1
|
Li Z, Yu H, Wang Z, Duan H, Li M, Liao J, Yang L. Recent advances in nanotechnology for repairing spinal cord injuries. Biomaterials 2025; 323:123422. [PMID: 40403446 DOI: 10.1016/j.biomaterials.2025.123422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/07/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Spinal cord injury (SCI) remains a formidable clinical challenge with limited therapeutic options. Recent advances in nanotechnology have introduced paradigm-shifting strategies that transcend the limitations of traditional treatments by offering precision, controllability, and multifunctionality in modulating the hostile post-injury microenvironment. This review systematically summarizes nanotechnology-based therapeutic approaches for SCI, including cell-based nanotherapeutics, nanogels/hydrogels, nano-engineered materials, and combinatorial strategies. We emphasize the synergistic design of multifunctional nanoplatforms that integrate neuroprotection, immune modulation, antioxidative capacity, and axonal regeneration within a single system. Special attention is given to microenvironment-responsive smart materials capable of dynamic therapeutic delivery in response to pathological cues. We critically analyze the challenges of clinical translation, such as the need for standardized safety evaluation and personalized therapeutic dosing, and explore emerging solutions including AI-driven nanocarrier design and organoid-based validation. By integrating interdisciplinary innovations, nanotherapies represent an irreplaceable therapeutic paradigm with the potential to achieve spatiotemporal precision and sustained regenerative support for SCI repair.
Collapse
Affiliation(s)
- Zhipeng Li
- The First Affiliated Hospital of China Medical University, Liaoning, 110001, China
| | - Honghao Yu
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Zhibin Wang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Hongmei Duan
- The First Affiliated Hospital of China Medical University, Liaoning, 110001, China
| | - Minglei Li
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Lei Yang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| |
Collapse
|
2
|
Ma W, Li X. Spinal cord injury repair based on drug and cell delivery: From remodeling microenvironment to relay connection formation. Mater Today Bio 2025; 31:101556. [PMID: 40026622 PMCID: PMC11871491 DOI: 10.1016/j.mtbio.2025.101556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/09/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Spinal cord injury (SCI) presents a formidable challenge in clinical settings, resulting in sensory and motor function loss and imposing significant personal and societal burdens. However, owning to the adverse microenvironment and limited regenerative capacity, achieving complete functional recovery after SCI remains elusive. Additionally, traditional interventions including surgery and medication have a series of limitations that restrict the effectiveness of treatment. Recently, tissue engineering (TE) has emerged as a promising approach for promoting neural regeneration and functional recovery in SCI, which can effectively delivery drugs into injury site and delivery cells and improve the survival and differential. Here, we outline the main pathophysiology events of SCI and the adverse microenvironment post injury, further discuss the materials and common assembly strategies used for scaffolds in SCI treatment, expound on the latest advancements in treatment methods based on materials and scaffolds for drug and cell delivery in detail, and propose future directions for SCI repair with TE and highlight potential clinical applications.
Collapse
Affiliation(s)
- Wanrong Ma
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
| | - Xing Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan Province, 410078, China
| |
Collapse
|
3
|
Gu X, Zhang S, Ma W. Bibliometric analysis of nanotechnology in spinal cord injury: current status and emerging frontiers. Front Pharmacol 2024; 15:1473599. [PMID: 39723251 PMCID: PMC11668783 DOI: 10.3389/fphar.2024.1473599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Objective The objective of this study was to analyze the impact of nanotechnology on the treatment and recovery of spinal cord injury (SCI), a condition that has profound global effects on physical and psychological health. Methods We utilized the Web of Science Core Collection to obtain bibliometric data. With the tools such as VOSviewer and CiteSpace, we conducted a comprehensive review of 422 relevant publications to identify research trends and influential works in the field of nanotechnology applied to SCI. Results The analysis revealed significant contributions from both China, Sweden and the United States, and pinpointed inflammation, apoptosis, and nano-drug delivery as the primary areas of focus in current research, with emerging trends evident in recent literature. Conclusion Nanotechnology hold great potential to revolutionize the treatment of SCI through targeted therapeutics and modulation of pathological processes. This study provided valuable insights into the evolving landscape of SCI research, underscoring the importance of continuous innovation and interdisciplinary collaboration.
Collapse
Affiliation(s)
- XiaoPeng Gu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang, China
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejiang, China
- Department of Orthopedics, Zhoushan Institute of Orthopedics and Traumatology, Zhoushan, Zhejiang, China
| | - SongOu Zhang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - WeiHu Ma
- Department of Orthopedics, Ningbo No. 6 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Wei F, Wang T, Wang C, Zhang Z, Zhao J, Heng W, Tang Z, Du M, Yan X, Li X, Guo Z, Qian J, Zhou C. Cytoplasmic Escape of Mitochondrial DNA Mediated by Mfn2 Downregulation Promotes Microglial Activation via cGas-Sting Axis in Spinal Cord Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305442. [PMID: 38009491 PMCID: PMC10811505 DOI: 10.1002/advs.202305442] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/16/2023] [Indexed: 11/29/2023]
Abstract
Neuroinflammation is associated with poor outcomes in patients with spinal cord injury (SCI). Recent studies have demonstrated that stimulator of interferon genes (Sting) plays a key role in inflammatory diseases. However, the role of Sting in SCI remains unclear. In the present study, it is found that increased Sting expression is mainly derived from activated microglia after SCI. Interestingly, knockout of Sting in microglia can improve the recovery of neurological function after SCI. Microglial Sting knockout restrains the polarization of microglia toward the M1 phenotype and alleviates neuronal death. Furthermore, it is found that the downregulation of mitofusin 2 (Mfn2) expression in microglial cells leads to an imbalance in mitochondrial fusion and division, inducing the release of mitochondrial DNA (mtDNA), which mediates the activation of the cGas-Sting signaling pathway and aggravates inflammatory response damage after SCI. A biomimetic microglial nanoparticle strategy to deliver MASM7 (named MSNs-MASM7@MI) is established. In vitro, MSNs-MASM7@MI showed no biological toxicity and effectively delivered MASM7. In vivo, MSNs-MASM7@MI improves nerve function after SCI. The study provides evidence that cGas-Sting signaling senses Mfn2-dependent mtDNA release and that its activation may play a key role in SCI. These findings provide new perspectives and potential therapeutic targets for SCI treatment.
Collapse
Affiliation(s)
- Fei‐Long Wei
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Tian‐Fu Wang
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Chao‐Li Wang
- Department of Pharmaceutical AnalysisSchool of PharmacyFourth Military Medical UniversityXi'an710032China
| | - Zhen‐Peng Zhang
- State Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences BeijingResearch Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical SciencesInstitute of LifeomicsBeijing102206China
| | - Jing‐Wei Zhao
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Wei Heng
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Zhen Tang
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Ming‐Rui Du
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Xiao‐Dong Yan
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Xiao‐Xiang Li
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Zheng Guo
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Ji‐Xian Qian
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| | - Cheng‐Pei Zhou
- Department of OrthopaedicsTangdu HospitalFourth Military Medical UniversityXi'an710038China
| |
Collapse
|
5
|
Shu J, Wang C, Tao Y, Wang S, Cheng F, Zhang Y, Shi K, Xia K, Wang R, Wang J, Yu C, Chen J, Huang X, Xu H, Zhou X, Wu H, Liang C, Chen Q, Yan S, Li F. Thermosensitive hydrogel-based GPR124 delivery strategy for rebuilding blood-spinal cord barrier. Bioeng Transl Med 2023; 8:e10561. [PMID: 37693060 PMCID: PMC10486335 DOI: 10.1002/btm2.10561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Spinal cord injury (SCI) causes blood-spinal cord barrier (BSCB) disruption, leading to secondary damage, such as hemorrhagic infiltration, inflammatory response, and neuronal cell death. It is of great significance to rebuild the BSCB at the early stage of SCI to alleviate the secondary injury for better prognosis. Yet, current research involved in the reconstruction of BSCB is insufficient. Accordingly, we provide a thermosensitive hydrogel-based G protein-coupled receptor 124 (GPR124) delivery strategy for rebuilding BSCB. Herein, we firstly found that the expression of GPR124 decreased post-SCI and demonstrated that treatment with recombinant GPR124 could partially alleviate the disruption of BSCB post-SCI by restoring tight junctions (TJs) and promoting migration and tube formation of endothelial cells. Interestingly, GPR124 could also boost the energy metabolism of endothelial cells. However, the absence of physicochemical stability restricted the wide usage of GPR124. Hence, we fabricated a thermosensitive heparin-poloxamer (HP) hydrogel that demonstrated sustained GPR124 production and maintained the bioactivity of GPR124 (HP@124) for rebuilding the BSCB and eventually enhancing functional motor recovery post-SCI. HP@124 hydrogel can encapsulate GPR124 at the lesion site by injection, providing prolonged release, preserving wounded tissues, and filling injured tissue cavities. Consequently, it induces synergistically efficient integrated regulation by blocking BSCB rupture, decreasing fibrotic scar formation, minimizing inflammatory response, boosting remyelination, and regenerating axons. Mechanistically, giving GPR124 activates energy metabolism via elevating the expression of phosphoenolpyruvate carboxykinase 2 (PCK2), and eventually restores the poor state of endothelial cells. This research demonstrated that early intervention by combining GPR124 with bioactive multifunctional hydrogel may have tremendous promise for restoring locomotor recovery in patients with central nervous system disorders, in addition to a translational approach for the medical therapy of SCI.
Collapse
Affiliation(s)
- Jiawei Shu
- International Institutes of MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwuZhejiangPeople's Republic of China
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Chenggui Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Yiqing Tao
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Shaoke Wang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Feng Cheng
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Yuang Zhang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Kesi Shi
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Kaishun Xia
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Ronghao Wang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Jingkai Wang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Chao Yu
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Jiangjie Chen
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Haibin Xu
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Xiaopeng Zhou
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Haobo Wu
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Qixin Chen
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Shigui Yan
- International Institutes of MedicineThe Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwuZhejiangPeople's Republic of China
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| | - Fangcai Li
- Department of Orthopedics SurgeryThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Orthopedics Research Institute of Zhejiang University, Zhejiang UniversityHangzhouZhejiangPeople's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceHangzhouZhejiangPeople's Republic of China
| |
Collapse
|
6
|
Nalika N, Waseem M, Kaushik P, Salman M, Andrabi SS, Parvez S. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. Life Sci 2023:121403. [PMID: 36669677 DOI: 10.1016/j.lfs.2023.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIM Due to the growing commercialization of titanium dioxide nanoparticles (TNPs), it is necessary to use these particles in a manner that is safe, healthy and environmental friendly. Through reactive oxygen species (ROS) generation, it has been discovered that TNPs have a harmful effect on the brain. The aim of this study is to provide valuable insights into the possible mechanisms of TNPs induced mitochondrial dysfunction in brain and its amelioration by nutraceuticals, quercetin (QR) and melatonin (Mel) in in vitro and in vivo conditions. MATERIALS AND METHODS Whole brain mitochondrial sample was used for in-vitro evaluation. Pre-treatment of QR (30 μM) and Mel (100 μM) at 25 °C for 1 h was given prior to TNPs (50 μg/ml) exposure. For in-vivo study, male Wistar rats were divided into four groups. Group I was control and group II was exposed to TNPs (5 mg/kg b.wt., i.v.). QR (5 mg/kg b.wt.) and Mel (5 mg/kg b.wt.) were given orally as pre-treatment in groups III and IV, respectively. Biochemical parameters, neurobehavioural paradigms, mitochondrial respiration, neuronal architecture assessment were assessed. KEY FINDINGS QR and Mel restored the mitochondrial oxidative stress biomarkers in both the studies. Additionally, these nutraceuticals resuscitated the neurobehavioural alterations and restored the neuronal architecture alterations in TNPs exposed rats. The mitochondrial dysfunction induced by TNPs was also ameliorated by QR and Mel by protecting the mitochondrial complex activity and mitochondrial respiration rate. SIGNIFICANCE Results of the study demonstrated that QR and Mel ameliorated mitochondrial mediated neurotoxic effects induced by TNPs exposure.
Collapse
Affiliation(s)
- Nandini Nalika
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammad Waseem
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohd Salman
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Syed Suhail Andrabi
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
7
|
Zarepour A, Bal Öztürk A, Koyuncu Irmak D, Yaşayan G, Gökmen A, Karaöz E, Zarepour A, Zarrabi A, Mostafavi E. Combination Therapy Using Nanomaterials and Stem Cells to Treat Spinal Cord Injuries. Eur J Pharm Biopharm 2022; 177:224-240. [PMID: 35850168 DOI: 10.1016/j.ejpb.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
As a part of the central nervous system, the spinal cord (SC) provides most of the communications between the brain and other parts of the body. Any damage to SC interrupts this communication, leading to serious problems, which may remain for the rest of their life. Due to its significant impact on patients' quality of life and its exorbitant medical costs, SC injury (SCI) is known as one of the most challengeable diseases in the world. Thus, it is critical to introduce highly translatable therapeutic platforms for SCI treatment. So far, different strategies have been introduced, among which utilizing various types of stem cells is one of the most interesting ones. The capability of stem cells to differentiate into several types of cell lines makes them promising candidates for the regeneration of injured tissues. One of the other interesting and novel strategies for SCI treatment is the application of nanomaterials, which could appear as a carrier for therapeutic agents or as a platform for culturing the cells. Combining these two approaches, stem cells and nanomaterials, could provide promising therapeutic strategies for SCI management. Accordingly, in this review we have summarized some of the recent advancements in which the applications of different types of stem cells and nanomaterials, alone and in combination forms, were evaluated for SCI treatment.
Collapse
Affiliation(s)
- Arezou Zarepour
- Radiology Department, Kashan University of Medical Sciences, Kashan, Isfahan, Iran
| | - Ayça Bal Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul, Turkey; Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Zeytinburnu, Turkey
| | | | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Aylin Gökmen
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, Besiktas, Istanbul, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Manufacturing (LivMedCell), İstanbul, Turkey
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Laliwala A, Daverey A, Agrawal SK, Dash AK. Alpha Tocopherol Loaded Polymeric Nanoparticles: Preparation, Characterizations, and In Vitro Assessments Against Oxidative Stress in Spinal Cord Injury Treatment. AAPS PharmSciTech 2022; 23:195. [PMID: 35831684 DOI: 10.1208/s12249-022-02345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Spinal cord injury (SCI) is characterized by mechanical injury or trauma to the spinal cord. Currently, SCI treatment requires extremely high doses of neuroprotective agents, which in turn, causes several adverse effects. To overcome these limitations, the present study focuses on delivery of a low but effective dose of a naturally occurring antioxidant, α-tocopherol (α-TP). Calcium alginate nanoparticles (CA-NP) and poly D,L-lactic-co-glycolic acid nanoparticles (PLGA-NP) prepared by ionotropic gelation and solvent evaporation technique had particle size of 21.9 ± 11.19 and 152.4 ± 10.6 nm, respectively. Surface morphology, surface charge, as well as particle size distribution of both nanoparticles were evaluated. Entrapment of α-TP into CA-NP and PLGA-NP quantified by UPLC showed entrapment efficiency of 4.00 ± 1.63% and 76.6 ± 11.4%, respectively. In vitro cytotoxicity profiles on human astrocyte-spinal cord (HA-sp) showed that blank CA-NP at high concentrations reduced the cell viability whereas blank PLGA-NP showed relatively safer cytotoxic profiles. In addition, PLGA nanoparticles encapsulated with α-TP (α-TP-PLGA-NP) in comparison to α-TP alone at high concentrations were less toxic. Pretreatment of HA-sp cells with α-TP-PLGA-NP showed two-fold higher anti-oxidative protection as compared to α-TP alone, when oxidative stress was induced by H2O2. In conclusion, CA-NP were found to be unsuitable for treatment of SCI due to their cytotoxicity. Comparatively, α-TP-PLGA-NP were safer and showed high degree of protection against oxidative stress than α-TP alone.
Collapse
Affiliation(s)
- Aayushi Laliwala
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, 68178, USA
| | - Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Sandeep K Agrawal
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Alekha K Dash
- School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska, 68178, USA.
| |
Collapse
|
9
|
Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders. NANOMATERIALS 2022; 12:nano12132140. [PMID: 35807977 PMCID: PMC9268720 DOI: 10.3390/nano12132140] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023]
Abstract
Neurological disorders (NDs) are recognized as one of the major health concerns globally. According to the World Health Organization (WHO), neurological disorders are one of the main causes of mortality worldwide. Neurological disorders include Alzheimer’s disease, Parkinson′s disease, Huntington′s disease, Amyotrophic lateral sclerosis, Frontotemporal dementia, Prion disease, Brain tumor, Spinal cord injury, and Stroke. These diseases are considered incurable diseases because no specific therapies are available to cross the blood-brain barrier (BBB) and reach the brain in a significant amount for the pharmacological effect in the brain. There is a need for the development of strategies that can improve the efficacy of drugs and circumvent BBB. One of the promising approaches is the use of different types of nano-scale materials. These nano-based drugs have the ability to increase the therapeutic effect, reduce toxicity, exhibit good stability, targeted delivery, and drug loading capacity. Different types and shapes of nanomaterials have been widely used for the treatment of neurological disorders, including quantum dots, dendrimers, metallic nanoparticles, polymeric nanoparticles, carbon nanotubes, liposomes, and micelles. These nanoparticles have unique characteristics, including sensitivity, selectivity, and the ability to cross the BBB when used in nano-sized particles, and are widely used for imaging studies and treatment of NDs. In this review, we briefly summarized the recent literature on the use of various nanomaterials and their mechanism of action for the treatment of various types of neurological disorders.
Collapse
|
10
|
Future Treatment of Neuropathic Pain in Spinal Cord Injury: The Challenges of Nanomedicine, Supplements or Opportunities? Biomedicines 2022; 10:biomedicines10061373. [PMID: 35740395 PMCID: PMC9219608 DOI: 10.3390/biomedicines10061373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain (NP) is a common chronic condition that severely affects patients with spinal cord injuries (SCI). It impairs the overall quality of life and is considered difficult to treat. Currently, clinical management of NP is often limited to drug therapy, primarily with opioid analgesics that have limited therapeutic efficacy. The persistence and intractability of NP following SCI and the potential health risks associated with opioids necessitate improved treatment approaches. Nanomedicine has gained increasing attention in recent years for its potential to improve therapeutic efficacy while minimizing toxicity by providing sensitive and targeted treatments that overcome the limitations of conventional pain medications. The current perspective begins with a brief discussion of the pathophysiological mechanisms underlying NP and the current pain treatment for SCI. We discuss the most frequently used nanomaterials in pain diagnosis and treatment as well as recent and ongoing efforts to effectively treat pain by proactively mediating pain signals following SCI. Although nanomedicine is a rapidly growing field, its application to NP in SCI is still limited. Therefore, additional work is required to improve the current treatment of NP following SCI.
Collapse
|
11
|
Moringa oleifera Nanoparticles Demonstrate Antifungal Activity Against Plant Pathogenic Fungi. Appl Biochem Biotechnol 2022; 194:4959-4970. [PMID: 35674924 DOI: 10.1007/s12010-022-04007-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Fungal diseases in plants are creating numerous problems in the developed and developing nations. Silver, a notable metal because of its inertness and its role in nanoscience, has received a considerable amount of focus in the development of an ecofriendly green solution to control many microbial infections. The herbal product from various plant sources with the combination of silver was used to develop nanoparticles, against the pathogens. In this study, we developed Moringa oleifera leaf- and flower-mediated silver nanoparticles with the particle size of 77.45 nm and 63.20 nm respectively. Fungicidal activity of both Moringa oleifera leaf (MLNp) and flower (MFNp) nanoparticles was studied in vitro against plant pathogenic fungi Pestalotiopsis mangiferae isolated from infected coconut palm. Nanoparticles from Moringa oleifera leaves and flowers reduced the radial growth of fungi significantly even at lower concentrations and acted as a potent fungistatic agent.
Collapse
|
12
|
Novel Strategies for Spinal Cord Regeneration. Int J Mol Sci 2022; 23:ijms23094552. [PMID: 35562941 PMCID: PMC9102050 DOI: 10.3390/ijms23094552] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
A spinal cord injury (SCI) is one of the most devastating lesions, as it can damage the continuity and conductivity of the central nervous system, resulting in complex pathophysiology. Encouraged by the advances in nanotechnology, stem cell biology, and materials science, researchers have proposed various interdisciplinary approaches for spinal cord regeneration. In this respect, the present review aims to explore the most recent developments in SCI treatment and spinal cord repair. Specifically, it briefly describes the characteristics of SCIs, followed by an extensive discussion on newly developed nanocarriers (e.g., metal-based, polymer-based, liposomes) for spinal cord delivery, relevant biomolecules (e.g., growth factors, exosomes) for SCI treatment, innovative cell therapies, and novel natural and synthetic biomaterial scaffolds for spinal cord regeneration.
Collapse
|
13
|
Yang Y, Zhang L, Huang M, Sui R, Khan S. Reconstruction of the cervical spinal cord based on motor function restoration and mitigation of oxidative stress and inflammation through eNOS/Nrf2 signaling pathway using ibuprofen-loaded nanomicelles. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Wang D, Wang K, Liu Z, Wang Z, Wu H. Valproic Acid Labeled Chitosan Nanoparticles Promote the Proliferation and Differentiation of Neural Stem Cells After Spinal Cord Injury. Neurotox Res 2021; 39:456-466. [PMID: 33247828 DOI: 10.1007/s12640-020-00304-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Chitosan nanoparticles and valproic acid are demonstrated as the protective agents in the treatment of spinal cord injury (SCI). However, the effects of valproic acid-labeled chitosan nanoparticles (VA-CN) on endogenous spinal cord neural stem cells (NSCs) following SCI and the underlying mechanisms involved remain to be elucidated. In this study, the VA-CN was constructed and the effects of VA-CN on NSCs were assessed in a rat model of SCI. We found VA-CN treatment promoted recovery of the tissue and locomotive function following SCI. Moreover, administration of VA-CN significantly enhanced neural stem cell proliferation and the expression levels of neurotrophic factors following SCI. Furthermore, administration of VA-CN led to a decrease in the number of microglia following SCI. In addition, VA-CN treatment significantly increased the Tuj 1- positive cells in the spinal cord of the SCI rats, suggesting that VA-CN could enhance the differentiation of NSCs following SCI. In conclusion, these results demonstrated that VA-CN could improve the functional and histological recovery through promoting the proliferation and differentiation of NSCs following SCI, which would provide a newly potential therapeutic manner for the treatment of SCI.
Collapse
Affiliation(s)
- Dimin Wang
- School of Medicine, Zhejiang University, Hangzhou, China
- College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zonglin Wang
- College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Yari-Ilkhchi A, Ebrahimi-Kalan A, Farhoudi M, Mahkam M. Design of graphenic nanocomposites containing chitosan and polyethylene glycol for spinal cord injury improvement. RSC Adv 2021; 11:19992-20002. [PMID: 35479903 PMCID: PMC9033813 DOI: 10.1039/d1ra00861g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/09/2021] [Indexed: 12/25/2022] Open
Abstract
Advanced therapeutic strategies include the incorporation of biomaterials, which has been identified as an effective method in treating unsolved diseases, such as spinal cord injury. During the acute phase, cascade responses involving cystic cavitation, fibrous glial scar formation, and myelin-associated dissuasive accumulation occur in the microenvironment of the spinal cord lesion. Graphene oxide (GO)-based materials, due to their extraordinary chemical, electrical and mechanical properties and easy to modify structure, are considered as rising stars in biomaterial and tissue engineering. In order to enhance the biodegradability and biocompatibility of GO, cell proliferation may be appropriately designed and situated at the lesion site. In this study, chitosan (CS) and polyethylene glycol (PEG) were grafted onto GO sheets. CS is a natural non-toxic polymer with good solubility and high biocompatible potential that has been used as an anti-inflammatory and anti-oxidant agent. Furthermore, PEG, a synthetic neuroprotective polymer, was used to develop the pharmacokinetic activity and reduce the toxicity of GO. Herein we report a novel nanocomposite consisting of PEG and CS with a potential advantage in spinal tissue regeneration. The preliminary in vitro study on mesenchymal stem cells (MSCs) has demonstrated that the prepared nanocomposites are not only non-toxic but also increase (by nearly 10%) cell growth. Finally, the use of mixed nanocomposites in the spinal cord injury (SCI) model resulted in good repair and inflammation decline after two weeks, such that walking and functional recovery scores of the hind limbs of mice were improved by an average of 6 points in the treatment group. Herein we report a novel nanocomposite consisting of PEG and CS with a potential advantage in spinal tissue regeneration.![]()
Collapse
Affiliation(s)
- Ayda Yari-Ilkhchi
- Chemistry Department
- Faculty of Science
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| | - Abbas Ebrahimi-Kalan
- Faculty of Advanced Medical Science
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC)
- Tabriz University of Medical Science
- Tabriz
- Iran
| | - Mehrdad Mahkam
- Chemistry Department
- Faculty of Science
- Azarbaijan Shahid Madani University
- Tabriz
- Iran
| |
Collapse
|
16
|
Zimmermann R, Vieira Alves Y, Sperling LE, Pranke P. Nanotechnology for the Treatment of Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:353-365. [PMID: 33135599 DOI: 10.1089/ten.teb.2020.0188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) affects the central nervous system (CNS) and there is currently no treatment with the potential for rehabilitation. Although several clinical treatments have been developed, they are still at an early stage and have not shown success in repairing the broken fiber, which prevents cellular regeneration and integral restoration of motor and sensory functions. Considering the importance of nanotechnology and tissue engineering for neural tissue injuries, this review focuses on the latest advances in nanotechnology for SCI treatment and tissue repair. The PubMed database was used for the bibliographic survey. Initial research using the following keywords "tissue engineering and spinal cord injury" revealed 970 articles published in the last 10 years. The articles were further analyzed, excluding those not related to SCI or with results that did not pertain to the field of interest, including the reviews. It was observed that a total of 811 original articles used the quoted keywords. When the word "treatment" was added, 662 articles were found and among them, 529 were original ones. Finally, when the keywords "Nanotechnology and spinal cord injury" were used, 102 articles were found, 65 being original articles. A search concerning the biomaterials used for SCI found 700 articles with 589 original articles. A total of 107 articles were included in the discussion of this review and some are used for the theoretical framework. Recent progress in nanotechnology and tissue engineering has shown promise for repairing CNS damage. A variety of in vivo animal testing for SCI has been used with or without cells and some of these in vivo studies have shown successful results. However, there is no translation to humans using nanotechnology for SCI treatment, although there is one ongoing trial that employs a tissue engineering approach, among other technologies. The first human surgical scaffold implantation will elucidate the possibility of this use for further clinical trials. This review concludes that even though tissue engineering and nanotechnology are being investigated as a possibility for SCI treatment, tests with humans are still in the theoretical stage. Impact statement Thousands of people are affected by spinal cord injury (SCI) per year in the world. This type of lesion is one of the most severe conditions that can affect humans and usually causes permanent loss of strength, sensitivity, and motor function below the injury site. This article reviews studies on the PubMed database, assessing the publications on SCI in the study field of tissue engineering, focusing on the use of nanotechnology for the treatment of SCI. The review makes an evaluation of the biomaterials used for the treatment of this condition and the techniques applied for the production of nanostructured biomaterials.
Collapse
Affiliation(s)
- Rafaela Zimmermann
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yuri Vieira Alves
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura E Sperling
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Health School, Faculty of Medicine, UNISINOS, São Leopoldo, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Research Institute, Porto Alegre, Brazil
| |
Collapse
|