1
|
Almasoudi SH, Al-Kuraishy HM, Al-Gareeb AI, Eliwa D, Alexiou A, Papadakis M, Batiha GES. Role of mitogen-activated protein kinase inhibitors in Alzheimer's disease: Rouge of brain kinases. Brain Res Bull 2025; 224:111296. [PMID: 40073950 DOI: 10.1016/j.brainresbull.2025.111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Alzheimer's disease (AD) is the chief cause of dementia and related mortality worldwide due to progressive accumulation of amyloid peptide (Aβ) and hyperphosphorylated tau protein. These neuropathological changes lead to cognitive impairment and memory dysfunction. Notably, most Food drug Administration (FDA) approved anti-AD medications such as tacrine and donepezil are engaged with symptomatic relief of cognitive impairment but do not reverse the underlying AD neuropathology. Therefore, searching for new anti-AD is advisable. It has been shown that the inflammatory signaling pathways such as mitogen-activated protein kinases (MAPK) are intricate with the Aβ and tau protein neuropathology in AD. In addition, inhibition of brain MAPK plays a critical role in mitigating cognitive dysfunction in early-onset AD. Though, the fundamental mechanisms for the beneficial effects of MAPK inhibitors were not fully explained. Therefore, this review aims to discuss the potential molecular mechanisms of MAPK inhibitors in AD.
Collapse
Affiliation(s)
- Suad Hamdan Almasoudi
- Department of Biology, College of Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department Of Clinical Pharmacology and Medicine, College Of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Head of Jabir ibn Hayyan Medical University, P.O.Box13 Kufa, Al-Ameer Qu, Najaf, Iraq.
| | - Duaa Eliwa
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; AFNP Med, Wien 1030, Austria
| | - Marios Papadakis
- University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
2
|
Ma HH, Zheng JY, Qiu YH, Su S, Lu FM, Wu GL, Zhang SJ, Cai YF. Dengzhan Shengmai capsule ameliorates cognitive impairment via inhibiting ER stress in APP/PS1 mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119016. [PMID: 39505222 DOI: 10.1016/j.jep.2024.119016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is a common type of neurodegenerative disease with the β-amyloid plaques (Aβ) deposition. Previously, Dengzhan Shengmai capsule (DZSM) has been shown to reduce the pathology associated with AD, but the underlying mechanism is unclear. AIM OF STUDY This study investigated the potential mechanisms of DZSM against AD. MATERIALS AND METHODS The six-month-old wild-type male mice and APP/PS1 double transgenic male mice were administered 0.9 % saline or DZSM for 8 weeks by gavage. Open field test, new object recognition test, and Morris Water maze test were used to assess spatial learning and memory. Aβ plaques in brains were visualized using ThT staining. Nissl staining, TUNEL staining, and Western blot analyses were used to detect the neuronal function and apoptosis level. The superoxide dismutase (SOD), glutathione peroxidase assay kit (GSH-Px), and malondialdehyde (MDA) kits were performed to assess oxidative stress levels. Then, immunofluorescence and Western blot analysis were applied to evaluate ER stress pathway protein levels. Finally, HT22 cells were treated by Aβ1-42 with or without DZSM medicated serum. Cell viability was assessed using the CCK-8 assay, and Western blot analysis was applied to evaluate ER stress pathway protein levels. RESULTS Open filed test, new object recognition test and Morris Water maze test showed that DZSM restored cognitive disorders in APP/PS1 mice. Immunohistochemistry and Thioflavin T staining results indicated that DZSM reduced Aβ plaques in the brain. Deeper and denser Nissl bodies were found in APP/PS1 mice after DZSM administration. Besides, APP/PS1 mice treated with DZSM showed a lower level of TUNEL and Bax/Bcl-2 ratio. DZSM improved the acetylcholine (ACh), choline acetyltransferase (ChAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity while reducing acetylcholinesterase (AChE) and malondialdehyde (MDA) activity. In addition, the levels of ER stress pathway containing Phospho-PKR-like ER kinase (P-PERK), phosphorylate eukaryotic initiation factor 2 (P-eIF2α), activating transcription factor 4 (ATF4), glutamine-rich protein 1 (QRICH1), phosphorylate inositol-requiring protein 1α (P-IRE1α), the spliced form of X-box binding protein 1 (XBP1s), activating transcription factor-6 (ATF6) and C/EBP homologous binding protein (CHOP) were decreased by DZSM. CCK-8 results indicated that DZSM medicated serum played cytoprotective effects on Aβ1-42-induced HT22 cells. Western blot results suggested DZSM possibly inhibited ER stress pathways in Aβ1-42-induced HT22 cells. CONCLUSION The potential protective mechanism of DZSM on cognitive impairment in AD might be related to ER stress pathways.
Collapse
Affiliation(s)
- Hui-Han Ma
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Yu-Hui Qiu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Shan Su
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Fang-Mei Lu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Manzini V, Cappelletti P, Orefice NS, Brentari I, Rigby MJ, Lo Giudice M, Feligioni M, Rivabene R, Crestini A, Manfredi F, Talarico G, Bruno G, Corbo M, Puglielli L, Denti MA, Piscopo P. miR-92a-3p and miR-320a are Upregulated in Plasma Neuron-Derived Extracellular Vesicles of Patients with Frontotemporal Dementia. Mol Neurobiol 2025; 62:2573-2586. [PMID: 39138758 PMCID: PMC11772464 DOI: 10.1007/s12035-024-04386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Despite the efforts to identify fluid biomarkers to improve diagnosis of Frontotemporal dementia (FTD), only a few candidates have been described in recent years. In a previous study, we identified three circulating miRNAs (miR-92a-3p, miR-320a and miR-320b) differentially expressed in FTD patients with respect to healthy controls and/or Alzheimer's disease (AD) patients. Now, we investigated whether those changes could be due to miRNAs contained in neuron-derived extracellular vesicles (NDEVs). We also evaluated miRNAs content in total plasma EVs and in CSF samples. The analysis of plasma NDEVs carried out on 40 subjects including controls (n = 13), FTD (n = 13) and AD (n = 14) patients, showed that both miR-92a-3p and miR-320a levels were triplicated in the FTD group if compared with CT and AD patients. Increased levels of the same miRNAs were found also in CSF derived from FTD group compared to CTs. No differences were observed in expression levels of miR-320b among the three groups. Worthy of note, all miRNAs analysed were increased in an FTD cell model, MAPT IVS10 + 16 neurons. Our results suggest that miR-92a and miR-320a in NDEVs could be proposed as FTD biomarkers.
Collapse
Affiliation(s)
- Valeria Manzini
- Department of Neuroscience, Istituto Superiore Di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
- Department of Biology and Biotechnology Charles Darwin, University of Rome "Sapienza", Rome, Italy
| | - Pamela Cappelletti
- Department of Neurorehabilitation Sciences, Casa Cura Igea, Milan, Italy
| | - Nicola S Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Feinberg School of Medicine, Department of Pharmacology, Northwestern University, Chicago, IL, 60611, USA
| | - Ilaria Brentari
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Maria Lo Giudice
- Need Institute, Foundation for Cure and Rehabilitation of Neurological Diseases, Milan, Italy
| | - Marco Feligioni
- Department of Neurorehabilitation Sciences, Casa Cura Igea, Milan, Italy
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome, Italy
| | - Roberto Rivabene
- Department of Neuroscience, Istituto Superiore Di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore Di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Francesco Manfredi
- National Center for Global Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, University of Rome "Sapienza", Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, University of Rome "Sapienza", Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Igea, Milan, Italy
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, 53705, USA
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Paola Piscopo
- Department of Neuroscience, Istituto Superiore Di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| |
Collapse
|
4
|
Arora T, Sharma G, Prashar V, Singh R, Sharma A, Changotra H, Parkash J. Mechanistic Evaluation of miRNAs and Their Targeted Genes in the Pathogenesis and Therapeutics of Parkinson's Disease. Mol Neurobiol 2025; 62:91-108. [PMID: 38823001 DOI: 10.1007/s12035-024-04261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
MicroRNA (miRNA) are usually 18-25 nucleotides long non-coding RNA targeting post-transcriptional regulation of genes involved in various biological processes. The function of miRNA is essential for maintaining a homeostatic cellular condition, regulating autophagy, cellular motility, and inflammation. Dysregulation of miRNA is responsible for multiple disorders, including neurodegeneration, which has emerged as a severe problem in recent times and has verified itself as a life-threatening condition that can be understood by the continuous destruction of neurons affecting various cognitive and motor functions. Parkinson's disease (PD) is the second most common, permanently debilitating neurodegenerative disorder after Alzheimer's, mainly characterized by uncontrolled tremor, stiffness, bradykinesia or akinesia (slowness in movement), and post-traumatic stress disorder. PD is mainly caused by the demolition of the primary dopamine neurotransmitter secretory cells and dopaminergic or dopamine secretory neurons in the substantia nigra pars compacta of the midbrain, which are majorly responsible for motor functions. In this study, a systematic evaluation of research articles from year 2017 to 2022 was performed on multiple search engines, and lists of miRNA being dysregulated in PD in different body components were generated. This study highlighted miR-7, miR-124, miR-29 family, and miR-425, showing altered expression levels during PD's progression, further regulating the expression of multiple genes responsible for PD.
Collapse
Affiliation(s)
- Tania Arora
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Gaurav Sharma
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Vikash Prashar
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Biology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143101, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
5
|
Sharma M, Pal P, Gupta SK. Deciphering the role of miRNAs in Alzheimer's disease: Predictive targeting and pathway modulation - A systematic review. Ageing Res Rev 2024; 101:102483. [PMID: 39236856 DOI: 10.1016/j.arr.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's Disease (AD), a multifaceted neurodegenerative disorder, is increasingly understood through the regulatory lens of microRNAs (miRNAs). This review comprehensively examines the pivotal roles of miRNAs in AD pathogenesis, shedding light on their influence across various pathways. We delve into the biogenesis and mechanisms of miRNAs, emphasizing their significant roles in brain function and regulation. The review then navigates the complex landscape of AD pathogenesis, identifying key genetic, environmental, and molecular factors, with a focus on hallmark pathological features like amyloid-beta accumulation and tau protein hyperphosphorylation. Central to our discussion is the intricate involvement of miRNAs in these processes, highlighting their altered expression patterns in AD and subsequent functional implications, from amyloid-beta metabolism to tau pathology, neuroinflammation, oxidative stress, and synaptic dysfunction. The predictive analysis of miRNA targets using computational methods, complemented by experimental validations, forms a crucial part of our discourse, unraveling the contributions of specific miRNAs to AD. Moreover, we explore the therapeutic potential of miRNAs as biomarkers and in miRNA-based interventions, while addressing the challenges in translating these findings into clinical practice. This review aims to enhance understanding of miRNAs in AD, offering a foundation for future research directions and novel therapeutic strategies.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Pankaj Pal
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
6
|
Aschner M, Skalny AV, Santamaria A, Rocha JBT, Mansouri B, Tizabi Y, Madeddu R, Lu R, Lee E, Tinkov AA. Epigenetic Mechanisms of Aluminum-Induced Neurotoxicity and Alzheimer's Disease: A Focus on Non-Coding RNAs. Neurochem Res 2024; 49:2988-3005. [PMID: 39060769 DOI: 10.1007/s11064-024-04214-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Aluminum (Al) is known to induce neurotoxic effects, potentially contributing to Alzheimer's disease (AD) pathogenesis. Recent studies suggest that epigenetic modification may contribute to Al neurotoxicity, although the mechanisms are still debatable. Therefore, the objective of the present study was to summarize existing data on the involvement of epigenetic mechanisms in Al-induced neurotoxicity, especially AD-type pathology. Existing data demonstrate that Al exposure induces disruption in DNA methylation, histone modifications, and non-coding RNA expression in brains. Alterations in DNA methylation following Al exposure were shown to be mediated by changes in expression and activity of DNA methyltransferases (DNMTs) and ten-eleven translocation proteins (TETs). Al exposure was shown to reduce histone acetylation by up-regulating expression of histone deacetylases (HDACs) and impair histone methylation, ultimately contributing to down-regulation of brain-derived neurotrophic factor (BDNF) expression and activation of nuclear factor κB (NF-κB) signaling. Neurotoxic effects of Al exposure were also associated with aberrant expression of non-coding RNAs, especially microRNAs (miR). Al-induced patterns of miR expression were involved in development of AD-type pathology by increasing amyloid β (Aβ) production through up-regulation of Aβ precursor protein (APP) and β secretase (BACE1) expression (down-regulation of miR-29a/b, miR-101, miR-124, and Let-7c expression), increasing in neuroinflammation through NF-κB signaling (up-regulation of miR-9, miR-125b, miR-128, and 146a), as well as modulating other signaling pathways. Furthermore, reduced global DNA methylation, altered histone modification, and aberrant miRNA expression were associated with cognitive decline in Al-exposed subjects. However, further studies are required to evaluate the contribution of epigenetic mechanisms to Al-induced neurotoxicity and/or AD development.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, 04960, Mexico
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Roberto Madeddu
- Department of Biomedical Sciences-Histology, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Rongzu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl, 150000, Russia.
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., 2-4, Moscow, 119146, Russia.
| |
Collapse
|
7
|
de Lourdes Signorini-Souza I, Tureck LV, Batistela MS, Coutinho de Almeida R, Monteiro de Almeida S, Furtado-Alle L, Lehtonen Rodrigues Souza R. The potential of five c-miRNAs as serum biomarkers for Late-Onset Alzheimer's disease diagnosis: miR-10a-5p, miR-29b-2-5p, miR-125a-5p, miR-342-3p, and miR-708-5p. Brain Res 2024; 1841:149090. [PMID: 38880411 DOI: 10.1016/j.brainres.2024.149090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The nervous system is rich in miRNAs, indicating an important role of these molecules in regulating processes associated with cognition, memory, and others. Therefore, qualitative and quantitative imbalances involving such miRNAs may be involved in dementia contexts, including Late-Onset Alzheimer's Disease (LOAD). To test the viability of circulating miRNAs (c-miRNAs) as biomarkers for LOAD, we proceed accordingly to the following reasoning. The first stage was to discover and identify profile of c-miRNAs by RNA sequencing (RNA-Seq). For this purpose, blood serum samples were used from LOAD patients (n = 5) and cognitively healthy elderly control group (CTRL_CH) (n = 5), all over 70 years old. We identified seven c-miRNAs differentially expressed (p ≤ 0.05) in the serum of LOAD patients compared to CTRL_CH (miR-10a-5p; miR-29b-2-5p; miR-125a-5p; miR-342-3p, miR-708-5p, miR-380-5p and miR-340-3p). Of these, five (p ≤ 0.01) were selected for in silico analysis (miR-10a-5p; miR-29b-2-5p; miR-125a-5p; miR-342-3p, miR-708-5p), for which 44 relevant target genes were found regulated by these c-miRNAs and related to LOAD. Through the analysis of these target genes in databases, it was possible to observe that they have functions related to the development and progress of LOAD, directly or indirectly connecting the different Alzheimer's pathways. Thus, this work found five promising serum c-miRNAs as options for biomarkers contributing to LOAD diagnosis. Our study shows the complex network between these molecules and LOAD, supporting the relevance of studies using c-miRNAs in dementia contexts.
Collapse
Affiliation(s)
- Isadora de Lourdes Signorini-Souza
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Luciane Viater Tureck
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Meire Silva Batistela
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, LUMC, Leiden, the Netherlands
| | | | - Lupe Furtado-Alle
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Ricardo Lehtonen Rodrigues Souza
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil.
| |
Collapse
|
8
|
Yadav B, Kaur S, Yadav A, Verma H, Kar S, Sahu BK, Pati KR, Sarkar B, Dhiman M, Mantha AK. Implications of organophosphate pesticides on brain cells and their contribution toward progression of Alzheimer's disease. J Biochem Mol Toxicol 2024; 38:e23660. [PMID: 38356323 DOI: 10.1002/jbt.23660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
The most widespread neurodegenerative disorder, Alzheimer's disease (AD) is marked by severe behavioral abnormalities, cognitive and functional impairments. It is inextricably linked with the deposition of amyloid β (Aβ) plaques and tau protein in the brain. Loss of white matter, neurons, synapses, and reactive microgliosis are also frequently observed in patients of AD. Although the causative mechanisms behind the neuropathological alterations in AD are not fully understood, they are likely influenced by hereditary and environmental factors. The etiology and pathogenesis of AD are significantly influenced by the cells of the central nervous system, namely, glial cells and neurons, which are directly engaged in the transmission of electrical signals and the processing of information. Emerging evidence suggests that exposure to organophosphate pesticides (OPPs) can trigger inflammatory responses in glial cells, leading to various cascades of events that contribute to neuroinflammation, neuronal damage, and ultimately, AD pathogenesis. Furthermore, there are striking similarities between the biomarkers associated with AD and OPPs, including neuroinflammation, oxidative stress, dysregulation of microRNA, and accumulation of toxic protein aggregates, such as amyloid β. These shared markers suggest a potential mechanistic link between OPP exposure and AD pathology. In this review, we attempt to address the role of OPPs on altered cell physiology of the brain cells leading to neuroinflammation, mitochondrial dysfunction, and oxidative stress linked with AD pathogenesis.
Collapse
Affiliation(s)
- Bharti Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Swastitapa Kar
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Binit Kumar Sahu
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Kumari Riya Pati
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Bibekanada Sarkar
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
9
|
Llera-Oyola J, Carceller H, Andreu Z, Hidalgo MR, Soler-Sáez I, Gordillo F, Gómez-Cabañes B, Roson B, de la Iglesia-Vayá M, Mancuso R, Guerini FR, Mizokami A, García-García F. The role of microRNAs in understanding sex-based differences in Alzheimer's disease. Biol Sex Differ 2024; 15:13. [PMID: 38297404 PMCID: PMC10832236 DOI: 10.1186/s13293-024-00588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The incidence of Alzheimer's disease (AD)-the most frequent cause of dementia-is expected to increase as life expectancies rise across the globe. While sex-based differences in AD have previously been described, there remain uncertainties regarding any association between sex and disease-associated molecular mechanisms. Studying sex-specific expression profiles of regulatory factors such as microRNAs (miRNAs) could contribute to more accurate disease diagnosis and treatment. METHODS A systematic review identified six studies of microRNA expression in AD patients that incorporated information regarding the biological sex of samples in the Gene Expression Omnibus repository. A differential microRNA expression analysis was performed, considering disease status and patient sex. Subsequently, results were integrated within a meta-analysis methodology, with a functional enrichment of meta-analysis results establishing an association between altered miRNA expression and relevant Gene Ontology terms. RESULTS Meta-analyses of miRNA expression profiles in blood samples revealed the alteration of sixteen miRNAs in female and 22 miRNAs in male AD patients. We discovered nine miRNAs commonly overexpressed in both sexes, suggesting a shared miRNA dysregulation profile. Functional enrichment results based on miRNA profiles revealed sex-based differences in biological processes; most affected processes related to ubiquitination, regulation of different kinase activities, and apoptotic processes in males, but RNA splicing and translation in females. Meta-analyses of miRNA expression profiles in brain samples revealed the alteration of six miRNAs in female and four miRNAs in male AD patients. We observed a single underexpressed miRNA in female and male AD patients (hsa-miR-767-5p); however, the functional enrichment analysis for brain samples did not reveal any specifically affected biological process. CONCLUSIONS Sex-specific meta-analyses supported the detection of differentially expressed miRNAs in female and male AD patients, highlighting the relevance of sex-based information in biomedical data. Further studies on miRNA regulation in AD patients should meet the criteria for comparability and standardization of information.
Collapse
Affiliation(s)
- Jaime Llera-Oyola
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Carlos Simon Foundation-INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - Héctor Carceller
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spanish National Network for Research in Mental Health, Madrid, Spain
- Joint Unit in Biomedical Imaging FISABIO-CIPF, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, València, Spain
| | - Zoraida Andreu
- Foundation Valencian Institute of Oncology (FIVO), 46009, Valencia, Spain
| | - Marta R Hidalgo
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Irene Soler-Sáez
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Fernando Gordillo
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Borja Gómez-Cabañes
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Beatriz Roson
- Carlos Simon Foundation-INCLIVA Instituto de Investigación Sanitaria, Valencia, Spain
| | - Maria de la Iglesia-Vayá
- Joint Unit in Biomedical Imaging FISABIO-CIPF, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, València, Spain
| | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148, Milan, Italy
| | | | - Akiko Mizokami
- Oral Health/Brain Health/Total Health (OBT) Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Francisco García-García
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center (CIPF), C/ Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| |
Collapse
|
10
|
Han SW, Pyun JM, Bice PJ, Bennett DA, Saykin AJ, Kim SY, Park YH, Nho K. miR-129-5p as a biomarker for pathology and cognitive decline in Alzheimer's disease. Alzheimers Res Ther 2024; 16:5. [PMID: 38195609 PMCID: PMC10775662 DOI: 10.1186/s13195-023-01366-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Alzheimer's dementia (AD) pathogenesis involves complex mechanisms, including microRNA (miRNA) dysregulation. Integrative network and machine learning analysis of miRNA can provide insights into AD pathology and prognostic/diagnostic biomarkers. METHODS We performed co-expression network analysis to identify network modules associated with AD, its neuropathology markers, and cognition using brain tissue miRNA profiles from the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP) (N = 702) as a discovery dataset. We performed association analysis of hub miRNAs with AD, its neuropathology markers, and cognition. After selecting target genes of the hub miRNAs, we performed association analysis of the hub miRNAs with their target genes and then performed pathway-based enrichment analysis. For replication, we performed a consensus miRNA co-expression network analysis using the ROS/MAP dataset and an independent dataset (N = 16) from the Gene Expression Omnibus (GEO). Furthermore, we performed a machine learning approach to assess the performance of hub miRNAs for AD classification. RESULTS Network analysis identified a glucose metabolism pathway-enriched module (M3) as significantly associated with AD and cognition. Five hub miRNAs (miR-129-5p, miR-433, miR-1260, miR-200a, and miR-221) of M3 had significant associations with AD clinical and/or pathologic traits, with miR129-5p by far the strongest across all phenotypes. Gene-set enrichment analysis of target genes associated with their corresponding hub miRNAs identified significantly enriched biological pathways including ErbB, AMPK, MAPK, and mTOR signaling pathways. Consensus network analysis identified two AD-associated consensus network modules and two hub miRNAs (miR-129-5p and miR-221). Machine learning analysis showed that the AD classification performance (area under the curve (AUC) = 0.807) of age, sex, and APOE ε4 carrier status was significantly improved by 6.3% with inclusion of five AD-associated hub miRNAs. CONCLUSIONS Integrative network and machine learning analysis identified miRNA signatures, especially miR-129-5p, as associated with AD, its neuropathology markers, and cognition, enhancing our understanding of AD pathogenesis and leading to better performance of AD classification as potential diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Sang-Won Han
- Department of Neurology, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, 77 Sakju-ro, Chuncheon-si, Gangwon-do, 24253, Republic of Korea
| | - Jung-Min Pyun
- Department of Neurology, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 03080, Republic of Korea
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W. Harrison St., Suite 1000, Chicago, IL, 60612, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sang Yun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, 82, Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, 82, Gumi-ro 173 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, Republic of Korea.
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Kaur S, Verma H, Kaur S, Gangwar P, Yadav A, Yadav B, Rao R, Dhiman M, Mantha AK. Understanding the multifaceted role of miRNAs in Alzheimer's disease pathology. Metab Brain Dis 2024; 39:217-237. [PMID: 37505443 DOI: 10.1007/s11011-023-01265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Small non-coding RNAs (miRNAs) regulate gene expression by binding to mRNA and mediating its degradation or inhibiting translation. Since miRNAs can regulate the expression of several genes, they have multiple roles to play in biological processes and human diseases. The majority of miRNAs are known to be expressed in the brain and are involved in synaptic functions, thus marking their presence and role in major neurodegenerative disorders, including Alzheimer's disease (AD). In AD, amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) are known to be the major hallmarks. The clearance of Aβ and tau is known to be associated with miRNA dysregulation. In addition, the β-site APP cleaving enzyme (BACE 1), which cleaves APP to form Aβ, is also found to be regulated by miRNAs, thus directly affecting Aβ accumulation. Growing evidences suggest that neuroinflammation can be an initial event in AD pathology, and miRNAs have been linked with the regulation of neuroinflammation. Inflammatory disorders have also been associated with AD pathology, and exosomes associated with miRNAs are known to regulate brain inflammation, suggesting for the role of systemic miRNAs in AD pathology. Several miRNAs have been related in AD, years before the clinical symptoms appear, most of which are associated with regulating the cell cycle, immune system, stress responses, cellular senescence, nerve growth factor (NGF) signaling, and synaptic regulation. Phytochemicals, especially polyphenols, alter the expression of various miRNAs by binding to miRNAs or binding to the transcriptional activators of miRNAs, thus control/alter various metabolic pathways. Awing to the sundry biological processes being regulated by miRNAs in the brain and regulation of expression of miRNAs via phytochemicals, miRNAs and the regulatory bioactive phytochemicals can serve as therapeutic agents in the treatment and management of AD.
Collapse
Affiliation(s)
- Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Anuradha Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Bharti Yadav
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Rashmi Rao
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
12
|
Pinto-Hernandez P, Castilla-Silgado J, Coto-Vilcapoma A, Fernández-Sanjurjo M, Fernández-García B, Tomás-Zapico C, Iglesias-Gutiérrez E. Modulation of microRNAs through Lifestyle Changes in Alzheimer's Disease. Nutrients 2023; 15:3688. [PMID: 37686720 PMCID: PMC10490103 DOI: 10.3390/nu15173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Lifestyle factors, including diet and physical activity (PA), are known beneficial strategies to prevent and delay Alzheimer's disease (AD) development. Recently, microRNAs have emerged as potential biomarkers in multiple diseases, including AD. The aim of this review was to analyze the available information on the modulatory effect of lifestyle on microRNA expression in AD. Few studies have addressed this question, leaving important gaps and limitations: (1) in human studies, only circulating microRNAs were analyzed; (2) in mice studies, microRNA expression was only analyzed in brain tissue; (3) a limited number of microRNAs was analyzed; (4) no human nutritional intervention studies were conducted; and (5) PA interventions in humans and mice were poorly detailed and only included aerobic training. Despite this, some conclusions could be drawn. Circulating levels of let-7g-5p, miR-107, and miR-144-3p were associated with overall diet quality in mild cognitive impairment patients. In silico analysis showed that these microRNAs are implicated in synapse formation, microglia activation, amyloid beta accumulation, and pro-inflammatory pathways, the latter also being targeted by miR-129-5p and miR-192-5p, whose circulating levels are modified by PA in AD patients. PA also modifies miR-132, miR-15b-5p, miR-148b-3p, and miR-130a-5p expression in mice brains, which targets are related to the regulation of neuronal activity, ageing, and pro-inflammatory pathways. This supports the need to further explore lifestyle-related miRNA changes in AD, both as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Paola Pinto-Hernandez
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Juan Castilla-Silgado
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Almudena Coto-Vilcapoma
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Manuel Fernández-Sanjurjo
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Benjamín Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
- Department of Morphology and Cell Biology, Anatomy, University of Oviedo, 33006 Asturias, Spain
| | - Cristina Tomás-Zapico
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Eduardo Iglesias-Gutiérrez
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| |
Collapse
|
13
|
Walgrave H, Penning A, Tosoni G, Snoeck S, Davie K, Davis E, Wolfs L, Sierksma A, Mars M, Bu T, Thrupp N, Zhou L, Moechars D, Mancuso R, Fiers M, Howden AJ, De Strooper B, Salta E. microRNA-132 regulates gene expression programs involved in microglial homeostasis. iScience 2023; 26:106829. [PMID: 37250784 PMCID: PMC10213004 DOI: 10.1016/j.isci.2023.106829] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
microRNA-132 (miR-132), a known neuronal regulator, is one of the most robustly downregulated microRNAs (miRNAs) in the brain of Alzheimer's disease (AD) patients. Increasing miR-132 in AD mouse brain ameliorates amyloid and Tau pathologies, and also restores adult hippocampal neurogenesis and memory deficits. However, the functional pleiotropy of miRNAs requires in-depth analysis of the effects of miR-132 supplementation before it can be moved forward for AD therapy. We employ here miR-132 loss- and gain-of-function approaches using single-cell transcriptomics, proteomics, and in silico AGO-CLIP datasets to identify molecular pathways targeted by miR-132 in mouse hippocampus. We find that miR-132 modulation significantly affects the transition of microglia from a disease-associated to a homeostatic cell state. We confirm the regulatory role of miR-132 in shifting microglial cell states using human microglial cultures derived from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Amber Penning
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Giorgia Tosoni
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Sarah Snoeck
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Bioinformatics Core Facility, 3000 Leuven, Belgium
| | - Emma Davis
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Mayte Mars
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Taofeng Bu
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Nicola Thrupp
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Lujia Zhou
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Diederik Moechars
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Andrew J.M. Howden
- UK Dementia Research Institute, University of Dundee, Dundee DD1 4HN, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
14
|
Lukiw WJ. MicroRNA (miRNA) Complexity in Alzheimer's Disease (AD). BIOLOGY 2023; 12:788. [PMID: 37372073 DOI: 10.3390/biology12060788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023]
Abstract
AD is a complex, progressive, age-related neurodegenerative disorder representing the most common cause of senile dementia and neurological dysfunction in our elderly domestic population. The widely observed heterogeneity of AD is a reflection of the complexity of the AD process itself and the altered molecular-genetic mechanisms operating in the diseased human brain and CNS. One of the key players in this complex regulation of gene expression in human pathological neurobiology are microRNAs (miRNAs) that, through their actions, shape the transcriptome of brain cells that normally associate with very high rates of genetic activity, gene transcription and messenger RNA (mRNA) generation. The analysis of miRNA populations and the characterization of their abundance, speciation and complexity can further provide valuable clues to our molecular-genetic understanding of the AD process, especially in the sporadic forms of this common brain disorder. Current in-depth analyses of high-quality AD and age- and gender-matched control brain tissues are providing pathophysiological miRNA-based signatures of AD that can serve as a basis for expanding our mechanistic understanding of this disorder and the future design of miRNA- and related RNA-based therapeutics. This focused review will consolidate the findings from multiple laboratories as to which are the most abundant miRNA species, both free and exosome-bound in the human brain and CNS, which miRNA species appear to be the most prominently affected by the AD process and review recent developments and advancements in our understanding of the complexity of miRNA signaling in the hippocampal CA1 region of AD-affected brains.
Collapse
Affiliation(s)
- Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Alchem Biotech Research, Toronto, ON M5S 1A8, Canada
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA 70112, USA
- Department Neurology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
MicroRNAs and MAPKs: Evidence of These Molecular Interactions in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054736. [PMID: 36902178 PMCID: PMC10003111 DOI: 10.3390/ijms24054736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known to be the leading cause of dementia worldwide. Many microRNAs (miRNAs) were found deregulated in the brain or blood of AD patients, suggesting a possible key role in different stages of neurodegeneration. In particular, mitogen-activated protein kinases (MAPK) signaling can be impaired by miRNA dysregulation during AD. Indeed, the aberrant MAPK pathway may facilitate the development of amyloid-beta (Aβ) and Tau pathology, oxidative stress, neuroinflammation, and brain cell death. The aim of this review was to describe the molecular interactions between miRNAs and MAPKs during AD pathogenesis by selecting evidence from experimental AD models. Publications ranging from 2010 to 2023 were considered, based on PubMed and Web of Science databases. According to obtained data, several miRNA deregulations may regulate MAPK signaling in different stages of AD and conversely. Moreover, overexpressing or silencing miRNAs involved in MAPK regulation was seen to improve cognitive deficits in AD animal models. In particular, miR-132 is of particular interest due to its neuroprotective functions by inhibiting Aβ and Tau depositions, as well as oxidative stress, through ERK/MAPK1 signaling modulation. However, further investigations are required to confirm and implement these promising results.
Collapse
|
16
|
Fišar Z. Linking the Amyloid, Tau, and Mitochondrial Hypotheses of Alzheimer's Disease and Identifying Promising Drug Targets. Biomolecules 2022; 12:1676. [PMID: 36421690 PMCID: PMC9687482 DOI: 10.3390/biom12111676] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Damage or loss of brain cells and impaired neurochemistry, neurogenesis, and synaptic and nonsynaptic plasticity of the brain lead to dementia in neurodegenerative diseases, such as Alzheimer's disease (AD). Injury to synapses and neurons and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles are considered the main morphological and neuropathological features of AD. Age, genetic and epigenetic factors, environmental stressors, and lifestyle contribute to the risk of AD onset and progression. These risk factors are associated with structural and functional changes in the brain, leading to cognitive decline. Biomarkers of AD reflect or cause specific changes in brain function, especially changes in pathways associated with neurotransmission, neuroinflammation, bioenergetics, apoptosis, and oxidative and nitrosative stress. Even in the initial stages, AD is associated with Aβ neurotoxicity, mitochondrial dysfunction, and tau neurotoxicity. The integrative amyloid-tau-mitochondrial hypothesis assumes that the primary cause of AD is the neurotoxicity of Aβ oligomers and tau oligomers, mitochondrial dysfunction, and their mutual synergy. For the development of new efficient AD drugs, targeting the elimination of neurotoxicity, mutual potentiation of effects, and unwanted protein interactions of risk factors and biomarkers (mainly Aβ oligomers, tau oligomers, and mitochondrial dysfunction) in the early stage of the disease seems promising.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague, Czech Republic
| |
Collapse
|
17
|
Ramírez AE, Gil-Jaramillo N, Tapias MA, González-Giraldo Y, Pinzón A, Puentes-Rozo PJ, Aristizábal-Pachón AF, González J. MicroRNA: A Linking between Astrocyte Dysfunction, Mild Cognitive Impairment, and Neurodegenerative Diseases. Life (Basel) 2022; 12:life12091439. [PMID: 36143475 PMCID: PMC9505027 DOI: 10.3390/life12091439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 12/06/2022] Open
Abstract
Simple Summary Neurodegenerative diseases are complex neurological disorders with a high incidence worldwide in older people, increasing hospital visits and requiring expensive treatments. As a precursor phase of neurodegenerative diseases, cognitive impairment needs to be studied to understand the factors that influence its development and improve patients’ quality of life. The present review compiles possible factors and biomarkers for diagnosing mild cognitive impairment based on the most recent studies involving miRNAs. These molecules can direct the gene expression in multiple cells, affecting their behavior under certain conditions, such as stressing factors. This review encourages further research into biomarkers that identify cognitive impairment in cellular models such as astrocytes, which are brain cells capable of maintaining the optimal conditions for the central nervous system functioning. Abstract The importance of miRNAs in cellular processes and their dysregulation has taken significant importance in understanding different pathologies. Due to the constant increase in the prevalence of neurodegenerative diseases (ND) worldwide and their economic impact, mild cognitive impairment (MCI), considered a prodromal phase, is a logical starting point to study this public health problem. Multiple studies have established the importance of miRNAs in MCI, including astrocyte regulation during stressful conditions. Additionally, the protection mechanisms exerted by astrocytes against some damage in the central nervous system (CNS) lead to astrocytic reactivation, in which a differential expression of miRNAs has been shown. Nevertheless, excessive reactivation can cause neurodegeneration, and a clear pattern defining the equilibrium point between a neuroprotective or detrimental astrocytic phenotype is unknown. Therefore, the miRNA expression has gained significant attention to understand the maintenance of brain balance and improve the diagnosis and treatment at earlier stages in the ND. Here, we provide a comprehensive review of the emerging role of miRNAs in cellular processes that contribute to the loss of cognitive function, including lipotoxicity, which can induce chronic inflammation, also considering the fundamental role of astrocytes in brain homeostasis.
Collapse
Affiliation(s)
- Angelica E. Ramírez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Natalia Gil-Jaramillo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - María Alejandra Tapias
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Unidad de Neurociencias Cognitivas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 080007, Colombia
| | | | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Correspondence:
| |
Collapse
|