p = 0.02), and Ni (p = 0.01) compared to treated sewage from TATU. In the sludge samples, the Cu means exceeded the limits of the Brazilian legislation (1500 mg kg-1) and the Zn results were very close to the limits (2800 mg kg-1). The heterogeneity of the results can indicate the sporadic nature of the PTE's sanitary disposal. PTEs used in jewelry and fashion jewelry chain may precipitate on the sludge, where presented high concentrations of Cu and Zn which require controlled destination.
Collapse
Affiliation(s)
- Fernanda Junqueira Salles
- Environmental Health Department, School of Public Health, São Paulo University, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP, 01246-904, Brazil
| | - Ana Paula Sayuri Sato
- Epidemiology Departament, School of Public Health, São Paulo University, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP, 01246-904, Brazil
| | - Maciel Santos Luz
- Metallurgical Processes Laboratory, Technological Research Institute of the State of São Paulo, Sao Paulo, SP, Brazil
| | | | | | - Wanderley da Silva Paganini
- Environmental Health Department, School of Public Health, São Paulo University, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP, 01246-904, Brazil
| | - Kelly Polido Kaneshiro Olympio
- Environmental Health Department, School of Public Health, São Paulo University, Av. Dr. Arnaldo, 715, Cerqueira César, Sao Paulo, SP, 01246-904, Brazil.
| |
Collapse
|