1
|
Jiang YQ, Chen QZ, Yang Y, Zang CX, Ma JW, Wang JR, Dong YR, Zhou N, Yang X, Li FF, Bao XQ, Zhang D. White matter lesions contribute to motor and non-motor disorders in Parkinson's disease: a critical review. GeroScience 2025; 47:591-609. [PMID: 39576561 PMCID: PMC11872850 DOI: 10.1007/s11357-024-01428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/08/2024] [Indexed: 03/04/2025] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease, characterized by movement disorders and non-motor symptoms like cognitive impairment and depression. Degeneration of dopaminergic neurons in the substantia nigra and Lewy bodies have long been considered as main neuropathological changes. However, recent magnetic resonance imaging (MRI) studies have shown that white matter lesions (WMLs) were present in PD patients. WMLs are characterized by loss or impairment of myelin sheath in central nerve fibers, which are closely correlated with motor and cognitive dysfunction in PD. WMLs alterations precede nigrostriatal neuronal losses and can independently affect the clinical severity or characteristics of motor coordination in PD patients. Currently, the exact mechanism of WMLs involvement in the occurrence and development of PD remains unclear. It is speculated that WMLs may participate in the pathogenesis of PD by disrupting important connections in brain or promoting axonal degeneration. In this review, we will discuss the pathological changes and mechanisms of WMLs, elaborate the impact of WMLs on the progression of PD, clarify the importance of WMLs in PD pathogenesis, and thus provide novel targets for PD treatments.
Collapse
Affiliation(s)
- Yue-Qi Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Qiu-Zhu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Yang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Cai-Xia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Jing-Wei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Jin-Rong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Yi-Rong Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Ning Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Xing Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Fang-Fang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, People's Republic of China.
| |
Collapse
|
2
|
Semenova EI, Rudenok MM, Rybolovlev IN, Shulskaya MV, Lukashevich MV, Partevian SA, Budko AI, Nesterov MS, Abaimov DA, Slominsky PA, Shadrina MI, Alieva AK. Effects of Age and MPTP-Induced Parkinson's Disease on the Expression of Genes Associated with the Regulation of the Sleep-Wake Cycle in Mice. Int J Mol Sci 2024; 25:7721. [PMID: 39062963 PMCID: PMC11276692 DOI: 10.3390/ijms25147721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is characterized by a long prodromal period, during which patients often have sleep disturbances. The histaminergic system and circadian rhythms play an important role in the regulation of the sleep-wake cycle. Changes in the functioning of these systems may be involved in the pathogenesis of early stages of PD and may be age-dependent. Here, we have analyzed changes in the expression of genes associated with the regulation of the sleep-wake cycle (Hnmt, Hrh1, Hrh3, Per1, Per2, and Chrm3) in the substantia nigra (SN) and striatum of normal male mice of different ages, as well as in young and adult male mice with an MPTP-induced model of the early symptomatic stage (ESS) of PD. Age-dependent expression analysis in normal mouse brain tissue revealed changes in Hrh3, Per1, Per2, and Chrm3 genes in adult mice relative to young mice. When gene expression was examined in mice with the MPTP-induced model of the ESS of PD, changes in the expression of all studied genes were found only in the SN of adult mice with the ESS model of PD. These data suggest that age is a significant factor influencing changes in the expression of genes associated with sleep-wake cycle regulation in the development of PD.
Collapse
Affiliation(s)
- Ekaterina I. Semenova
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Margarita M. Rudenok
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Ivan N. Rybolovlev
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Marina V. Shulskaya
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria V. Lukashevich
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Suzanna A. Partevian
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Alexander I. Budko
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maxim S. Nesterov
- Scientific Center for Biomedical Technologies of the Federal Biomedical Agency of Russia, 119435 Krasnogorsk, Russia;
| | - Denis A. Abaimov
- Research Center of Neurology, Volokolamskoye Shosse 80, 125367 Moscow, Russia;
| | - Petr A. Slominsky
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Maria I. Shadrina
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| | - Anelya Kh. Alieva
- National Research Centre “Kurchatov Institute”, 2 Kurchatova Sq., 123182 Moscow, Russia; (M.M.R.); (I.N.R.); (M.V.S.); (M.V.L.); (S.A.P.); (A.I.B.); (P.A.S.); (M.I.S.); (A.K.A.)
| |
Collapse
|
3
|
Usenko T, Bezrukova A, Rudenok MM, Basharova K, Shadrina MI, Slominsky PA, Zakharova E, Pchelina S. Whole Transcriptome Analysis of Substantia Nigra in Mice with MPTP-Induced Parkinsonism Bearing Defective Glucocerebrosidase Activity. Int J Mol Sci 2023; 24:12164. [PMID: 37569538 PMCID: PMC10418497 DOI: 10.3390/ijms241512164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-β-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.
Collapse
Affiliation(s)
- Tatiana Usenko
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Anastasia Bezrukova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| | - Margarita M. Rudenok
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Katerina Basharova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
| | - Maria I. Shadrina
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Petr A. Slominsky
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182 Moscow, Russia; (M.M.R.); (M.I.S.); (P.A.S.)
| | - Ekaterina Zakharova
- Research Center for Medical Genetics, Laboratory of Hereditary Metabolic Diseases, 115522 Moscow, Russia
| | - Sofya Pchelina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», 188300 Gatchina, Russia; (T.U.); (A.B.); (K.B.); (S.P.)
- Department of Molecular Genetic and Nanobiological Technologies, Pavlov First Saint-Petersburg State Medical University, 197022 Saint-Petersburg, Russia
| |
Collapse
|
4
|
Yeapuri P, Olson KE, Lu Y, Abdelmoaty MM, Namminga KL, Markovic M, Machhi J, Mosley RL, Gendelman HE. Development of an extended half-life GM-CSF fusion protein for Parkinson's disease. J Control Release 2022; 348:951-965. [PMID: 35738463 DOI: 10.1016/j.jconrel.2022.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/26/2022]
Abstract
Transformation of CD4+ T cell effector to regulatory (Teff to Treg) cells have been shown to attenuate disease progression by restoring immunological balance during the onset and progression of neurodegenerative diseases. In our prior studies, we defined a safe and effective pathway to restore this balance by restoring Treg numbers and function through the daily administration of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). These studies were conducted as a proof-of-concept testing in Parkinson's disease (PD) preclinical models and early phase I clinical investigations. In both instances, they served to ameliorate disease associated signs and symptoms. However, despite the recorded efficacy, the cytokine's short half-life, low bioavailability, and injection site reactions proved to be limitations for any broader use. To overcome these limitations, mRNA lipid nanoparticles encoding an extended half-life albumin-GM-CSF fusion protein were developed for both mouse (Msa-GM-CSF) and rat (Rsa-GM-CSF). These formulations were tested for immunomodulatory and neuroprotective efficacy using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and human wild-type alpha-synuclein (αSyn) overexpression preclinical models of PD. A single dose of the extended half-life mouse and rat mRNA lipid nanoparticles generated measurable GM-CSF plasma cytokine levels up to four days. Increased Treg frequency and function were associated with a resting microglial phenotype, nigrostriatal neuroprotection, and restoration of brain tissue immune homeostasis. These findings were substantively beyond the recorded efficacy of daily recombinant wild-type GM-CSF with a recorded half-life of six hours. Mechanistic evaluation of neuropathological transcriptional profiles performed in the disease-affected nigral brain region demonstrated an upregulation of neuroprotective CREB and synaptogenesis signaling and neurovascular coupling pathways. These findings highlight the mRNA-encoded albumin GM-CSF fusion protein modification linked to improvements in therapeutic efficacy. The improvements achieved were associated with the medicine's increased bioavailability. Taken together, the data demonstrate that mRNA LNP encoding the extended half-life albumin-GM-CSF fusion protein can serve as a benchmark for PD immune-based therapeutics. This is especially notable for improving adherence of drug regimens in a disease-affected patient population with known tremors and gait abnormalities.
Collapse
Affiliation(s)
- Pravin Yeapuri
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt.
| | - Krista L Namminga
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Milica Markovic
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Howard E Gendelman
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
5
|
Expression Analysis of Genes Involved in Transport Processes in Mice with MPTP-Induced Model of Parkinson’s Disease. Life (Basel) 2022; 12:life12050751. [PMID: 35629417 PMCID: PMC9146539 DOI: 10.3390/life12050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Processes of intracellular and extracellular transport play one of the most important roles in the functioning of cells. Changes to transport mechanisms in a neuron can lead to the disruption of many cellular processes and even to cell death. It was shown that disruption of the processes of vesicular, axonal, and synaptic transport can lead to a number of diseases of the central nervous system, including Parkinson’s disease (PD). Here, we studied changes in the expression of genes whose protein products are involved in the transport processes (Snca, Drd2, Rab5a, Anxa2, and Nsf) in the brain tissues and peripheral blood of mice with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced models of PD. We detected changes in the expressions of Drd2, Anxa2, and Nsf at the earliest modeling stages. Additionally, we have identified conspicuous changes in the expression level of Anxa2 in the striatum and substantia nigra of mice with MPTP-induced models of PD in its early stages. These data clearly suggest the involvement of protein products in these genes in the earliest stages of the pathogenesis of PD.
Collapse
|
6
|
Exosomes isolated during dopaminergic neuron differentiation suppressed neuronal inflammation in a rodent model of Parkinson's disease. Neurosci Lett 2021; 771:136414. [PMID: 34954117 DOI: 10.1016/j.neulet.2021.136414] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Our previous investigation showed Wnt signal pathway was significantly activated during DA neuron differentiation of epiblast-derived stem cells. In this study, we next attempt to examine the therapeutic potential of the purified exosomes derived bone marrow mesenchymal stem cells (BMSCs) by administrating exosomes into the rat striatum of parkinson's disease (PD) animal model. Results revealed that the protein levels of interleukin (IL)-6, IL-1β, tumor necrosis factor-alpha (TNF-α), and reactive oxygen species (ROS) in the substantia nigra of PD rats were down regulated after injection of BMSC induced-Exosomes into the striatum of PD model compared to BMSC quiescent-Exosomes. In addition, the expression of ionized calcium binding adaptor molecule 1 (Iba1) mRNA was significantly decreased, while the expression of tyrosine hydroxylase (TH) mRNA was increased after injection of BMSC induced-Exosomes. Injection of BMSC induced-Exosomes into the striatum rescued the rotation behavior and climbing speed in the PD rats. More importantly, Wnt5a was found to be enriched in BMSC induced Exosomes, which could be effectively transferred to the substantia nigra of PD rats. In conclusion, these findings demonstrated that exosomes isolated during dopaminergic neuron differentiation could rescue the pathogenic features of Parkinson's disease by reshaping the inflammatory microenvironment in the substantia nigra and repairing the injury to DA nerves.
Collapse
|
7
|
Lyu Y, Huang Y, Shi G, Lei X, Li K, Zhou R, Bai L, Qin C. Transcriptome profiling of five brain regions in a 6-hydroxydopamine rat model of Parkinson's disease. CNS Neurosci Ther 2021; 27:1289-1299. [PMID: 34347369 PMCID: PMC8504527 DOI: 10.1111/cns.13702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease, and its pathogenesis is unclear. Previous studies mainly focus on the lesions of substantia nigra (SN) and striatum (Str) in PD. However, lesions are not limited. The olfactory bulb (OB), subventricular zone (SVZ), and hippocampus (Hippo) are also affected in PD. AIM To reveal gene expression changes in the five brain regions (OB, SVZ, Str, SN, and Hippo), and to look for potential candidate genes and pathways that may be correlated with the pathogenesis of PD. MATERIALS AND METHODS We established control group and 6-hydroxydopamine (6-OHDA) PD model group, and detected gene expressions in the five brain regions using RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR). We further analyzed the RNA-seq data by bioinformatics. RESULTS We identified differentially expressed genes (DEGs) in all five brain regions. The DEGs were significantly enriched in the "dopaminergic synapse" and "retrograde endocannabinoid signaling," and Gi/o-GIRK is the shared cascade in the two pathways. We further identified Ephx2, Fam111a, and Gng2 as the potential candidate genes in the pathogenesis of PD for further studies. CONCLUSION Our study suggested that gene expressions change in the five brain regions following exposure to 6-OHDA. The "dopaminergic synapse," "retrograde endocannabinoid signaling," and Gi/o-GIRK may be the key pathways and cascade of the synaptic damage in 6-OHDA PD rats. Ephx2, Fam111a, and Gng2 may play critical roles in the pathogenesis of PD.
Collapse
Affiliation(s)
- Ying Lyu
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China.,Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiying Huang
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Guiying Shi
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Xuepei Lei
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Keya Li
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ran Zhou
- Beijing City University, Beijing, China
| | - Lin Bai
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences (ILAS), Chinese Academy of Medical Sciences (CAMS) & Comparative Medical Center, Peking Union Medical College (PUMC), Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
8
|
Yang W, Hao W, Meng Z, Ding S, Li X, Zhang T, Huang W, Xu L, Zhang Y, Yang J, Gu X. Molecular Regulatory Mechanism and Toxicology of Neurodegenerative Processes in MPTP/Probenecid-Induced Progressive Parkinson's Disease Mice Model Revealed by Transcriptome. Mol Neurobiol 2021; 58:603-616. [PMID: 32997292 PMCID: PMC7843579 DOI: 10.1007/s12035-020-02128-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by a variety of unclear complex pathogenic factors. The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced progressive PD mice is a well-recognized classic model for studying PD, but the molecular toxicology of this model is still unclear. Here, for the first time, we report gradual neurodegenerative processes in MPTP/p-induced progressive PD mice model using RNA-seq. Transcriptional responses are orchestrated to regulate the expression of many genes in substantia nigra, such as Ntf3, Pitx3, Th, and Drd2, leading to the degeneration of dopaminergic neurons at last. We proposed that the established model could be divided into three phases based on their molecular toxicological features: "the stress response phase" which maintained the microenvironment homeostasis, "the pre-neurodegenerative phase" which demonstrated observed MPTP/p cytotoxicity and gradual degeneration of dopaminergic neurons, and "the neurodegenerative phase" which reflected distinct damage and dopaminergic neuron apoptotic process. Glia cells exhibited a certain protective effect on dopaminergic neurons in 3rd and 6th MPTP/p-induced cytotoxicity. But in 10th MPTP/p injection, glia cells play a promoting role in PD and tissue damages caused by oxidative stress. This study also indicated that the substantia nigra of PD mice showed unique patterns of changes at each stage. Moreover, neurotrophic signaling pathway, ECM-receptor interaction, oxidative phosphorylation, apoptosis and necroptosis were enriched at 3rd and 6th MPTP/p injection, which might be associated with the PD progress. This study provided an extensive data set of molecular toxicology for elucidating of PD progression and offered comprehensive theoretical knowledge for the development of new therapy.
Collapse
Affiliation(s)
- Weiwei Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenwen Hao
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhuo Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyan Ding
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodi Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weixiao Huang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lian Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yu Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Yang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Xiaosong Gu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
9
|
Chen H, Li X, Ma H, Zheng W, Shen X. Reduction in Nesfatin-1 Levels in the Cerebrospinal Fluid and Increased Nigrostriatal Degeneration Following Ventricular Administration of Anti-nesfatin-1 Antibody in Mice. Front Neurosci 2021; 15:621173. [PMID: 33613183 PMCID: PMC7890421 DOI: 10.3389/fnins.2021.621173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Nesfatin-1 is one of several brain-gut peptides that have a close relationship with the central dopaminergic system. Our previous studies have shown that nesfatin-1 is capable of protecting nigral dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. A recent study also revealed a reduced blood level of nesfatin-1 in patients with Parkinson’s disease (PD). The current study was designed to investigate whether reduced nesfatin-1 in cerebrospinal fluid (CSF) induces nigrostriatal system degeneration. An intra-cerebroventricular (ICV) injection technique was used to administer anti-nesfatin-1 antibody directly into the lateral ventricle of the brain. Enzyme-linked immunosorbent assay (ELISA) results showed that ICV injection of anti-nesfatin-1 antibody into the lateral ventricle of the brain once daily for 2 weeks caused a significant reduction in nesfatin-1 levels in the CSF (93.1%). Treatment with anti-nesfatin-1 antibody resulted in a substantial loss (23%) of TH-positive (TH+) dopaminergic neurons in the substantia nigra pars compacta (SNpc), as shown by immunofluorescence staining, a depletion in dopamine and its metabolites in the striatum detected by high-performance liquid chromatography (HPLC), and obvious nuclear shrinkage and mitochondrial lesions in dopaminergic neurons in the SNpc detected by transmission electron microscopy (TEM). Furthermore, the results from our Western blot and ELISA experiments demonstrated that anti-nesfatin-1 antibody injection induced an upregulation of caspase-3 activation, increased the expression of p-ERK, and elevated brain-derived neurotrophic factor (BDNF) levels in the SNpc. Taken together, these observations suggest that reduced nesfatin-1 in the brain may induce nigrostriatal dopaminergic system degeneration; this effect may be mediated via mitochondrial dysfunction-related apoptosis. Our data support a role of nesfatin-1 in maintaining the normal physiological function of the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- Huanhuan Chen
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Xuelian Li
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Hui Ma
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - Xiaoli Shen
- Department of Epidemiology and Health Statistics, Medical School of Qingdao University, Qingdao, China.,School of Health Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
10
|
Patient-Derived Induced Pluripotent Stem Cell-Based Models in Parkinson's Disease for Drug Identification. Int J Mol Sci 2020; 21:ijms21197113. [PMID: 32993172 PMCID: PMC7582359 DOI: 10.3390/ijms21197113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder characterized by loss of striatal-projecting dopaminergic neurons of the ventral forebrain, resulting in motor and cognitive deficits. Despite extensive efforts in understanding PD pathogenesis, no disease-modifying drugs exist. Recent advances in cell reprogramming technologies have facilitated the generation of patient-derived models for sporadic or familial PD and the identification of early, potentially triggering, pathological phenotypes while they provide amenable systems for drug discovery. Emerging developments highlight the enhanced potential of using more sophisticated cellular systems, including neuronal and glial co-cultures as well as three-dimensional systems that better simulate the human pathophysiology. In combination with high-throughput high-content screening technologies, these approaches open new perspectives for the identification of disease-modifying compounds. In this review, we discuss current advances and the challenges ahead in the use of patient-derived induced pluripotent stem cells for drug discovery in PD. We address new concepts implicating non-neuronal cells in disease pathogenesis and highlight the necessity for functional assays, such as calcium imaging and multi-electrode array recordings, to predict drug efficacy. Finally, we argue that artificial intelligence technologies will be pivotal for analysis of the large and complex data sets obtained, becoming game-changers in the process of drug discovery.
Collapse
|
11
|
Altinoz MA, Elmaci İ, Hacimuftuoglu A, Ozpinar A, Hacker E, Ozpinar A. PPARδ and its ligand erucic acid may act anti-tumoral, neuroprotective, and myelin protective in neuroblastoma, glioblastoma, and Parkinson's disease. Mol Aspects Med 2020; 78:100871. [PMID: 32703610 DOI: 10.1016/j.mam.2020.100871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
Abstract
In this review study, we focus on potential benefits of the transcription factor PPARδ and its ligand erucic acid (EA) in management of neuroectodermal tumors and Parkinson's Disease. PPARδ is a nuclear receptor and transcription factor that induces myelination, promotes oligodendroglial and neuronal differentiation, and possess anti-neuroinflammatory properties. While both pro-tumorigenic and anti-tumorigenic effects have been described for PPARδ, we propose that PPARδ may perform a predominantly anticancer role in tumors originating from the neuroectoderm. PPARδ ligand-activation via oleic acid and GW501516, or overexpression of PPARδ, elicits profound antitumor actions in neuroblastoma and melanoma. In glioblastomas, there is evidence indicating a differentiation failure of O2A (oligodendroglial-astrocytic biprogenitor) cells and it has been shown that EA reduced DNA synthesis in C6 rat glioblastoma spheroid cultures in clinically achievable concentrations. EA is a ω9 fatty acid which is being used in the treatment of adrenoleukodystrophy. EA is widely consumed in Asian countries via ingestion of cruciferous vegetables including mustard and rapeseed oil. EA also exerts antioxidant and anti-inflammatory activities. Recent studies of Parkinson's Disease (PD) have implicated demyelination, white matter pathology, oligodendroglial injury, and neural inflammation in the underlying pathophysiology. In the rotenone PD model in rats, PPARδ ligand GW501516 saves dopaminergic neurons during injury induced by chemical toxins and improves behavioral functioning in PD via alleviation of endoplasmic reticulum stress. PPARδ agonists also reduce the NLRP3 inflammasome-associated neural inflammation in the MPTP PD model in mice. Herein, we propose that PPARδ and its ligand EA highly deserve to be studied in animal models of neuroblastoma, glioblastoma, and PD.
Collapse
Affiliation(s)
- Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey.
| | - İlhan Elmaci
- Department of Neurosurgery, Acibadem Hospital, Maslak, Istanbul, Turkey
| | | | - Alp Ozpinar
- Department of Neurosurgery, Pittsburgh University, United States
| | - Emily Hacker
- Department of Neurosurgery, Pittsburgh University, United States
| | - Aysel Ozpinar
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| |
Collapse
|
12
|
Transcriptomic profiling of differentially expressed genes and related pathways in different brain regions in Parkinson’s disease. Neurosci Lett 2020; 732:135074. [DOI: 10.1016/j.neulet.2020.135074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
|
13
|
Rudenok M, Alieva A, Starovatykh J, Nesterov M, Stanishevskaya V, Kolacheva A, Ugryumov M, Slominsky P, Shadrina M. Expression analysis of genes involved in mitochondrial biogenesis in mice with MPTP-induced model of Parkinson's disease. Mol Genet Metab Rep 2020; 23:100584. [PMID: 32280590 PMCID: PMC7139113 DOI: 10.1016/j.ymgmr.2020.100584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/23/2023] Open
Abstract
The mitochondrion is an extremely important organelle that performs various functions in the cell: e.g. energy production, regulation of respiration processes and maintenance of calcium homeostasis. Disruption of the biogenesis and functioning of this organelle can lead to cell damage and cell death. Mitochondrial dysfunction has been shown to possibly be involved in the pathogenesis of Parkinson's disease. However, the role of genes associated with mitochondrial biogenesis in the early stages of disease remains poorly understood. The objective of the present study was to analyze changes in the expression of activator (Nrf1, Ppargc1a, Prkn, and Kif1b) and repressor (Zfp746 and Mybbp1a) genes of mitochondrial biogenesis in the early stages of the development of neurodegeneration in an MPTP-induced model of presymptomatic and early symptomatic stages of PD. Statistically significant changes in expression at the mRNA level were detected for all studied genes. There was mainly a decrease in the expression of activator genes (Nrf1, Ppargc1a, Prkn, and Kif1b) at all stages of neurodegeneration, which seemed to be associated with impaired mitochondrial biogenesis and the development of neurodegeneration processes. A predominant decrease in the expression was detected for the Zfp746 and Mybbp1a repressor genes of mitochondrial biogenesis. However, in this case, it was associated with the emergence of compensatory mechanisms during the development of Parkinson's disease. The largest number of statistically significant changes was detected for the Nrf1 activator gene and the Mybbp1a repressor gene. Apparently, these two genes play the most important role in this disease.
Collapse
Affiliation(s)
- M.M. Rudenok
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - A.Kh. Alieva
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - J.S. Starovatykh
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - M.S. Nesterov
- Bioanalytical Research Laboratory, Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russia
| | - V.A. Stanishevskaya
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - A.A. Kolacheva
- Laboratory of Nervous and Neuro-endocrine Regulations, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - M.V. Ugryumov
- Laboratory of Nervous and Neuro-endocrine Regulations, Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - P.A. Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - M.I. Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Jia E, Zhou Y, Liu Z, Wang L, Ouyang T, Pan M, Bai Y, Ge Q. Transcriptomic Profiling of Circular RNA in Different Brain Regions of Parkinson's Disease in a Mouse Model. Int J Mol Sci 2020; 21:ijms21083006. [PMID: 32344560 PMCID: PMC7216060 DOI: 10.3390/ijms21083006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and although many studies have been done on this disease, the underlying mechanisms are still poorly understood and further studies are warranted. Therefore, this study identified circRNA expression profiles in the cerebral cortex (CC), hippocampus (HP), striatum (ST), and cerebellum (CB) regions of the 1-methyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model using RNA sequencing (RNA-seq), and differentially expressed circRNA were validated using reverse transcription quantitative real-time PCR (qRT-PCR). Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and competing endogenous RNA (ceRNA) network analyses were also performed to explore the potential function of circRNAs. The results show that, compared with the control group, 24, 66, 71, and 121 differentially expressed circRNAs (DE-circRNAs) were found in the CC, HP, ST, and CB, respectively. PDST vs. PDCB, PDST vs. PDHP, and PDCB vs. PDHP groups have 578, 110, and 749 DE-circRNAs, respectively. Then, seven DE-cirRNAs were selected for qRT-PCR verification, where the expressions were consistent with the sequencing analysis. The GO and KEGG pathway analyses revealed that these DE-circRNAs participate in several biological functions and signaling pathways, including glutamic synapse, neuron to neuron synapse, cell morphogenesis involved in neuron differentiation, Parkinson's disease, axon guidance, cGMP-PKG signaling pathway, and PI3K-Akt signaling pathway. Furthermore, the KEGG analysis of the target genes predicted by DE-circRNAs indicated that the target genes predicted by mmu_circRNA_0003292, mmu_circRNA_0001320, mmu_circRNA_0005976, and mmu_circRNA_0005388 were involved in the PD-related pathway. Overall, this is the first study on the expression profile of circRNAs in the different brain regions of PD mouse model. These results might facilitate our understanding of the potential roles of circRNAs in the pathogenesis of PD. Moreover, the results also indicate that the mmu_circRNA_0003292-miRNA-132-Nr4a2 pathway might be involved in the regulation of the molecular mechanism of Parkinson's disease.
Collapse
Affiliation(s)
- Erteng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (E.J.); (Y.Z.); (Z.L.); (L.W.); (T.O.); (Y.B.)
| | - Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (E.J.); (Y.Z.); (Z.L.); (L.W.); (T.O.); (Y.B.)
| | - Zhiyu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (E.J.); (Y.Z.); (Z.L.); (L.W.); (T.O.); (Y.B.)
| | - Liujing Wang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (E.J.); (Y.Z.); (Z.L.); (L.W.); (T.O.); (Y.B.)
| | - Tinglan Ouyang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (E.J.); (Y.Z.); (Z.L.); (L.W.); (T.O.); (Y.B.)
| | - Min Pan
- School of Medicine, Southeast University, Nanjing 210097, China;
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (E.J.); (Y.Z.); (Z.L.); (L.W.); (T.O.); (Y.B.)
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (E.J.); (Y.Z.); (Z.L.); (L.W.); (T.O.); (Y.B.)
- Correspondence: ; Tel.: +86-25-8379-2396
| |
Collapse
|
15
|
Rudenok MM, Alieva AK, Nikolaev MA, Kolacheva AA, Ugryumov MV, Pchelina SN, Slominsky PA, Shadrina MI. Possible Involvement of Genes Related to Lysosomal Storage Disorders in the Pathogenesis of Parkinson’s Disease. Mol Biol 2019. [DOI: 10.1134/s002689331901014x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|