1
|
Zhang H, Li H, Yu M, Yu M, Feng S, Tingting W, Yu Y, Zhang J, Liu K, Tan Y, Xiang B. Modified Electroconvulsive Therapy Normalizes Plasma GNA13 Following Schizophrenic Relapse. J ECT 2024; 40:286-292. [PMID: 39121017 DOI: 10.1097/yct.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
OBJECTIVE GNA13 is an important member of the G protein family, and its coding gene GNA13 has been identified as one of the risk genes for schizophrenia (SCZ). This study aimed to investigate the relationship between GNA13 levels and the clinical symptoms of SCZ following treatment with modified electroconvulsive therapy (MECT). METHODS This study recruited 82 SCZ patients and 86 healthy controls (HCs). Each SCZ patient received 6 sessions of MECT. The Positive and Negative Syndrome Scale (PANSS) was used to assess SCZ symptom severity. Plasma levels of GNA13 were measured by enzyme-linked immunosorbent assay. RESULTS Pretreatment, SCZ patients had a higher GNA13 level than HC ( t = 8.199, P < 0.001). MECT reduced the GNA13 level significantly ( t = 11.13, P < 0.001) and normalized the difference between SCZ and HC ( t = 0.219, P = 0.827). After treatment, the downregulation of GNA13 (ΔGNA13) was negatively correlated with the positive symptoms score reduction rate (ΔP) ( r = -0.379, P = 0.027) and positively correlated with the negative score reduction rate (ΔN) ( r = 0.480, P = 0.004) in females. In both males and females, the receiver operating characteristic curve revealed that the pretreatment GNA13 level could help differentiate SCZ from HC (male: area under the curve = 0.792, P < 0.001; female: area under the curve = 0.814, P < 0.001). CONCLUSION The reduced expression of GNA13 after MECT may be related to the exhibition of both negative and positive symptoms of SCZ in female patients.
Collapse
Affiliation(s)
| | | | | | | | - Shuangshuang Feng
- From the Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Medical Laboratory Center, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou
| | - Wang Tingting
- From the Department of Psychiatry, Fundamental and Clinical Research on Mental Disorders Key Laboratory of Luzhou, Medical Laboratory Center, Laboratory of Neurological Diseases & Brain Function, Affiliated Hospital of Southwest Medical University, Luzhou
| | | | | | | | | | | |
Collapse
|
2
|
Cattaneo S, Bettegazzi B, Crippa L, Asth L, Regoni M, Soukupova M, Zucchini S, Cantore A, Codazzi F, Valtorta F, Simonato M. Gene therapy for epilepsy targeting neuropeptide Y and its Y2 receptor to dentate gyrus granule cells. EMBO Rep 2024; 25:4387-4409. [PMID: 39251828 PMCID: PMC11467199 DOI: 10.1038/s44319-024-00244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Gene therapy is emerging as an alternative option for individuals with drug-resistant focal epilepsy. Here, we explore the potential of a novel gene therapy based on Neuropeptide Y (NPY), a well-known endogenous anticonvulsant. We develop a lentiviral vector co-expressing NPY with its inhibitory receptor Y2 in which, for the first time, both transgenes are placed under the control of the minimal CamKIIa(0.4) promoter, biasing expression toward excitatory neurons and allowing autoregulation of neuronal excitability by Y2 receptor-mediated inhibition. Vector-induced NPY and Y2 expression and safety are first assessed in cultures of hippocampal neurons. In vivo experiments demonstrate efficient and nearly selective overexpression of both genes in granule cell mossy fiber terminals following vector administration in the dentate gyrus. Telemetry video-EEG monitoring reveals a reduction in the frequency and duration of seizures in the synapsin triple KO model. This study shows that targeting a small subset of neurons (hippocampal granule cells) with a combined overexpression of NPY and Y2 receptor is sufficient to reduce the occurrence of spontaneous seizures.
Collapse
Affiliation(s)
- Stefano Cattaneo
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Lucia Crippa
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Regoni
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Alessio Cantore
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20123, Milan, Italy
| | - Franca Codazzi
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Flavia Valtorta
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Michele Simonato
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
3
|
He H, Zhang X, He H, Xu G, Li L, Yang C, Liu Y, You Z, Zhang J. Microglial priming by IFN-γ involves STAT1-mediated activation of the NLRP3 inflammasome. CNS Neurosci Ther 2024; 30:e70061. [PMID: 39392762 PMCID: PMC11468839 DOI: 10.1111/cns.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Inflammatory and immune responses in the brain that contribute to various neuropsychiatric disorders may begin as microglial "priming". Interferon (IFN)-γ is known to cause microglial priming, but the mechanism is unclear. METHODS We examined the effects of IFN-γ on gene expression, microglial activation, inflammatory and immune responses and activity of the NLRP3 inflammasome in primary microglia and in the brains of mice. RESULTS Our results showed that treating microglial cultures with IFN-γ induced a hedgehog-like morphology and upregulated markers of microglial activation (CD86, CD11b) and pro-inflammatory molecules (IL-1β, IL-6, TNF-α, iNOS), while downregulating markers of microglial homeostasis (CX3CR1, CD200R1), anti-inflammatory molecules (MCR1, Arg-1) and neurotrophic factors (IGF-1, BDNF). IFN-γ also upregulated markers of NLRP3 inflammasome activation (NLRP3, caspase-1, gasdermin D, IL-18). This particular transcriptional profiling makes IFN-γ-primed microglia with exaggerated responses upon lipopolysaccharide (LPS) stimulation. The level of NLRP3, caspase-1, gasdermin D, IL-1β, IL-18, TNF-α and iNOS in microglia cultures treated with both IFN-γ and LPS were highest than with either one alone. Injecting IFN-γ into the lateral ventricle of mice induced similar morphological and functional changes in hippocampal microglia as in primary microglial cultures. The effects of IFN-γ on NLRP3 inflammasome and microglia from cultures or hippocampus were abolished when STAT1 was inhibited using fludarabin. Injecting mice with IFN-γ alone or together with LPS induced anxiety- and depression-like behaviors and impaired hippocampus-dependent spatial memory; these effects were mitigated by fludarabin. CONCLUSIONS IFN-γ primes microglia by activating STAT1, which upregulates genes that activate the NLRP3 inflammasome. Inhibiting the IFN-γ/STAT1 axis may be a way to treat neurodegenerative diseases and psychiatric disorders that involve microglial priming.
Collapse
Affiliation(s)
- Haili He
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Xiaomei Zhang
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Hui He
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Gaojie Xu
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Liangyuan Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Chengyan Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yu‐e Liu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Zili You
- School of Life Science and Technology, Center for Informational BiologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jinqiang Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese MedicineGuiyangChina
| |
Collapse
|
4
|
McDuffie EL, Panettieri RA, Scott CP. G 12/13 signaling in asthma. Respir Res 2024; 25:295. [PMID: 39095798 PMCID: PMC11297630 DOI: 10.1186/s12931-024-02920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood. Our review of the literature suggests that pro-contractile G protein coupled receptors likely signal through G12/13 to activate RhoA and mediate calcium sensitization. This hypothesis is consistent with the effects of pro-contractile agonists on RhoA and Rho kinase activation, actin polymerization and myosin light chain phosphorylation. Recognizing the likely role of G12/13 signaling in the pathophysiology of asthma rationalizes the effects of pro-contractile stimuli on airway hyperresponsiveness, immune activation and airway remodeling, and suggests new approaches for asthma treatment.
Collapse
Affiliation(s)
- Elizabeth L McDuffie
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, NJ, USA
| | - Charles P Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Aziz N, Ruzza C, Falcicchia C, Guarino A, Soukupova M, Asth L, Aleotti V, Bettegazzi B, Simonato M, Zucchini S. Lack of Direct Effects of Neurotrophic Factors in an In Vitro Model of Neuroinflammation. Int J Mol Sci 2024; 25:4160. [PMID: 38673746 PMCID: PMC11049901 DOI: 10.3390/ijms25084160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation is associated with several neurological disorders including temporal lobe epilepsy. Seizures themselves can induce neuroinflammation. In an in vivo model of epilepsy, the supplementation of brain-derived neurotropic factor (BDNF) and fibroblast growth factor-2 (FGF-2) using a Herpes-based vector reduced epileptogenesis-associated neuroinflammation. The aim of this study was to test whether the attenuation of the neuroinflammation obtained in vivo with BDNF and FGF-2 was direct or secondary to other effects, for example, the reduction in the severity and frequency of spontaneous recurrent seizures. An in vitro model of neuroinflammation induced by lipopolysaccharide (LPS, 100 ng/mL) in a mouse primary mixed glial culture was used. The releases of cytokines and NO were analyzed via ELISA and Griess assay, respectively. The effects of LPS and neurotrophic factors on cell viability were determined by performing an MTT assay. BDNF and FGF-2 were tested alone and co-administered. LPS induced a significant increase in pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and NO. BDNF, FGF-2, and their co-administration did not counteract these LPS effects. Our study suggests that the anti-inflammatory effect of BDNF and FGF-2 in vivo in the epilepsy model was indirect and likely due to a reduction in seizure frequency and severity.
Collapse
Affiliation(s)
- Nimra Aziz
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | | | - Annunziata Guarino
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
| | - Valentina Aleotti
- Operating Unit Neurological Clinic, University Hospital of Ferrara, via Aldo Moro 8, 44124 Ferrara, Italy;
| | - Barbara Bettegazzi
- School of Medicine, University Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy;
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 70, 44121 Ferrara, Italy; (N.A.); (A.G.); (M.S.); (L.A.); (M.S.); (S.Z.)
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Tang W, Peng J, Chen L, Yu C, Wang Y, Zou F, Zheng G, Meng X. Lead inhibits microglial cell migration via suppression of store-operated calcium entry. Toxicol Lett 2024; 393:69-77. [PMID: 38281554 DOI: 10.1016/j.toxlet.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Lead (Pb) is a non-biodegradable environmental pollutant that can lead to neurotoxicity by inducing neuroinflammation. Microglial activation plays a key role in neuroinflammation, and microglial migration is one of its main features. However, whether Pb affects microglial migration has not yet been elucidated. Herein, the effect of Pb on microglial migration was investigated using BV-2 microglial cells and primary microglial cells. The results showed that cell activation markers (TNF-α and CD206) in BV-2 cells were increased after Pb treatment. The migration ability of microglia was inhibited by Pb. Both store-operated calcium entry (SOCE) and the Ca2+ release-activated Ca2+ (CRAC) current were downregulated by microglia treatment with Pb in a dose-dependent manner. However, there was no statistical difference in the protein levels of stromal interaction molecule (STIM) 1, STIM2, or Ca2+ release-activated Ca2+ channel protein (Orai) 1 in microglia. The external Ca2+ influx and cell migration ability were restored to a certain extent after overexpression of either STIM1 or its CRAC activation domain in microglia. These results indicated that Pb inhibits microglial migration by downregulation of SOCE and impairment of the function of STIM1.
Collapse
Affiliation(s)
- Wei Tang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jiawen Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Lixuan Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Changhui Yu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Yuhao Wang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Gang Zheng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Xie L, Li W, Zheng X, Liu L, Lin L, Niu J, Yang T. Treponema pallidum membrane protein Tp47 induced autophagy and inhibited cell migration in HMC3 cells via the PI3K/AKT/FOXO1 pathway. J Cell Mol Med 2023; 27:3065-3074. [PMID: 37487001 PMCID: PMC10568662 DOI: 10.1111/jcmm.17872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023] Open
Abstract
The migratory ability of microglia facilitates their rapid transport to a site of injury to kill and remove pathogens. However, the effect of Treponema pallidum membrane proteins on microglia migration remains unclear. The effect of Tp47 on the migration ability and autophagy and related mechanisms were investigated using the human microglial clone 3 cell line. Tp47 inhibited microglia migration, the expression of autophagy-associated protein P62 decreased, the expression of Beclin-1 and LC3-II/LC3-I increased, and the autophagic flux increased in this process. Furthermore, autophagy was significantly inhibited, and microglial cell migration was significantly increased after neutralisation with an anti-Tp47 antibody. In addition, Tp47 significantly inhibited the expression of p-PI3K, p-AKT, and p-mTOR proteins, and the sequential activation of steps in the PI3K/AKT/mTOR pathways effectively prevented Tp47-induced autophagy. Moreover, Tp47 significantly inhibited the expression of p-FOXO1 protein and promoted FOXO1 nuclear translocation. Inhibition of FOXO1 effectively suppressed Tp47-induced activation of autophagy and inhibition of migration. Treponema pallidum membrane protein Tp47-induced autophagy and inhibited cell migration in HMC3 Cells via the PI3K/AKT/FOXO1 pathway. These data will contribute to understanding the mechanism by which T. pallidum escapes immune killing and clearance after invasion into the central nervous system.
Collapse
Affiliation(s)
- Lin Xie
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Wei Li
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Xin‐Qi Zheng
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
| | - Li‐Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
- Institute of Infectious Disease, School of MedicineXiamen UniversityXiamenChina
| | - Li‐Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
- Institute of Infectious Disease, School of MedicineXiamen UniversityXiamenChina
| | - Jian‐Jun Niu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
- Institute of Infectious Disease, School of MedicineXiamen UniversityXiamenChina
| | - Tian‐Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of MedicineXiamen UniversityXiamenChina
- Institute of Infectious Disease, School of MedicineXiamen UniversityXiamenChina
| |
Collapse
|
8
|
Wang J, He W, Zhang J. A richer and more diverse future for microglia phenotypes. Heliyon 2023; 9:e14713. [PMID: 37025898 PMCID: PMC10070543 DOI: 10.1016/j.heliyon.2023.e14713] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Microglia are the only resident innate immune cells derived from the mesoderm in the nerve tissue. They play a role in the development and maturation of the central nervous system (CNS). Microglia mediate the repair of CNS injury and participate in endogenous immune response induced by various diseases by exerting neuroprotective or neurotoxic effects. Traditionally, microglia are considered to be in a resting state, the M0 type, under physiological conditions. In this state, they perform immune surveillance by constantly monitoring pathological responses in the CNS. In the pathological state, microglia undergo a series of morphological and functional changes from the M0 state and eventually polarize into classically activated microglia (M1) and alternatively activated microglia (M2). M1 microglia release inflammatory factors and toxic substances to inhibit pathogens, while M2 microglia exert neuroprotective effects by promoting nerve repair and regeneration. However, in recent years, the view regarding M1/M2 polarization of microglia has gradually changed. According to some researchers, the phenomenon of microglia polarization is not yet confirmed. The M1/M2 polarization term is used for a simplified description of its phenotype and function. Other researchers believe that the microglia polarization process is rich and diverse, and consequently, the classification method of M1/M2 has limitations. This conflict hinders the academic community from establishing more meaningful microglia polarization pathways and terms, and therefore, a careful revision of the concept of microglia polarization is required. The present article briefly reviews the current consensus and controversy regarding microglial polarization typing to provide supporting materials for a more objective understanding of the functional phenotype of microglia.
Collapse
|
9
|
Xu Z, Zhang G, Zhang X, Lei Y, Sun Y, He Y, Yang F, Nan W, Xing X, Li Y, Lin J. Menstrual blood-derived endometrial stem cells inhibit neuroinflammation by regulating microglia through the TLR4/MyD88/NLRP3/Casp1 pathway. Int J Biochem Cell Biol 2023; 157:106386. [PMID: 36754162 DOI: 10.1016/j.biocel.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Neuroinflammation is a common response in various neurological disorders. Mesenchymal stem cell-based treatment has become a promising therapy for neuroinflammation-associated diseases. However, the effects of mesenchymal stem cells are controversial, and the underlying mechanism is incompletely understood. In the present study, menstrual blood-derived endometrial stem cells were intravenously transplanted into a mouse model of neuroinflammation established by peripheral injection of lipopolysaccharide. Microglial cells challenged with lipopolysaccharide were cultured with conditioned medium from endometrial stem cells. The levels of cytokines were detected by enzyme-linked immunosorbent assay. Cell proliferation and death were detected by Cell Counting Kit 8 and flow cytometry, respectively. The expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88), NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (Casp1) were evaluated by western blotting. The results showed that intravenous transplantation of endometrial stem cells downregulated proinflammatory factors and upregulated anti-inflammatory factors in the brain of mice with neuroinflammation. Conditioned medium suppressed the inflammatory reaction and hyperactivation of microglial cells and protected microglial cells from cell death induced by lipopolysaccharide in vitro. The expression of TLR4, MyD88, NLRP3 and Casp1 in the brain of mice with neuroinflammation and in lipopolysaccharide-stimulated microglial cells was downregulated by endometrial stem cells and conditioned medium, respectively. These data suggested that menstrual blood-derived endometrial stem cells may suppress neuroinflammatory reactions partially by regulating microglia through the TLR4/MyD88/NLRP3/Casp1 signalling pathway. Our findings may be very useful for the development of an alternative stem cell-based therapy for neuroinflammation-associated disorders.
Collapse
Affiliation(s)
- Zhihao Xu
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China.
| | - Guoqing Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Xiaoyue Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Yu Lei
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Yuliang Sun
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Ya'nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang 453003, Henan, PR China
| | - Fen Yang
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Wenbin Nan
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Xuekun Xing
- College of Public Health, Guilin Medical University, Guilin 541199, Guangxi, PR China
| | - Yonghai Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Juntang Lin
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
10
|
Crescitelli MC, Simon I, Ferrini L, Calvo H, Torres AM, Cabero I, Panedas MM, Rauschemberger MB, Aguirre MV, Rodríguez JP, Hernández M, Nieto ML. Anti-Neuroinflammatory Potential of a Nectandra angustifolia ( Laurel Amarillo) Ethanolic Extract. Antioxidants (Basel) 2023; 12:antiox12020232. [PMID: 36829791 PMCID: PMC9952224 DOI: 10.3390/antiox12020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Microglia, the resident macrophage-like population in the CNS, plays an important role in the pathogenesis of many neurodegenerative disorders. Nectandra genus is known to produce different metabolites with anti-inflammatory, anti-oxidant and analgesic properties. Although the species Nectandra angustifolia is popularly used for the treatment of different types of inflammatory processes, its biological effects on neuroinflammation have not yet been addressed. In this study, we have investigated the role of a Nectandra angustifolia ethanolic extract (NaE) in lipopolysaccharide (LPS)-induced neuroinflammation in vitro and in vivo. In LPS-activated BV2 microglial cells, NaE significantly reduced the induced proinflammatory mediators TNF-α, IL-1β, IL-6, COX-2 and iNOS, as well as NO accumulation, while it promoted IL-10 secretion and YM-1 expression. Likewise, reduced CD14 expression levels were detected in microglial cells in the NaE+LPS group. NaE also attenuated LPS-induced ROS and lipid peroxidation build-up in BV2 cells. Mechanistically, NaE prevented NF-κB and MAPKs phosphorylation, as well as NLRP3 upregulation when added before LPS stimulation, although it did not affect the level of some proteins related to antioxidant defense such as Keap-1 and HO-1. Additionally, we observed that NaE modulated some activated microglia functions, decreasing cell migration, without affecting their phagocytic capabilities. In LPS-injected mice, NaE pre-treatment markedly suppressed the up-regulated TNF-α, IL-6 and IL-1β mRNA expression induced by LPS in brain. Our findings indicate that NaE is beneficial in preventing the neuroinflammatory response both in vivo and in vitro. NaE may regulate microglia homeostasis, not only restraining activation of LPS towards the M1 phenotype but promoting an M2 phenotype.
Collapse
Affiliation(s)
- María Carla Crescitelli
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
- Cátedra de Inmunología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología, Bioquímica y Farmacia, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Inmaculada Simon
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Leandro Ferrini
- Laboratorio de Investigaciones Bioquímicas de La Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
- Laboratorio de Productos Naturales Prof. Armando Ricciardi (LabProdNat), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
| | - Hugo Calvo
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Ana M. Torres
- Laboratorio de Investigaciones Bioquímicas de La Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
- Laboratorio de Productos Naturales Prof. Armando Ricciardi (LabProdNat), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
| | - Isabel Cabero
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Mónica Macías Panedas
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - Maria B. Rauschemberger
- Cátedra de Inmunología, Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo de Investigaciones Científicas y Técnicas (CONICET), Departamento de Biología, Bioquímica y Farmacia, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Maria V. Aguirre
- Laboratorio de Investigaciones Bioquímicas de La Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
| | - Juan Pablo Rodríguez
- Laboratorio de Investigaciones Bioquímicas de La Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del NEA, (IQUIBA NEA-UNNE-CONICET), Facultad de Medicina, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
| | - Marita Hernández
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
| | - María Luisa Nieto
- Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), CSIC-Universidad de Valladolid, 47003 Valladolid, Spain
- Correspondence: ; Tel.: +34-983184836
| |
Collapse
|
11
|
Ribba AS, Fraboulet S, Sadoul K, Lafanechère L. The Role of LIM Kinases during Development: A Lens to Get a Glimpse of Their Implication in Pathologies. Cells 2022; 11:cells11030403. [PMID: 35159213 PMCID: PMC8834001 DOI: 10.3390/cells11030403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022] Open
Abstract
The organization of cell populations within animal tissues is essential for the morphogenesis of organs during development. Cells recognize three-dimensional positions with respect to the whole organism and regulate their cell shape, motility, migration, polarization, growth, differentiation, gene expression and cell death according to extracellular signals. Remodeling of the actin filaments is essential to achieve these cell morphological changes. Cofilin is an important binding protein for these filaments; it increases their elasticity in terms of flexion and torsion and also severs them. The activity of cofilin is spatiotemporally inhibited via phosphorylation by the LIM domain kinases 1 and 2 (LIMK1 and LIMK2). Phylogenetic analysis indicates that the phospho-regulation of cofilin has evolved as a mechanism controlling the reorganization of the actin cytoskeleton during complex multicellular processes, such as those that occur during embryogenesis. In this context, the main objective of this review is to provide an update of the respective role of each of the LIM kinases during embryonic development.
Collapse
|