1
|
Lemche E, Hortobágyi T, Kiecker C, Turkheimer F. Neuropathological links between T2DM and LOAD: systematic review and meta-analysis. Physiol Rev 2025; 105:1429-1486. [PMID: 40062731 DOI: 10.1152/physrev.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 04/16/2025] Open
Abstract
Recent decades have described parallel neuropathological mechanisms increasing the risk for developing late-onset Alzheimer's dementia (LOAD) in type 2 diabetes mellitus (T2DM); however, still little is known of the role of diabetic encephalopathy and brain atrophy in LOAD. The aim of this systematic review is to provide a comprehensive view on diabetic encephalopathy/cerebral atrophy, taking into account neuroimaging data, neuropathology, metabolic and endocrine mechanisms, amyloid formation, brain perfusion impairments, neuroimmunology, and inflammasome activation. Key switches were identified, to further meta-analyze genomic candidate loci and epigenetic modifications. For the qualitative meta-analysis of genomic bases extracted, human linkage studies were examined; for epigenetic mechanisms, data from both human and animal studies are described. For the systematic review of pathophysiological mechanisms, 1,259 publications were evaluated and 93 gene loci extracted for candidate risk linkages. Sixty-six publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight the insulin signaling system, vascular markers, inflammation and inflammasome pathways, amylin interactions, and glycosylation mechanisms. The protocol was registered with PROSPERO (ID: CRD42023440535).
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Qi G, Tang H, Hu J, Kang S, Qin S. Potential role of tanycyte-derived neurogenesis in Alzheimer's disease. Neural Regen Res 2025; 20:1599-1612. [PMID: 38934388 PMCID: PMC11688558 DOI: 10.4103/nrr.nrr-d-23-01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 04/17/2024] [Indexed: 06/28/2024] Open
Abstract
Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. The precise coordination of the gene networks controlling neurogenesis in naive and mature tanycytes is essential for maintaining homeostasis in adulthood. However, our understanding of the molecular mechanisms and signaling pathways that govern the proliferation and differentiation of tanycytes into neurons remains limited. This article aims to review the recent advancements in research into the mechanisms and functions of tanycyte-derived neurogenesis. Studies employing lineage-tracing techniques have revealed that the neurogenesis specifically originating from tanycytes in the hypothalamus has a compensatory role in neuronal loss and helps maintain energy homeostasis during metabolic diseases. Intriguingly, metabolic disorders are considered early biomarkers of Alzheimer's disease. Furthermore, the neurogenic potential of tanycytes and the state of newborn neurons derived from tanycytes heavily depend on the maintenance of mild microenvironments, which may be disrupted in Alzheimer's disease due to the impaired blood-brain barrier function. However, the specific alterations and regulatory mechanisms governing tanycyte-derived neurogenesis in Alzheimer's disease remain unclear. Accumulating evidence suggests that tanycyte-derived neurogenesis might be impaired in Alzheimer's disease, exacerbating neurodegeneration. Confirming this hypothesis, however, poses a challenge because of the lack of long-term tracing and nucleus-specific analyses of newborn neurons in the hypothalamus of patients with Alzheimer's disease. Further research into the molecular mechanisms underlying tanycyte-derived neurogenesis holds promise for identifying small molecules capable of restoring tanycyte proliferation in neurodegenerative diseases. This line of investigation could provide valuable insights into potential therapeutic strategies for Alzheimer's disease and related conditions.
Collapse
Affiliation(s)
- Guibo Qi
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Tang
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianian Hu
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siying Kang
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Mondal R, Deb S, Chowdhury D, Sarkar S, Guha Roy A, Shome G, Sarkar V, Lahiri D, Benito-León J. Neurometabolic substrate transport across brain barriers in diabetes mellitus: Implications for cognitive function and neurovascular health. Neurosci Lett 2024; 843:138028. [PMID: 39461703 DOI: 10.1016/j.neulet.2024.138028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Neurometabolic homeostasis in the brain depends on the coordinated transport of glucose and other essential substrates across brain barriers, primarily the blood-brain barrier and the blood-cerebrospinal fluid barrier. In type 2 diabetes mellitus (T2DM), persistent hyperglycemia disrupts these processes, leading to neurovascular dysfunction and cognitive impairment. This review examines how T2DM alters glucose and neurometabolite transport, emphasizing the role of glucose transporters and the astrocyte-neuron lactate shuttle in maintaining cerebral energy balance. Reduced expression of glucose transporters and impaired neurovascular coupling are key contributors to cognitive decline in T2DM. Additionally, the review highlights insulin's pivotal role in the hippocampus, where it enhances neuro-glial coupling and modulates astrocyte glucose uptake to support neuronal energy demands. Synthesizing current findings, we underscore the importance of therapeutic strategies aimed at correcting glucose transport dysregulation to alleviate diabetes-associated cognitive decline.
Collapse
Affiliation(s)
- Ritwick Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata, India.
| | - Shramana Deb
- Department of Stroke Medicine, Institute of Neuroscience, Kolkata, India.
| | - Dipanjan Chowdhury
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata, India.
| | - Shramana Sarkar
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata, India.
| | - Aakash Guha Roy
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata, India.
| | - Gourav Shome
- Division of Molecular Medicine, Bose Institute, Kolkata, India.
| | - Vramanti Sarkar
- SN Pradhan Center for Neuroscience, University of Calcutta, Kolkata, India.
| | - Durjoy Lahiri
- Division of Neurology, Department of Medicine, Queen's University, Kingston, Canada.
| | - Julián Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Medicine, Complutense University, Madrid, Spain.
| |
Collapse
|
4
|
Qi G, Tang H, Gong P, Liu Y, He C, Hu J, Kang S, Chen L, Qin S. Sex-specific hypothalamic neuropathology and glucose metabolism in an amyloidosis transgenic mouse model of Alzheimer's disease. Cell Biosci 2024; 14:120. [PMID: 39272160 PMCID: PMC11395863 DOI: 10.1186/s13578-024-01295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Amyloid toxicity and glucose metabolic disorders are key pathological features during the progression of Alzheimer's disease (AD). While the hypothalamus plays a crucial role in regulating systemic energy balance, the distribution of amyloid plaques in the preoptic, anterior, tuberal, and mammillary regions of the hypothalamus in AD mice, particularly across both sexes, remains largely unclear. Our ongoing research aims to explore hypothalamic neuropathology and glucose metabolic disturbances in a well-described APP/PS1 mouse model of AD. RESULTS Immunocytochemical staining revealed that Old-AD-Female mice exhibited a greater hypothalamic Amyloid β (Aβ) burden than their Old-AD-Male counterparts, with the mammillary bodies showing the most severe accumulation. Analysis of ionized calcium binding adaptor molecule 1 (IBA1) immunoreactivity and Iba1 mRNA indicated differential microgliosis based on sex, while tanycytic territory and ZO-1 tight junction protein expression remained stable in AD mice. Moreover, sex-specific peripheral glucose metabolic parameters (random and fasting blood glucose) seemed to be exacerbated by age. Old AD mice of both sexes exhibited limited hypothalamic activation (c-Fos + cells) in response to blood glucose fluctuations. Hypothalamic Glut 1 expression decreased in young but increased in old female AD mice compared with age-matched male AD mice. Pearson correlation analysis further supported a negative correlation between hypothalamic Aβ load and random blood glucose in old AD groups of both genders, shedding light on the mechanisms underlying this amyloidosis mouse model. CONCLUSION Aged APP/PS1 mice exhibit sex-specific hypothalamic neuropathology and differential glucose metabolism, highlighting distinct pathological mechanisms within each gender.
Collapse
Affiliation(s)
- Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Han Tang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenzhao He
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianian Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Siying Kang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Liang Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Esteve NA, Rogers DJ, Stagray JA, Mayeux H, Nora G, Huval L, Smith KM. Tanycyte radial morphology and proliferation are influenced by fibroblast growth factor receptor 1 and high-fat diet. Eur J Neurosci 2024; 60:5000-5018. [PMID: 39087621 DOI: 10.1111/ejn.16473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/19/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a widely expressed, membrane-bound receptor that transduces extracellular signals from FGF ligands and cadherins, resulting in intracellular signals influencing cellular growth, proliferation, calcium, and transcription. FGF21 and FGF2 stimulate the proliferation of tanycytes, specialized radial astrocytes along the ventricle of the hypothalamus, and influence metabolism. Tanycytes are in a privileged position between the cerebrospinal fluid, the blood supply in the median eminence, and neurons within nuclei in the hypothalamus. The effect of FGFR1 signaling upon tanycyte morphology and metabolism was examined in adult mice with conditional deletion of the Fgfr1 gene using the Fgfr1flox/flox; Nestin-Cre+ line. Loss of Fgfr1 resulted in shorter β tanycytes along the medial eminence. Control Fgfr1flox/flox littermates and Fgfr1flox/flox, Nestin-Cre+ (Fgfr1 cKO) knockout mice were placed on a 1-month long high-fat diet (HFD) or a normal-fat diet (NFD), to investigate differences in body homeostasis and tanycyte morphology under an obesity inducing diet. We found that FGFR1 is a vital contributor to tanycyte morphology and quantity and that it promotes stem cell maintenance in the hypothalamus and hippocampal dentate gyrus. The Fgfr1 cKO mice developed impaired tolerance to a glucose challenge test on a HFD without gaining more weight than control mice. The combination of HFD and loss of Fgfr1 gene resulted in altered β and α tanycyte morphology, and reduced stem cell numbers along the third ventricle of the hypothalamus and hippocampus.
Collapse
Affiliation(s)
- N Alex Esteve
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Deborah J Rogers
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Jacob A Stagray
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Holly Mayeux
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Glenae Nora
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Luke Huval
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| | - Karen Müller Smith
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisianafs, USA
| |
Collapse
|
6
|
Revealing genetic links of Type 2 diabetes that lead to the development of Alzheimer's disease. Heliyon 2022; 9:e12202. [PMID: 36711310 PMCID: PMC9876837 DOI: 10.1016/j.heliyon.2022.e12202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Background A factor leading to Alzheimer's Disease (AD), portrayed by peripheral insulin resistance, is Type 2 diabetes mellitus (T2D). The likelihood of T2D cases would be at boosted danger in alternating AD cases has severe social consequences. Several genes have been detected via gene expression profiling or different techniques; despite the consideration of the utility of numerous of these genes stays insufficient. Methods This project is designed to uncover the mutual genomics motifs between AD and T2D via non-negative matrix factorization (NMF) of differentially expressed genes (DEGs) of T2D Mellitus of human cortical neurons of the neurovascular unit gene expression data. A rank factorization value is calculated by employing the combination of the NMF model with the unit invariant knee (UIK) point method. The metagenes are further determined by remarking the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology (GO) enrichment tools. In this study, the most highly expressed genes of metagenes are subjected to protein-protein interaction (PPI) network study to discover the most significant biomarkers of T2D Mellitus in the ageing brain. Results We screened the most important shared genes (CDKN1A, COL22A1, EIF4A, GFAP, SLC1A1, and VIM) and essential human molecular pathways that motivate these diseases. The study aimed to validate the most significant hub genes using network-based methods which detected the corresponding relationship between AD and T2D. Conclusions Using in silico tools, the computational pipeline has broadly examined transformed pathways and discovered promising biomarkers and drug targets. We validated the most significant hub genes using network-based methods which detected the corresponding relationship between AD and T2D. These consequences on brain cells hypothetically reserve to diabetic Alzheimer's so-called type 3 diabetes (T3D) and may offer promising methodologies for curative intrusion.
Collapse
|
7
|
Voronkov DN, Stavrovskaya AV, Gushchina AS, Olshansky AS. Alterations in tanycytes and related cell populations of arcuate nucleus in streptozotocin-induced Alzheimer disease model. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is assumed that dysfunction of tanycytes could be one of the components of pathogenesis of both Alzheimer disease and type 2 diabetes mellitus. The study was aimed to assess alterations in the tanycyte morphology in the Alzheimer disease model. The 3 mg/kg streptozotocin dose was injected in the lateral ventricles of Wistar rats in order to model the Alzheimer disease. Alterations in hypothalamic tanycytes were assessed 2 weeks, 4 weeks, 3 months and 6 months after administration of the toxin. Immunohistochemistry was used to identify the protein markers of tanycytes (vimentin, nestin), astrocytes (GFAP, glutamine synthetase) and neurons (HuC/D), as well as to assess cell proliferation (with the use of Ki67 protein) and mitochondrial alterations (mitochondrial complex IV, PGC1a). Administration of streptozotocin lead to β-amyloid accumulation in hypothalamus and ventricular enlargement (p < 0.001). Streptozotocin damaged both α1/α2 tanycytes and β1 tanycytes. The intensity of vimentin staining in α1/α2 tanycytes decreased by week 4 (p = 0.003), and in β1 tanycytes it decreased in three months (p < 0.001). The same trend was observed for nestin. The number of Ki67+ nuclei decreased (p < 0.05), and the expression of proteins associated with mitochondria changed. The density of hypothalamic tanycytes decreased by week 4 after administration of the toxin. Moreover, astrocyte activation was revealed. However, no prominent damage to both astrocytes and neurons was observed within four weeks after administration of streptozotocin. The revealed high tanycyte vulnerability to streptozotocin is in line with the hypothesis of the role of damage to hypothalamic structures in both local and systemic metabolic disorders occurring in the Alzheimer disease models.
Collapse
Affiliation(s)
- DN Voronkov
- Research Center of Neurology, Moscow, Russia
| | | | | | | |
Collapse
|
8
|
GW9508 ameliorates cognitive dysfunction via the external treatment of encephalopathy in Aβ 1-42 induced mouse model of Alzheimer's disease. Eur J Pharmacol 2021; 909:174362. [PMID: 34297968 DOI: 10.1016/j.ejphar.2021.174362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023]
Abstract
The functions and mechanisms of GPR40 receptor to ameliorating the Alzheimer's disease (AD) by external treatment of encephalopathy remain unknown. In present study, the typical Aβ1-42 induced mice model was applied to explore the functions and mechanisms of GPR40 receptor by external treatment of encephalopathy in AD. GPR40 agonist GW9508 and antagonist GW1100 were given by i.g injection to activate/inhibit the GPR40 receptor respectively in the gut of AD mouse which illustrated the function and mechanism of GPR40 receptor in ameliorating AD symptoms by external treatment of encephalopathy. A series of behavioral experiments were used to investigate the cognitive function and memory ability of mice, while molecular biology experiments such as Western blot, ELISA, flow cytometry were used to detect the corresponding changes of signaling pathways. The results revealed that intragastric administrated GW9508 could significantly ameliorate cognitive deficits of AD mouse, up-regulate the expression levels of gut-brain peptides both in blood circulation and hypothalamus thus up-regulate the expression levels of α-MSH in hypothalamus, while the negative autophagy-related proteins and inflammation-related proteins were down-regulated correspondingly. Meanwhile, GW9508 could also inhibit the pathological process of neuroinflammation in microglia. GW1100 reversed the effects of GW9508 significantly. These results suggested that GPR40 was an underlying therapeutic target for the external treatment of encephalopathy related to AD and GPR40 agonist could be explored as the emerging AD therapeutic drug.
Collapse
|
9
|
Kantzer CG, Parmigiani E, Cerrato V, Tomiuk S, Knauel M, Jungblut M, Buffo A, Bosio A. ACSA-2 and GLAST classify subpopulations of multipotent and glial-restricted cerebellar precursors. J Neurosci Res 2021; 99:2228-2249. [PMID: 34060113 PMCID: PMC8453861 DOI: 10.1002/jnr.24842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The formation of the cerebellum is highly coordinated to obtain its characteristic morphology and all cerebellar cell types. During mouse postnatal development, cerebellar progenitors with astroglial‐like characteristics generate mainly astrocytes and oligodendrocytes. However, a subset of astroglial‐like progenitors found in the prospective white matter (PWM) produces astroglia and interneurons. Characterizing these cerebellar astroglia‐like progenitors and distinguishing their developmental fates is still elusive. Here, we reveal that astrocyte cell surface antigen‐2 (ACSA‐2), lately identified as ATPase, Na+/K+ transporting, beta 2 polypeptide, is expressed by glial precursors throughout postnatal cerebellar development. In contrast to common astrocyte markers, ACSA‐2 appears on PWM cells but is absent on Bergmann glia (BG) precursors. In the adult cerebellum, ACSA‐2 is broadly expressed extending to velate astrocytes in the granular layer, white matter astrocytes, and to a lesser extent to BG. Cell transplantation and transcriptomic analysis revealed that marker staining discriminates two postnatal progenitor pools. One subset is defined by the co‐expression of ACSA‐2 and GLAST and the expression of markers typical of parenchymal astrocytes. These are PWM precursors that are exclusively gliogenic. They produce predominantly white matter and granular layer astrocytes. Another subset is constituted by GLAST positive/ACSA‐2 negative precursors that express neurogenic and BG‐like progenitor genes. This population displays multipotency and gives rise to interneurons besides all glial types, including BG. In conclusion, this work reports about ACSA‐2, a marker that in combination with GLAST enables for the discrimination and isolation of multipotent and glia‐committed progenitors, which generate different types of cerebellar astrocytes.
Collapse
Affiliation(s)
- Christina Geraldine Kantzer
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany.,Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.,Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Stefan Tomiuk
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Michail Knauel
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Andreas Bosio
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
10
|
Kiper K, Freeman JL. Use of Zebrafish Genetic Models to Study Etiology of the Amyloid-Beta and Neurofibrillary Tangle Pathways in Alzheimer's Disease. Curr Neuropharmacol 2021; 20:524-539. [PMID: 34030617 DOI: 10.2174/1570159x19666210524155944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/09/2021] [Accepted: 05/16/2021] [Indexed: 11/22/2022] Open
Abstract
The prevalence of neurodegenerative diseases is increasing globally, with an imperative need to identify and expand the availability of pharmaceutical treatment strategies. Alzheimer's disease is the most common neurodegenerative disease for which there is no cure or has limited treatments. Rodent models are primarily used in Alzheimer's disease research to investigate causes, pathology, molecular mechanisms, and pharmaceutical therapies. However, there is a lack of a comprehensive understanding of Alzheimer's disease causes, pathogenesis, and optimal treatments due in part to some limitations of using rodents, including higher economic cost, which can influence sample size and ultimately statistical power. It is necessary to expand our animal model toolbox to provide alternative strategies in Alzheimer's disease research. The zebrafish application in neurodegenerative disease research and neuropharmacology is greatly expanding due to several vital strengths spanning lower economic costs, the smaller size of the organism, a sequenced characterized genome, and well described anatomical structures. These characteristics are coupled to the conserved molecular function and disease pathways in humans. The existence of orthologs for genes associated with Alzheimer's disease in zebrafish is also confirmed. While wild-type zebrafish appear to lack some of the neuropathological features of Alzheimer's disease, the advent of genetic editing technologies has expanded evaluation of the amyloid and neurofibrillary tangle hypotheses using the zebrafish and exploration of pharmaceutical molecular targets. An overview of how genetic editing technologies are being used with the zebrafish to create models to investigate the causes, pathology, molecular mechanisms, and pharmaceutical targets of Alzheimer's disease is detailed.
Collapse
Affiliation(s)
- Keturah Kiper
- School of Health Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
11
|
Hayden MR, Banks WA. Deficient Leptin Cellular Signaling Plays a Key Role in Brain Ultrastructural Remodeling in Obesity and Type 2 Diabetes Mellitus. Int J Mol Sci 2021; 22:5427. [PMID: 34063911 PMCID: PMC8196569 DOI: 10.3390/ijms22115427] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
The triad of obesity, metabolic syndrome (MetS), Type 2 diabetes mellitus (T2DM) and advancing age are currently global societal problems that are expected to grow over the coming decades. This triad is associated with multiple end-organ complications of diabetic vasculopathy (maco-microvessel disease), neuropathy, retinopathy, nephropathy, cardiomyopathy, cognopathy encephalopathy and/or late-onset Alzheimer's disease. Further, obesity, MetS, T2DM and their complications are associated with economical and individual family burdens. This review with original data focuses on the white adipose tissue-derived adipokine/hormone leptin and how its deficient signaling is associated with brain remodeling in hyperphagic, obese, or hyperglycemic female mice. Specifically, the ultrastructural remodeling of the capillary neurovascular unit, brain endothelial cells (BECs) and their endothelial glycocalyx (ecGCx), the blood-brain barrier (BBB), the ventricular ependymal cells, choroid plexus, blood-cerebrospinal fluid barrier (BCSFB), and tanycytes are examined in female mice with impaired leptin signaling from either dysfunction of the leptin receptor (DIO and db/db models) or the novel leptin deficiency (BTBR ob/ob model).
Collapse
Affiliation(s)
- Melvin R. Hayden
- Departments of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, One Hospital Drive, Columbia, MO 65212, USA;
| | - William A. Banks
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, 1660 S. Columbian Way, 810C/Bldg 1, Seattle, WA 98108, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98108, USA
| |
Collapse
|
12
|
Ryu JC, Zimmer ER, Rosa-Neto P, Yoon SO. Consequences of Metabolic Disruption in Alzheimer's Disease Pathology. Neurotherapeutics 2019; 16:600-610. [PMID: 31270743 PMCID: PMC6694332 DOI: 10.1007/s13311-019-00755-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive disease that slowly destroys cognitive function, such as thinking, remembering, and reasoning, to a level that one cannot carry out a daily living. As people live longer, the risk of developing AD has increased to 1 in 10 among people who are older than 65 and to almost 1 in 2 among those who are older than 85 according to a 2019 Alzheimer's Association report. As a most common cause of dementia, AD accounts for 60-80% of all dementia cases. AD is characterized by amyloid plaques and neurofibrillary tangles, composed of extracellular aggregates of amyloid-β peptides and intracellular aggregates of hyperphosphorylated tau, respectively. Besides plaques and tangles, AD pathology includes synaptic dysfunction including loss of synapses, inflammation, brain atrophy, and brain hypometabolism, all of which contribute to progressive cognitive decline. Recent genetic studies of sporadic cases of AD have identified a score of risk factors, as reported by Hollingworth et al. (Nat Genet 43:429-435, 2001) and Lambert et al. (Nat Genet 45:1452-1458, 2013). Of all these genes, apolipoprotein E4 (APOE4) still presents the biggest risk factor for sporadic cases of AD, as stated in Saunders et al. (Neurology 43:1467-1472, 1993): depending on whether you have 1 or 2 copies of APOE4 allele, the risk increases from 3- to 12-fold, respectively, in line with Genin et al. (Mol Psychiatry 16:903-907, 2011). Besides these genetic risk factors, having type 2 diabetes (T2D), a chronic metabolic disease, is known to increase the AD risk by at least 2-fold when these individuals age, conforming to Sims-Robinson et al. (Nat Rev Neurol 6:551-559, 2010). Diabetes is reaching a pandemic scale with over 422 million people diagnosed worldwide in 2014 according to World Health Organization. Although what proportion of these diabetic patients develop AD is not known, even if 10% of diabetic patients develop AD later in their life, it would double the number of AD patients in the world. Better understanding between T2D and AD is of paramount of importance for the future. The goal of this review is to examine our current understanding on metabolic dysfunction in AD, so that a potential target can be identified in the near future.
Collapse
Affiliation(s)
- J C Ryu
- Department of Biological Chemistry & Pharmacology, Ohio State University, Columbus, OH, USA
| | - E R Zimmer
- Department of Pharmacology, UFRGS, Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - P Rosa-Neto
- Montreal Neurological Institute, Montreal, Canada
| | - S O Yoon
- Department of Biological Chemistry & Pharmacology, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Raikwar SP, Thangavel R, Dubova I, Ahmed ME, Selvakumar PG, Kempuraj D, Zaheer S, Iyer S, Zaheer A. Neuro-Immuno-Gene- and Genome-Editing-Therapy for Alzheimer's Disease: Are We There Yet? J Alzheimers Dis 2018; 65:321-344. [PMID: 30040732 PMCID: PMC6130335 DOI: 10.3233/jad-180422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a highly complex neurodegenerative disorder and the current treatment strategies are largely ineffective thereby leading to irreversible and progressive cognitive decline in AD patients. AD continues to defy successful treatment despite significant advancements in the field of molecular medicine. Repeatedly, early promising preclinical and clinical results have catapulted into devastating setbacks leading to multi-billion dollar losses not only to the top pharmaceutical companies but also to the AD patients and their families. Thus, it is very timely to review the progress in the emerging fields of gene therapy and stem cell-based precision medicine. Here, we have made sincere efforts to feature the ongoing progress especially in the field of AD gene therapy and stem cell-based regenerative medicine. Further, we also provide highlights in elucidating the molecular mechanisms underlying AD pathogenesis and describe novel AD therapeutic targets and strategies for the new drug discovery. We hope that the quantum leap in the scientific advancements and improved funding will bolster novel concepts that will propel the momentum toward a trajectory leading to a robust AD patient-specific next generation precision medicine with improved cognitive function and excellent life quality.
Collapse
Affiliation(s)
- Sudhanshu P. Raikwar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Ramasamy Thangavel
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Iuliia Dubova
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Pushpavathi Govindhasamy Selvakumar
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar Iyer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| | - Asgar Zaheer
- Department of Neurology, Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- U.S. Department of Veterans Affairs, Harry S. Truman Memorial Veteran’s Hospital, Columbia, MO, USA
| |
Collapse
|