1
|
Gakare SG, Shelkar GP, Gawande DY, Pavuluri R, Gandhi PJ, Dravid SM. GluN2D-containing NMDA receptors in parvalbumin neurons in the nucleus accumbens regulate nocifensive responses in neuropathic pain. Neurobiol Dis 2025; 205:106784. [PMID: 39733959 PMCID: PMC11969681 DOI: 10.1016/j.nbd.2024.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain presents a significant challenge, with its underlying mechanisms still not fully understood. Here, we investigated the role of GluN2C- and GluN2D-containing NMDA receptors in the development of neuropathic pain induced by cisplatin, a widely used chemotherapeutic agent. Through genetic and pharmacological strategies, we found that GluN2D-containing NMDA receptors play a targeted role in regulating cisplatin-induced neuropathic pain (CINP), while sparing inflammatory or acute pain responses. Specifically, both GluN2D knockout (KO) mice and pharmacological blockade of GluN2D-containing receptors produced robust reduction in mechanical nocifensive response in CINP. In contrast, GluN2C KO mice behaved similar to wildtype mice in CINP but showed reduced mechanical hypersensitivity in inflammatory pain. Using conditional KO strategy, we addressed the region- and cell-type involved in GluN2D-mediated changes in CINP. Animals with conditional deletion of GluN2D receptors from parvalbumin interneurons (PVIs) or local ablation of GluN2D from nucleus accumbens (NAc) displayed reduced mechanical hypersensitivity in CINP, underscoring the pivotal role of accumbal GluN2D in PVIs in neuropathic pain. Furthermore, CINP increased excitatory neurotransmission in the NAc in wildtype mice and this effect is dampened in PV-GluN2D KO mice. Other changes in CINP in NAc included an increase in vGluT1 and c-fos labeled neurons in wildtype which were absent in PV-GluN2D KO mice. GiDREADD-induced inhibition of PVIs in the NAc produced reduction in mechanical hypersensitivity in CINP. These findings unveil a novel cell-type and region-specific role of GluN2D-containing NMDA receptors in neuropathic pain and identify PVIs in NAc as a novel mediator of pain behaviors.
Collapse
Affiliation(s)
- Sukanya G Gakare
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Gajanan P Shelkar
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Dinesh Y Gawande
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Ratnamala Pavuluri
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Pauravi J Gandhi
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA
| | - Shashank M Dravid
- Department of Psychiatry and Behavioral Sciences, Texas A&M University School of Medicine, College Station, TX 77845, USA.
| |
Collapse
|
2
|
Choi D, Paré J, Dravid S, Smith Y. Ultrastructural Localization of Glutamate Delta Receptor 1 in the Rodent and Primate Lateral Habenula. J Comp Neurol 2025; 533:e70019. [PMID: 39794140 PMCID: PMC11723828 DOI: 10.1002/cne.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/19/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1. Thus, disruption in GluD1 synaptic signaling may contribute to LHb dysfunction and the pathophysiology of LHb-associated disorders. Despite its strong cellular expression, little is known about the subsynaptic and subcellular localization of GluD1 in LHb neurons. Given that GluD1 is involved in the development and/or regulation of glutamatergic and GABAergic synapses in various brain regions, a detailed map of GluD1 synaptic localization is essential to elucidate its role in the LHb. To address this issue, we used immunoelectron microscopy methods in rodents and monkeys. In both species, GluD1 immunoreactivity was primarily expressed in dendritic profiles, with lower expression in somata, spines, and glial elements. Pre- and post-embedding immunogold experiments revealed strong GluD1 expression in the core of symmetric GABAergic synapses. Albeit less frequent, GluD1 was also found at the edges (i.e., perisynaptic) of asymmetric, putative glutamatergic synapses. Through the combination of anterograde tracing with immunogold labeling in rats, we showed that axon terminals from the entopeduncular nucleus and the lateral hypothalamus express postsynaptic GluD1 immunolabeling in the LHb. Our findings suggest that GluD1 may play a critical role in modulating GABAergic transmission in the rodent and primate LHb.
Collapse
Affiliation(s)
- Diane Choi
- Graduate Program in Molecular and Systems PharmacologyEmory UniversityAtlantaGeorgiaUSA
- Emory National Primate Research CenterEmory UniversityAtlantaGeorgiaUSA
| | - Jean‐Francois Paré
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
- Emory National Primate Research CenterEmory UniversityAtlantaGeorgiaUSA
| | - Shashank Dravid
- Department of Psychiatry and Behavioral SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Yoland Smith
- Graduate Program in Molecular and Systems PharmacologyEmory UniversityAtlantaGeorgiaUSA
- Department of NeurologyEmory UniversityAtlantaGeorgiaUSA
- Emory National Primate Research CenterEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
3
|
Chang L, He Y, Tian T, Li B. Nucleus accumbens ghrelin signaling controls anxiety-like behavioral response to acute stress. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:18. [PMID: 38965529 PMCID: PMC11225390 DOI: 10.1186/s12993-024-00244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Anxiety disorders are one of the most common mental disorders. Ghrelin is a critical orexigenic brain-gut peptide that regulates food intake and metabolism. Recently, the ghrelin system has attracted more attention for its crucial roles in psychiatric disorders, including depression and anxiety. However, the underlying neural mechanisms involved have not been fully investigated. METHODS In the present study, the effect and underlying mechanism of ghrelin signaling in the nucleus accumbens (NAc) core on anxiety-like behaviors were examined in normal and acute stress rats, by using immunofluorescence, qRT-PCR, neuropharmacology, molecular manipulation and behavioral tests. RESULTS We reported that injection of ghrelin into the NAc core caused significant anxiolytic effects. Ghrelin receptor growth hormone secretagogue receptor (GHSR) is highly localized and expressed in the NAc core neurons. Antagonism of GHSR blocked the ghrelin-induced anxiolytic effects. Moreover, molecular knockdown of GHSR induced anxiogenic effects. Furthermore, injection of ghrelin or overexpression of GHSR in the NAc core reduced acute restraint stress-induced anxiogenic effects. CONCLUSIONS This study demonstrates that ghrelin and its receptor GHSR in the NAc core are actively involved in modulating anxiety induced by acute stress, and raises an opportunity to treat anxiety disorders by targeting ghrelin signaling system.
Collapse
Affiliation(s)
- Leilei Chang
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yecheng He
- Department of Preclinical Medicine, Suzhou Vocational Health College, Suzhou, 215009, China
| | - Tian Tian
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
4
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
5
|
Gawande DY, S Narasimhan KK, Shelkar GP, Pavuluri R, Stessman HAF, Dravid SM. GluN2D Subunit in Parvalbumin Interneurons Regulates Prefrontal Cortex Feedforward Inhibitory Circuit and Molecular Networks Relevant to Schizophrenia. Biol Psychiatry 2023; 94:297-309. [PMID: 37004850 PMCID: PMC10524289 DOI: 10.1016/j.biopsych.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Parvalbumin interneuron (PVI) activity synchronizes the medial prefrontal cortex circuit for normal cognitive function, and its impairment may contribute to schizophrenia (SZ). NMDA receptors in PVIs participate in these activities and form the basis for the NMDA receptor hypofunction hypothesis of SZ. However, the role of the GluN2D subunit, which is enriched in PVIs, in regulating molecular networks relevant to SZ is unknown. METHODS Using electrophysiology and a mouse model with conditional deletion of GluN2D from PVIs (PV-GluN2D knockout [KO]), we examined the cell excitability and neurotransmission in the medial prefrontal cortex. Histochemical, RNA sequencing analysis and immunoblotting were conducted to understand molecular mechanisms. Behavioral analysis was conducted to test cognitive function. RESULTS PVIs in the medial prefrontal cortex were found to express putative GluN1/2B/2D receptors. In a PV-GluN2D KO model, PVIs were hypoexcitable, whereas pyramidal neurons were hyperexcitable. Excitatory neurotransmission was higher in both cell types in PV-GluN2D KO, whereas inhibitory neurotransmission showed contrasting changes, which could be explained by reduced somatostatin interneuron projections and increased PVI projections. Genes associated with GABA (gamma-aminobutyric acid) synthesis, vesicular release, and uptake as well as those involved in formation of inhibitory synapses, specifically GluD1-Cbln4 and Nlgn2, and regulation of dopamine terminals were downregulated in PV-GluN2D KO. SZ susceptibility genes including Disc1, Nrg1, and ErbB4 and their downstream targets were also downregulated. Behaviorally, PV-GluN2D KO mice showed hyperactivity and anxiety behavior and deficits in short-term memory and cognitive flexibility. CONCLUSIONS These findings demonstrate that GluN2D in PVIs serves as a point of convergence of pathways involved in the regulation of GABAergic synapses relevant to SZ.
Collapse
Affiliation(s)
- Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | | | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | - Holly A F Stessman
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska.
| |
Collapse
|
6
|
Kumar J, Popescu GK, Gantz SC. GluD receptors are functional ion channels. Biophys J 2023; 122:2383-2395. [PMID: 37177782 PMCID: PMC10323023 DOI: 10.1016/j.bpj.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
In this article, we review contemporary evidence that GluD receptors are functional ion channels whose depolarizing currents contribute to their biological functions, akin to all other members of the ionotropic glutamate receptor (iGluR) family.
Collapse
Affiliation(s)
- Janesh Kumar
- Laboratory of Membrane Protein Biology, Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, SUNY, Buffalo, New York
| | - Stephanie C Gantz
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
7
|
Copeland DS, Gugel A, Gantz SC. Potentiation of neuronal activity by tonic GluD1 current in brain slices. EMBO Rep 2023:e56801. [PMID: 37154294 DOI: 10.15252/embr.202356801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Ion channel function of native delta glutamate receptors (GluDR ) is incompletely understood. Previously, we and others have shown that activation of Gαq protein-coupled receptors (GqPCR) produces a slow inward current carried by GluD1R . GluD1R also carries a tonic cation current of unknown cause. Here, using voltage-clamp electrophysiological recordings from adult mouse brain slices containing the dorsal raphe nucleus, we find no role of ongoing G-protein-coupled receptor activity in generating or sustaining tonic GluD1R currents. Neither augmentation nor disruption of G protein activity affects tonic GluD1R currents, suggesting that ongoing G-protein-coupled receptor activity does not give rise to tonic GluD1R currents. Further, the tonic GluD1R current is unaffected by the addition of external glycine or D-serine, which influences GluD2R current at millimolar concentrations. Instead, GqPCR-stimulated and tonic GluD1R currents are regulated by physiological levels of external calcium. In current-clamp recordings, block of GluD1R channels hyperpolarizes the membrane by ~7 mV at subthreshold potentials, reducing excitability. Thus, GluD1R carries a G-protein-independent tonic current that contributes to subthreshold neuronal excitation in the dorsal raphe nucleus.
Collapse
Affiliation(s)
- Daniel S Copeland
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Aleigha Gugel
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Stephanie C Gantz
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Gawande DY, Shelkar GP, Narasimhan KKS, Liu J, Dravid SM. GluN2D subunit-containing NMDA receptors regulate reticular thalamic neuron function and seizure susceptibility. Neurobiol Dis 2023; 181:106117. [PMID: 37031803 DOI: 10.1016/j.nbd.2023.106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023] Open
Abstract
Thalamic regulation of cortical function is important for several behavioral aspects including attention and sensorimotor control. This region has also been studied for its involvement in seizure activity. Among the NMDA receptor subunits GluN2C and GluN2D are particularly enriched in several thalamic nuclei including nucleus reticularis of the thalamus (nRT). We have previously found that GluN2C deletion does not have a strong influence on the basal excitability and burst firing characteristics of reticular thalamus neurons. Here we find that GluN2D ablation leads to reduced depolarization-induced spike frequency and reduced hyperpolarization-induced rebound burst firing in nRT neurons. Furthermore, reduced inhibitory neurotransmission was observed in the ventrobasal thalamus (VB). A model with preferential downregulation of GluN2D from parvalbumin (PV)-positive neurons was generated. Conditional deletion of GluN2D from PV neurons led to a decrease in excitability and burst firing. In addition, reduced excitability and burst firing was observed in the VB neurons together with reduced inhibitory neurotransmission. Finally, young mice with GluN2D downregulation in PV neurons showed significant resistance to pentylenetetrazol-induced seizure and differences in sensitivity to isoflurane anesthesia but were normal in other behaviors. Conditional deletion of GluN2D from PV neurons also affected expression of other GluN2 subunits and GABA receptor in the nRT. Together, these results identify a unique role of GluN2D-containing receptors in the regulation of thalamic circuitry and seizure susceptibility which is relevant to mutations in GRIN2D gene found to be associated with pediatric epilepsy.
Collapse
Affiliation(s)
- Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
9
|
Zhang J, Li J, You P, Jiang H, Liu Y, Han D, Liu M, Yu H, Su B. Mice with the Rab10 T73V mutation exhibit anxiety-like behavior and alteration of neuronal functions in the striatum. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166641. [PMID: 36669576 DOI: 10.1016/j.bbadis.2023.166641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Hyperphosphorylated Rab10 has been implicated in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. However, the neurophysiological function of the evolutionarily conserved Thr73 phosphorylation of Rab10 remains poorly understood. Here, we generated a novel mouse model expressing the non-phosphorylatable T73V mutation of Rab10 and performed a comprehensive series of neurological analyses, including behavioral tests, synaptic evaluations, neuronal and glial staining, assessments of neurite arborization and spine morphogenesis. The Rab10 T73V mutantmice exhibited a characteristic anxiety-like phenotype with other behavioral modules relatively unaffected. Moreover, Rab10 T73V mutant mice displayed striatum-specific synaptic dysfunction, as indicated by aberrantly increased expression levels of synaptic proteins and impaired frequencies of miniature inhibitory postsynaptic currents. The genetic deletion of Rab10 phosphorylation enhanced neurite arborization and accelerated spine maturation in striatal medium spiny neurons. Our findings emphasize the specific role of intrinsic phospho-Rab10 in the regulation of the striatal circuitry and its related behaviors.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jie Li
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Pan You
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Haitian Jiang
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Yanjun Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Daobin Han
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Meiqi Liu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
10
|
Boxer EE, Aoto J. Neurexins and their ligands at inhibitory synapses. Front Synaptic Neurosci 2022; 14:1087238. [PMID: 36618530 PMCID: PMC9812575 DOI: 10.3389/fnsyn.2022.1087238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of neurexins (Nrxns) as essential and evolutionarily conserved synaptic adhesion molecules, focus has largely centered on their functional contributions to glutamatergic synapses. Recently, significant advances to our understanding of neurexin function at GABAergic synapses have revealed that neurexins can play pleiotropic roles in regulating inhibitory synapse maintenance and function in a brain-region and synapse-specific manner. GABAergic neurons are incredibly diverse, exhibiting distinct synaptic properties, sites of innervation, neuromodulation, and plasticity. Different classes of GABAergic neurons often express distinct repertoires of Nrxn isoforms that exhibit differential alternative exon usage. Further, Nrxn ligands can be differentially expressed and can display synapse-specific localization patterns, which may contribute to the formation of a complex trans-synaptic molecular code that establishes the properties of inhibitory synapse function and properties of local circuitry. In this review, we will discuss how Nrxns and their ligands sculpt synaptic inhibition in a brain-region, cell-type and synapse-specific manner.
Collapse
Affiliation(s)
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| |
Collapse
|
11
|
Chen L, Wang J, Xia M, Sun L, Sun J, Gao L, Zhang D, Wu T. Altered functional connectivity of nucleus accumbens subregions associates with non-motor symptoms in Parkinson's disease. CNS Neurosci Ther 2022; 28:2308-2318. [PMID: 36184786 PMCID: PMC9627369 DOI: 10.1111/cns.13979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS This study aimed to identify the functional connectivity (FC) changes of nucleus accumbens (NAc) subregions and characterize the association of network changes and non-motor symptoms (NMS) in Parkinson's disease (PD). METHODS We enrolled 129 PD patients and 106 healthy controls from our center and the PPMI (Parkinson's Progression Markers Initiative) database. The FC of the bilateral core and shell of the NAc were measured and compared between the two groups. We further used partial least squares correlation to reveal the relationships between altered FC of NAc subregions and manifestations of NMS of PD. RESULTS The subregions of left core, left shell, and right core had reduced FC with extensive brain regions in PD patients compared with healthy controls. These three subregions were commonly associated with depression, anxiety, apathy, and cognitive impairment. Moreover, the left core and left shell were associated with excessive daytime sleepiness, whereas the right core was associated with olfactory impairment and rapid eye movement sleep behavior disorder. CONCLUSION This study for the first time identified the neural network changes of NAc subregions in PD and the associations between network changes and phenotypes of NMS. Our findings provide new insights into the pathogenesis of NMS in PD.
Collapse
Affiliation(s)
- Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina,Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina,IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Lianglong Sun
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina,Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina,IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Linlin Gao
- Department of General MedicineTianjin Union Medical CenterTianjinChina
| | - Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
12
|
Yadav D, Kumar P. Restoration and targeting of aberrant neurotransmitters in Parkinson's disease therapeutics. Neurochem Int 2022; 156:105327. [PMID: 35331828 DOI: 10.1016/j.neuint.2022.105327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Neurotransmitters are considered as a fundamental regulator in the process of neuronal growth, differentiation and survival. Parkinson's Disease (PD) occurs due to extensive damage of dopamine-producing neurons; this causes dopamine deficits in the midbrain, followed by the alternation of various other neurotransmitters (glutamate, GABA, serotonin, etc.). It has been observed that fluctuation of neurotransmission in the basal ganglia exhibits a great impact on the pathophysiology of PD. Dopamine replacement therapy, such as the use of L-DOPA, can increase the dopamine level, but it majorly ameliorates the motor symptoms and is also associated with long-term complications (for e.g., LID). While the non-dopaminergic system can efficiently target non-motor symptoms, for instance, the noradrenergic system regulates the synthesis of BDNF via the MAPK pathway, which is important in learning and memory. Herein, we briefly discuss the role of different neurotransmitters, implementation of neurotransmitter receptors in PD. We also illustrate the recent advances of neurotransmitter-based drugs, which are currently under in vivo and clinical studies. Reinstating normal neurotransmitter levels has been believed to be advantageous in the treatment of PD. Thus, there is an increasing demand for drugs that can specifically target the neurotransmission system and reinstate the normal levels of neurotransmitters, which might prevent or delay neurodegeneration in PD.
Collapse
Affiliation(s)
- Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi, India; Delhi Technological University (Formerly Delhi College of Engineering), Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi, India; Delhi Technological University (Formerly Delhi College of Engineering), Delhi, 110042, India.
| |
Collapse
|
13
|
Gawande DY, Kumar S Narasimhan K, Bhatt JM, Pavuluri R, Kesherwani V, Suryavanshi PS, Shelkar GP, Dravid SM. Glutamate delta 1 receptor regulates autophagy mechanisms and affects excitatory synapse maturation in the somatosensory cortex. Pharmacol Res 2022; 178:106144. [PMID: 35304260 PMCID: PMC9090310 DOI: 10.1016/j.phrs.2022.106144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/01/2022] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
The glutamate delta family of receptors is composed of GluD1 and GluD2 and serve as synaptic organizers. We have previously demonstrated several autism-like molecular and behavioral phenotypes including an increase in dendritic spines in GluD1 knockout mice. Based on previous reports we evaluated whether disruption of autophagy mechanisms may account for these phenotypes. Mouse model with conditional deletion of GluD1 from excitatory neurons in the corticolimbic regions was utilized. GluD1 loss led to overactive Akt-mTOR pathway, higher p62 and a lower LC3-II/LC3-I ratio in the somatosensory cortex suggesting reduced autophagy. Excitatory elements were increased in number but had immature phenotype based on puncta size, lower AMPA subunit GluA1 expression and impaired development switch from predominantly GluN2B to mixed GluN2A/GluN2B subunit expression. Overactive Akt-mTOR signaling and impaired autophagy was also observed in dorsal striatum upon conditional ablation of GluD1 and in the prefrontal cortex and hippocampus in constitutive knockout. Finally, cognitive deficits in novel object recognition test and fear conditioning were observed in mice with conditional ablation of GluD1 from the corticolimbic regions. Together, these results demonstrate a novel function of GluD1 in the regulation of autophagy pathway which may underlie autism phenotypes and is relevant to the genetic association of GluD1 coding, GRID1 gene with autism and other developmental disorders.
Collapse
Affiliation(s)
- Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA.
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Jay M Bhatt
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Varun Kesherwani
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Pratyush S Suryavanshi
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA.
| |
Collapse
|