1
|
Sarkar N, Kumar A. Paradigm shift: microRNAs interact with target gene promoters to cause transcriptional gene activation or silencing. Exp Cell Res 2025; 444:114372. [PMID: 39662662 DOI: 10.1016/j.yexcr.2024.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
MicroRNAs (miRNAs/miRs) are small (18-25 nucleotides in length), endogenous, non-coding RNAs that typically repress gene expression by interacting with the 3'untranslated regions (3'UTRs) of target mRNAs in the cytoplasm. While most of the scientific community still views miRNAs as repressors of gene expression, this review highlights their non-canonical novel role in the nucleus as activators or silencers of target gene transcription through miRNA-promoter interaction. The mechanistic details of the transcriptional role of miRNAs are yet to be elucidated, however, they can be explained by prospective models. In this review, we aim to discuss the different examples of transcriptional regulation by miRNAs and their possible mechanism of action, thereby offering a comprehensive perspective on the role of miRNAs in gene regulation and their importance in health and diseases.
Collapse
Affiliation(s)
- Neelanjana Sarkar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| | - Arun Kumar
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
2
|
Ma W, Xu L, Sun X, Qi Y, Chen S, Li D, Jin Y, Chen N, Zhu X, Luo J, Li C, Zhao K, Zheng Y, Yu D. Using a human bronchial epithelial cell-based malignant transformation model to explore the function of hsa-miR-200 family in the progress of PM 2.5-induced lung cancer development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120981. [PMID: 36587786 DOI: 10.1016/j.envpol.2022.120981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Numerous studies have revealed that ambient long-term exposure to fine particulate matter (PM2.5) is significantly related to the development of lung cancer, but the molecular mechanisms of PM2.5 exposure-induced lung cancer remains unknown. As an important epigenetic regulator, microRNAs (miRNAs) play vital roles in responding to environment exposure and various diseases including lung cancer development. Here we constructed a PM2.5-induced malignant transformed cell model and found that miR-200 family, especially miR-200a-3p, was involved in the process of PM2.5 induced lung cancer. Further investigation of the function of miR-200 family (miR-200a-3p as a representative revealed that miR-200a-3p promoted cell migration by directly suppressing TNS3 expression. These results suggested that ambient PM2.5 exposure may increase the expression of miR-200 family and then promote the proliferation and migration of lung cancer cells. Our study provided novel model and insights into the molecular mechanism of ambient PM2.5 exposure-induced lung cancer.
Collapse
Affiliation(s)
- Wanli Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Qi
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Klicka K, Grzywa TM, Mielniczuk A, Klinke A, Włodarski PK. The role of miR-200 family in the regulation of hallmarks of cancer. Front Oncol 2022; 12:965231. [PMID: 36158660 PMCID: PMC9492973 DOI: 10.3389/fonc.2022.965231] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
MiRNAs are short non-coding RNAs that regulate gene expression post-transcriptionally contributing to the development of different diseases including cancer. The miR-200 family consists of five members, miR-200a, miR-200b, miR-200c, miR-141, and miR-429. Their expression is dysregulated in cancer tissue and their level is altered in the body fluids of cancer patients. Moreover, the levels of miR-200 family members correlate with clinical parameters such as cancer patients' survival which makes them potentially useful as diagnostic and prognostic biomarkers. MiRNAs can act as either oncomiRs or tumor suppressor miRNAs depending on the target genes and their role in the regulation of key oncogenic signaling pathways. In most types of cancer, the miR-200 family acts as tumor suppressor miRNA and regulates all features of cancer. In this review, we summarized the expression pattern of the miR-200 family in different types of cancer and their potential utility as biomarkers. Moreover, we comprehensively described the role of miR-200 family members in the regulation of all hallmarks of cancer proposed by Hanahan and Weinberg with the focus on the epithelial-mesenchymal transition, invasiveness, and metastasis of tumor cells.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
4
|
Yu J, He X, Fang C, Wu H, Hu L, Xue Y. MicroRNA‑200a‑3p and GATA6 are abnormally expressed in patients with non‑small cell lung cancer and exhibit high clinical diagnostic efficacy. Exp Ther Med 2022; 23:281. [PMID: 35317445 PMCID: PMC8908458 DOI: 10.3892/etm.2022.11210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/16/2021] [Indexed: 11/15/2022] Open
Abstract
Lung cancer is one of the main threats to human health. Survival of patients with lung cancer depends on timely detection and diagnosis. Among the genetic irregularities that control cancer development and progression, there are microRNAs (miRNAs/miRs). The present study aimed to investigate the expression patterns of miR-200a-3p and transcription factor GATA-6 (GATA6) in peripheral blood of patients with non-small cell lung cancer (NSCLC) and their clinical significance. The expression patterns of miR-200a-3p and GATA6 in the peripheral blood of patients with NSCLC and healthy subjects were measured via reverse transcription-quantitative PCR. The correlation between GATA6/miR-200a-3p expression and their diagnostic efficacy were analyzed by receiver operating characteristic curve analysis. The association between miR-200a-3p/GATA6 expression with the patient clinicopathological characteristics, and their correlation with carcinoembryonic antigen (CEA), neuron specific enolase (NSE) and squamous cell carcinoma antigen (SCCAg) were evaluated. The cumulative survival rate was examined, and whether miR-200a-3p and GATA6 expression levels were independently correlated with the prognosis of NSCLC was analyzed using multivariate logistic regression model. The results demonstrated that the expression of miR-200a-3p was high and that of GATA6 was low in the peripheral blood of patients with NSCLC, and both exhibited high clinical diagnostic efficacy. miR-200a-3p was revealed to target GATA6 by dual-luciferase assay. miR-200a-3p in the peripheral blood was correlated with TNM stage, lymph node metastasis and distal metastasis, while GATA6 in the peripheral blood was correlated with TNM stage and lymph node metastasis. miR-200a-3p and GATA6 were positively correlated with CEA and SCCAg, but not with NSE. High expression of miR-200a-3p and low expression of GATA6 predicted poor prognosis in patients with NSCLC. After adjusting for TNM stage, lymph node metastasis, distance metastasis, GATA6, CEA, NSE and SCCAg in the logistic regression model, it was indicated that the high expression of miR-200a-3p increased the risk of death in patients with NSCLC. Collectively, it was revealed that miR-200a-3p and GATA6 were abnormally expressed in the peripheral blood of patients with NSCLC. Serum levels of miR-200a-3p >1.475 and GATA6 <1.195 may assist the early diagnosis of NSCLC. GATA6 may function in NSCLC as a miR-200a-3p target, which may provide a future reference for NSCLC early diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Yu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Xinyun He
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Chunju Fang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Haixia Wu
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| | - Lei Hu
- Department of Laboratory Medicine, Guizhou Women's and Children's Hospital, Guiyang, Guizhou 550003, P.R. China
| | - Yingbo Xue
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550001, P.R. China
| |
Collapse
|
5
|
Garcia-Mayea Y, Mir C, Carballo L, Sánchez-García A, Bataller M, LLeonart ME. TSPAN1, a novel tetraspanin member highly involved in carcinogenesis and chemoresistance. Biochim Biophys Acta Rev Cancer 2021; 1877:188674. [PMID: 34979155 DOI: 10.1016/j.bbcan.2021.188674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022]
Abstract
The tetraspanin (TSPAN) family constitutes a poorly explored family of membrane receptors involved in various physiological processes, with relevant roles in anchoring multiple proteins, acting as scaffolding proteins, and cell signaling. Recent studies have increasingly demonstrated the involvement of TSPANs in cancer. In particular, tetraspanin 1 (also known as TSPAN1, NET-1, TM4C, C4.8 or GEF) has been implicated in cell survival, proliferation and invasion. Recently, our laboratory revealed a key role of TSPAN1 in the acquired resistance of tumor cells to conventional chemotherapy (e.g., cisplatin). In this review, we summarize and discuss the latest research on the physiological mechanisms of TSPANs in cancer and, in particular, on TSPAN1 regulating resistance to chemotherapy. A model of TSPAN1 action is proposed, and the potential of targeting TSPAN1 in anticancer therapeutic strategies is discussed.
Collapse
Affiliation(s)
- Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Laia Carballo
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Almudena Sánchez-García
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Marina Bataller
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Center in Oncology, CIBERONC, Spain.
| |
Collapse
|
6
|
Mc Cormack B, Maenhoudt N, Fincke V, Stejskalova A, Greve B, Kiesel L, Meresman GF, Vankelecom H, Götte M, Barañao RI. The ellagic acid metabolites urolithin A and B differentially affect growth, adhesion, motility, and invasion of endometriotic cells in vitro. Hum Reprod 2021; 36:1501-1519. [PMID: 33748857 DOI: 10.1093/humrep/deab053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION What are the effects of plant-derived antioxidant compounds urolithin A (UA) and B (UB) on the growth and pathogenetic properties of an in vitro endometriosis model? SUMMARY ANSWER Both urolithins showed inhibitory effects on cell behavior related to the development of endometriosis by differentially affecting growth, adhesion, motility, and invasion of endometriotic cells in vitro. WHAT IS KNOWN ALREADY Endometriosis is one of the most common benign gynecological diseases in women of reproductive age and is defined by the presence of endometrial tissue outside the uterine cavity. As current pharmacological therapies are associated with side effects interfering with fertility, we aimed at finding alternative therapeutics using natural compounds that can be administered for prolonged periods with a favorable side effects profile. STUDY DESIGN, SIZE, DURATION In vitro cultures of primary endometriotic stromal cells from 6 patients subjected to laparoscopy for benign pathologies with histologically confirmed endometriosis; and immortalized endometrial stromal (St-T1b) and endometriotic epithelial cells (12Z) were utilized to assess the effects of UA and UB on endometriotic cell properties. Results were validated in three-dimensional (3D) in vitro co-culture spheroids of 12Z and primary endometriotic stroma cells of one patient, and organoids from 3 independent donors with endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS The effects on cell growth were measured by non-radioactive colorimetric assay to measure cellular metabolic activity as an indicator of cell viability (MTT assay) and flow cytometric cell cycle assay on primary cultures, St-T1b, and 12Z. Apoptosis analyses, the impact on in vitro adhesion, migration, and invasion were evaluated in the cell lines. Moreover, Real-Time Quantitative Reverse Transcription polymerase chain reaction (RT-qPCR) assays were performed on primary cultures, St- T1b and 12Z to evaluate a plausible mechanistic contribution by factors related to proteolysis (matrix metalloproteinase 2, 3 and 9 -MMP2, MMP3, MMP9-, and tissue inhibitor of metalloproteinases -TIMP-1-), cytoskeletal regulators (Ras-related C3 botulinum toxin substrate 1 -RAC1-, Rho-associated coiled-coil containing protein kinase 2 -ROCK2-), and cell adhesion molecules (Syndecan 1 -SDC1-, Integrin alpha V-ITGAV-). Finally, the urolithins effects were evaluated on spheroids and organoids by formation, viability, and drug screen assays. MAIN RESULTS AND THE ROLE OF CHANCE 40 µM UA and 20 µM UB produced a significant decrease in cell proliferation in the primary endometriotic cell cultures (P < 0.001 and P < 0.01, respectively) and in the St-T1b cell line (P < 0.001 and P < 0.05, respectively). In St-T1b, UA exhibited a mean half-maximum inhibitory concentration (IC50) of 39.88 µM, while UB exhibited a mean IC50 of 79.92 µM. Both 40 µM UA and 20 µM UB produced an increase in cells in the S phase of the cell cycle (P < 0.01 and P < 0.05, respectively). The same concentration of UA also increased the percentage of apoptotic ST-t1b cells (P < 0.05), while both urolithins decreased cell migration after 24 h (P < 0.001 both). Only the addition of 5 µM UB decreased the number of St-T1b adherent cells. TIMP-1 expression was upregulated in response to treating the cells with 40 µM UA (P < 0.05). Regarding the 12Z endometriotic cell line, only 40 µM UA decreased proliferation (P < 0.01); while both 40 µM UA and 20 µM UB produced an increase in cells in the G2/M phase (P < 0.05 and P < 0.01, respectively). In this cell line, UA exhibited a mean IC50 of 40.46 µM, while UB exhibited a mean IC50 of 54.79 µM. UB decreased cell migration (P < 0.05), and decreased the number of adherent cells (P < 0.05). Both 40 µM UA and 20 µM UB significantly decreased the cellular invasion of these cells; and several genes were altered when treating the cells with 40 µM UA and 10 µM UB. The expression of MMP2 was downregulated by UA (P < 0.001), and expression of MMP3 (UA P < 0.001 and UB P < 0.05) and MMP9 (P < 0.05, both) were downregulated by both urolithins. Moreover, UA significantly downregulated ROCK2 (P < 0.05), whereas UB treatment was associated with RAC1 downregulation (P < 0.05). Finally, the matrix adhesion receptors and signaling (co)receptors SDC1 and ITGAV were downregulated upon treatment with either UA or UB (P < 0.01 and P < 0.05, respectively in both cases). Regarding the effects of urolithins on 3D models, we have seen that they significantly decrease the viability of endometriosis spheroids (80 µM UA and UB: P < 0.05 both) as well as affecting their area (40 µM UA: P < 0.05, and 80 µM UA: P < 0.01) and integrity (40 µM UA and UB: P < 0.05, 80 µM UA and UB: P < 0.01). On the other hand, UA and UB significantly inhibited organoid development/outgrowth (40 and 80 µM UA: P < 0.0001 both; 40 µM UB: P < ns-0.05-0.001, and 80 µM UB: P < 0.01-0.001-0.001), and all organoid lines show urolithins sensitivity resulting in decreasing viability (UA exhibited a mean IC50 of 33.93 µM, while UB exhibited a mean IC50 of 52.60 µM). LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study was performed on in vitro endometriosis models. WIDER IMPLICATIONS OF THE FINDINGS These in vitro results provide new insights into the pathogenetic pathways affected by these compounds and mark their use as a potential new therapeutic strategy for the treatment of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This study was funded EU MSCA-RISE-2015 project MOMENDO (691058). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Barbara Mc Cormack
- Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - N Maenhoudt
- Laboratory of Tissue Plasticity in Health and Disease, Stem Cell and Developmental Biology Cluster, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - V Fincke
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - A Stejskalova
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - B Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - L Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - G F Meresman
- Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - H Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Stem Cell and Developmental Biology Cluster, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - M Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - R I Barañao
- Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
Ouyang J, Hu C, Zhang X, Wu Q. miRNA-200a Regulating Proliferation, Migration, and Infiltration of Tongue Squamous Cell Carcinoma Cells by Targeting DEK Proto-Oncogene. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tongue squamous cell carcinoma (TSCC) is the most frequently occurring oral cancer and is characterized by high proliferation and metastasis rates. Incomplete understanding of the pathogenesis of TSCC coupled with frequent tongue movement increases the difficulty of therapy. Additionally,
TSCC is prone to recurrence and metastasis after treatment. Thus, exploring mechanisms of proliferation, migration, and infiltration of TSCC cancer cells is essential for reducing morbidity and mortality. Transfection of miRNA-200a mimics into SCC15 cells showed that miRNA-200a expression
decreased significantly, and DEK expression significantly increased. Transfection of miRNA-200a mimics (miRNA-200a group), negative control mimics (miRNA-NC group), empty vector (miRNA-200a + pcDNA3.1 group), and miRNA-200a mimics and DEK overexpression vector (miRNA-200a + DEK group) into
SCC15 cells respectively indicates that overexpression of miRNA-200a substantially inhibits SCC15 cell proliferation, infiltration and migration, decreases PCNA and Vimentin expression, and promotes E-cadherin expression. miRNA-200a + DEK transfection induced greater cell proliferation, infiltration
and migration, much higher PCNA and Vimentin expression, and significantly lower E-cadherin expression. Luciferase reporter gene detection of overexpressed DEK or DEK expression after inhibiting miRNA-200a expression indicated a targeting association between miRNA-200a and DEK. miRNA-200a
inhibits proliferation, infiltration and migration ability of TSCC by targeting DEK and may represent a novel means for clinical intervention in TSCC. miRNA-200a inhibits proliferation, invasion, and migration of TSCC by targeting DEK.
Collapse
Affiliation(s)
- Jiajie Ouyang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan 528300, Guangdong, PR China
| | - Chao Hu
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan 528300, Guangdong, PR China
| | - Xueyang Zhang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan 528300, Guangdong, PR China
| | - Qianqi Wu
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan 528300, Guangdong, PR China
| |
Collapse
|
8
|
Li M, Wei L, Zhou W, He Z, Ran S, Liang J. miR-200a contributes to the migration of BMSCs induced by the secretions of E. faecalis via FOXJ1/NFκB/MMPs axis. Stem Cell Res Ther 2020; 11:317. [PMID: 32711573 PMCID: PMC7382064 DOI: 10.1186/s13287-020-01833-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Background Upon migrating to the injured sites, bone marrow mesenchymal stem cells (BMSCs) play critical roles in the repair of bone lesion caused by chronic apical periodontitis. Emerging evidences have shown that Enterococcus faecalis is always associated with apical periodontitis, especially refractory apical periodontitis. But the mechanism underlying how Enterococcus faecalis affects the migration of BMSCs remains unclear. Methods The effects of Enterococcus faecalis supernatants on the migration of BMSCs were determined by transwell migration assays. miRNA sequencing was performed to detect the significantly differentially expressed miRNAs of BMSCs. Proteomics analysis was used to detect the protein expression alterations of BMSCs. Luciferase report assays were deployed to verify the targets of miRNA. Western blot analysis was performed to examine the expressions of matrix metalloproteinases-3, matrix metalloproteinases-9, Forkhead Box Protein J1 (FOXJ1), and nuclear factor kappa B (NFκB). The activations of NFκB were detected by luciferase assays with NFκBluc reporter. Results We found that Enterococcus faecalis supernatants could promote the migration of BMSCs. The upregulation of miR-200a-3p in this process contributed to BMSC migration through downregulating its target Forkhead Box Protein J1. Moreover, FOXJ1/ NFκB axis was found to regulate matrix metalloproteinases (MMPs) in this process. Conclusions These results above suggest that miR-200a contributes to the migration of BMSCs induced by the secretions of E. faecalis via FOXJ1/NFκB/MMPs axis.
Collapse
Affiliation(s)
- Mingwei Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhiyan He
- National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingping Liang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,National Clinical Research Center for Oral Diseases, Shanghai, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
9
|
Jin S, He J, Zhou Y, Wu D, Li J, Gao W. LncRNA FTX activates FOXA2 expression to inhibit non-small-cell lung cancer proliferation and metastasis. J Cell Mol Med 2020; 24:4839-4849. [PMID: 32176463 PMCID: PMC7176842 DOI: 10.1111/jcmm.15163] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/26/2019] [Accepted: 02/01/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer leads to the highest mortality among all cancer types in the world, and non–small‐cell lung cancer (NSCLC) occupies over 80% of the lung cancer cases. Numerous studies have demonstrated that long non‐coding RNA (lncRNA) is involved in various human diseases including cancer. LncRNA FTX was firstly identified in Xist gene locus and was dysregulated in many human cancers. However, the function of FTX in NSCLC is still unclear. Here, we report that long non‐coding RNA FTX expression level is down‐regulated in NSCLC clinical tissue samples and cell lines. Ectopic expression of FTX inhibits proliferation and metastasis of lung cancer cells in vitro and in vivo. Furthermore, we find that FTX overexpression activates the expression of transcription factor FOXA2, an important regulator in lung cancer progression, and we reveal a novel FTX/miR‐200a‐3p/FOXA2 competing endogenous RNA regulatory axis in lung cancer cells. Our results provide new insights and directions for exploring the function of FTX in lung cancer progression.
Collapse
Affiliation(s)
- Shidai Jin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Deqin Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Mc Cormack BA, Bilotas MA, Madanes D, Ricci AG, Singla JJ, Barañao RI. Potential use of ellagic acid for endometriosis treatment: its effect on a human endometrial cell cycle, adhesion and migration. Food Funct 2020; 11:4605-4614. [DOI: 10.1039/d0fo00267d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
EA treatment decreases cell adhesion and migration of endometrial cells and alters the progression of an endometrial stromal cell line cycle.
Collapse
Affiliation(s)
- B. A. Mc Cormack
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - M. A. Bilotas
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - D. Madanes
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - A. G. Ricci
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - J. J. Singla
- Hospital de Clínicas “José de San Martín”
- Buenos Aires C1120AAR
- Argentina
| | - R. I. Barañao
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| |
Collapse
|
11
|
Neuroprotective effects of overexpressed microRNA-200a on activation of glaucoma-related retinal glial cells and apoptosis of ganglion cells via downregulating FGF7-mediated MAPK signaling pathway. Cell Signal 2018; 54:179-190. [PMID: 30439502 DOI: 10.1016/j.cellsig.2018.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022]
Abstract
Glaucoma is a progressive optic neuropathy and is one of the leading causes of blindness in the industrialized countries. The involvement of microRNAs (miRs) has been implicated in regulating the complex biological responses to changes in intraocular pressure. However, the therapeutic role of miR-200a on glaucoma has not been well studied yet. In this study, we confirmed the role of miR-200a in glaucoma progression and identified the related mechanism. Microarray expression profiles were used to screen the glaucoma-related genes. The relationship between miR-200a and FGF7 was validated by bioinformatics analysis and dual-luciferase reporter gene assay. Glaucoma-related parameters including the expression of CD11b and iNOS, activation of Muller cells, and apoptosis of retinal ganglion cells (RGCs) in the mouse model were measured by immunohistochemistry, MTT assay and TUNEL assay, respectively. miR-200a was reduced in glaucoma, whereas FGF7 was robustly induced. Thereby, we speculated that FGF7 was negatively regulated by miR-200a. Downregulated miR-200a could activate the MAPK signaling pathway following elevations in ERK, JNK, p38 and Bax expression and reduction in Bcl-2 expression. In the mouse model, downregulated miR-200a increased the expression of CD11b and iNOS and the apoptosis of RGCs, but stimulated the inactivation of Muller cells. However, the above-mentioned alternations induced by downregulated miR-200a were reversed after FGF7 repression. miR-200a can inhibit the FGF7-mediated MAPK signaling pathway and play a protective role on improving the glaucoma-induced optical nerve injury.
Collapse
|
12
|
Chen Y, Du M, Wang J, Xing P, Zhang Y, Li F, Lu X. MiRNA-200a expression is inverse correlation with hepatocyte growth factor expression in stromal fibroblasts and its high expression predicts a good prognosis in patients with non-small cell lung cancer. Oncotarget 2018; 7:48432-48442. [PMID: 27374174 PMCID: PMC5217029 DOI: 10.18632/oncotarget.10302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) play an important role in favoring tumor progression. However, little is known concerning expression of miRNA-200a and its potential target gene hepatocyte growth factor (HGF) in CAFs. In the present study, we investigated expression levels and prognostic significance of miRNA-200a and HGF in stromal fibroblasts of non-small cell lung cancer (NSCLC), and evaluated the correlation between miRNA-200a and HGF. In situ hybridization and immunohistochemical staining were used to investigate expression levels of miRNA-200a and HGF in 134 formalin-fixed paraffin-embedded tumor specimens from clinical stage I -IIIA NSCLC, respectively. The results showed a significant inverse correlation existed between miRNA-200a and HGF expression level in stromal fibroblasts (χ2 = 21.778, p = 0.000). In vitro, the upregulation of miRNA-200a reduced expression of HGF protein in human CAFs. The 3-year overall survival (OS) rates with low and high miRNA-200a expression in stromal fibroblasts were 39.0% and 53.4%, respectively (χ2=4.25, p=0.039). The 3-year OS rates with low and high HGF expression in stromal fibroblasts were 60.3% and 31.8%, respectively (χ2=12.55, p=0.000). The multivariate analysis showed that clinical stage and HGF expression level in stromal fibroblasts were the independent predictive factors of OS. These results suggested that miRNA-200a expression was inverse correlation with HGF expression in stromal fibroblasts. High miRNA-200a and low HGF expression in stromal fibroblasts may predict a good prognosis in patients with NSCLC.
Collapse
Affiliation(s)
- Yongbing Chen
- Department of Thoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Menghua Du
- Department of Oncology & Radiotherapy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Wang
- Department of Oncology & Radiotherapy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengfei Xing
- Department of Oncology & Radiotherapy, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongsheng Zhang
- Department of Pathology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Li
- Department of Pathology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueguan Lu
- Department of Oncology & Radiotherapy, the Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
13
|
Osteoactivin (GPNMB) ectodomain protein promotes growth and invasive behavior of human lung cancer cells. Oncotarget 2017; 7:13932-44. [PMID: 26883195 PMCID: PMC4924689 DOI: 10.18632/oncotarget.7323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/23/2016] [Indexed: 12/21/2022] Open
Abstract
The potential application of GPNMB/OA as a therapeutic target for lung cancer will require a greater understanding of the impact of GPNMB/OA ectodomain (ECD) protein shedding into tumor tissues. Thus, in this work we characterized GPNMB/OA expression and extent of shedding of its ECD protein while evaluating the impact on lung cancer progression using three non-small cell lung cancer (NSCLC) cell lines: A549, SK-MES-1 and calu-6. We observed a direct correlation (R2 = 0.89) between GPNMB/OA expression on NSCLC cells and the extent of GPNMB/OA ECD protein shedding. Meanwhile, siRNA-mediated knockdown of GPNMB/OA in cancer cells significantly reduced GPNMB/OA ECD protein shedding, migration, invasion and adhesion to extracellular matrix materials. Also, exogenous treatment of cancer cells (expressing low GPNMB/OA) with recombinant GPNMB/OA protein (rOA) significantly facilitated cell invasion and migration, but the effects of rOA was negated by inclusion of a selective RGD peptide. Further studies in athymic (nu/nu) mice-bearing calu-6 showed that intratumoral supplementation with rOA effectively facilitated in vivo tumor growth as characterized by a high number of proliferating cells (Ki67 staining) coupled with a low number of apoptotic cells. Taken together, our results accentuate the relevance of GPNMB/OA ECD protein shedding to progression of lung cancer. Thus, strategies that suppress GPNMB/OA expression on lung cancer cells as well as negate shedding of GPNMB/OA ECD protein are worthy of consideration in lung cancer therapeutics.
Collapse
|
14
|
Gu T, Chen W, Chen L, Wang G, Li T, Zhu Y, Gao X. Expression and function of tetraspanin 1 in esophageal carcinoma. Oncol Lett 2017; 14:6815-6822. [PMID: 29422958 DOI: 10.3892/ol.2017.7028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/25/2017] [Indexed: 11/05/2022] Open
Abstract
The present study explored the expression of tetraspanin 1 (TSPAN1) in esophageal carcinoma (EC) and its association with clinicopathological factors. TSPAN1 small interfering RNA (siRNA) was designed to target the TSPAN1 gene in Eca-109 cells in order to explore the biological function of TSPAN1 in the proliferation and apoptosis of EC. The results demonstrated that the level of TSPAN1 expression in EC tissue was significantly increased compared with that in adjacent normal tissue (P<0.001). TSPAN1 expression was also associated with histological differentiation, depth of invasion, lymph node metastasis (all P<0.05) and Ki-67 (P<0.01). However, no association was observed between TSPAN expression and gender, age or location (P>0.05). In addition, silencing TSPAN1 markedly inhibited proliferation while increasing the apoptosis rate of Eca-109 cells, which was demonstrated by detecting the expression of the cell proliferation-associated gene Ki-67 and the apoptotic gene caspase-3 (P<0.05). Taken together, these results indicated that TSPAN1 functions as a tumor-associated gene in EC through promoting cell proliferation and suppressing apoptosis, and siRNA technology may provide an advanced alternative in the development of therapeutics for EC.
Collapse
Affiliation(s)
- Tingting Gu
- Department of Pathological Anatomy, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Pathology, Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Suzhou, Jiangsu 215300, P.R. China
| | - Weiwei Chen
- Department of Pathological Anatomy, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Nantong, Jiangsu 226001, P.R. China.,Department of Pathology, Affiliated Tumor Hospital, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guilan Wang
- Department of Pathological Anatomy, Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Tiejun Li
- Research and Development Department, Biomics Biotechnologies Co., Ltd., Nantong University, Nantong, Jiangsu 226016, P.R. China
| | - Yuanyuan Zhu
- Research and Development Department, Biomics Biotechnologies Co., Ltd., Nantong University, Nantong, Jiangsu 226016, P.R. China
| | - Xiaojiao Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, The First People's Hospital of Kunshan, Suzhou, Jiangsu 215300, P.R. China
| |
Collapse
|
15
|
Munkley J, McClurg UL, Livermore KE, Ehrmann I, Knight B, Mccullagh P, Mcgrath J, Crundwell M, Harries LW, Leung HY, Mills IG, Robson CN, Rajan P, Elliott DJ. The cancer-associated cell migration protein TSPAN1 is under control of androgens and its upregulation increases prostate cancer cell migration. Sci Rep 2017; 7:5249. [PMID: 28701765 PMCID: PMC5507901 DOI: 10.1038/s41598-017-05489-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023] Open
Abstract
Cell migration drives cell invasion and metastatic progression in prostate cancer and is a major cause of mortality and morbidity. However the mechanisms driving cell migration in prostate cancer patients are not fully understood. We previously identified the cancer-associated cell migration protein Tetraspanin 1 (TSPAN1) as a clinically relevant androgen regulated target in prostate cancer. Here we find that TSPAN1 is acutely induced by androgens, and is significantly upregulated in prostate cancer relative to both normal prostate tissue and benign prostate hyperplasia (BPH). We also show for the first time, that TSPAN1 expression in prostate cancer cells controls the expression of key proteins involved in cell migration. Stable upregulation of TSPAN1 in both DU145 and PC3 cells significantly increased cell migration and induced the expression of the mesenchymal markers SLUG and ARF6. Our data suggest TSPAN1 is an androgen-driven contributor to cell survival and motility in prostate cancer.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK.
| | - Urszula L McClurg
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Karen E Livermore
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Ingrid Ehrmann
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Bridget Knight
- NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Paul Mccullagh
- Department of Pathology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - John Mcgrath
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Malcolm Crundwell
- Department of Urology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter, Devon, UK
| | - Hing Y Leung
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospitals, Forskningsparken, Gaustadalléen 21, N-0349, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital HE - Norwegian Radium Hospital, Montebello, Ian G. Mills, NO-0424, Oslo, Norway
- Movember/Prostate Cancer UK Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Prabhakar Rajan
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London, EC1M 6BQ, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
16
|
microRNA-200a-3p increases 5-fluorouracil resistance by regulating dual specificity phosphatase 6 expression. Exp Mol Med 2017; 49:e327. [PMID: 28496200 PMCID: PMC5454440 DOI: 10.1038/emm.2017.33] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/28/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
Acquisition of resistance to anti-cancer drugs is a significant obstacle to effective cancer treatment. Although several efforts have been made to overcome drug resistance in cancer cells, the detailed mechanisms have not been fully elucidated. Here, we investigated whether microRNAs (miRNAs) function as pivotal regulators in the acquisition of anti-cancer drug resistance to 5-fluorouracil (5-FU). A survey using a lentivirus library containing 572 precursor miRNAs revealed that five miRNAs promoted cell survival after 5-FU treatment in human hepatocellular carcinoma Hep3B cells. Among the five different clones, the clone expressing miR-200a-3p (Hep3B-miR-200a-3p) was further characterized as a 5-FU-resistant cell line. The cell viability and growth rate of Hep3B-miR-200a-3p cells were higher than those of control cells after 5-FU treatment. Ectopic expression of a miR-200a-3p mimic increased, while inhibition of miR-200a-3p downregulated, cell viability in response to 5-FU, doxorubicin, and CDDP (cisplatin). We also showed that dual-specificity phosphatase 6 (DUSP6) is a novel target of miR-200a-3p and regulates resistance to 5-FU. Ectopic expression of DUSP6 mitigated the pro-survival effects of miR-200a-3p. Taken together, these results lead us to propose that miR-200a-3p enhances anti-cancer drug resistance by decreasing DUSP6 expression.
Collapse
|
17
|
Hou FQ, Lei XF, Yao JL, Wang YJ, Zhang W. Tetraspanin 1 is involved in survival, proliferation and carcinogenesis of pancreatic cancer. Oncol Rep 2015; 34:3068-76. [PMID: 26370588 DOI: 10.3892/or.2015.4272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer (PCC) is one of the most difficult cancers to treat and the 10th leading cause of cancer-related death in worldwide. Studies have demonstrated that the tetraspanin 1 (Tspan1) is overexpressed in various cancers and may be a potential therapeutic strategy for the treatment of different cancers. However, the possible role of Tspan1 in PCC is still unknown. In the present study, our data revealed that the increased Tspan1 in PCC tissues was associated with the clinicopathological features and survival rate of PCC patient. We also investigated the effects of Tspan1 gene knockdown on the biological behavior of human PCC. The expression of Tspan1 (detected by immunohistochemistry, qRT-PCR and western blot analysis) derived from human PCC tissues and cell lines (AsPC-1 and PANC-1), were significantly elevated compared with those of the control (P<0.05). Transfection with siRNA-targeting Tspan1 significantly decreased proliferation, increased the apoptosis and reduced migration and invasion of AsPC-1 and PANC-1 cells. The present study demonstrated that Tspan1 plays an important role in PCC carcinogenic progression, including migration and invasion. The siRNA targeting of Tspan1 may be a potential therapeutic strategy for the treatment of PCC.
Collapse
Affiliation(s)
- Feng-Qiang Hou
- Department of General Surgery, The Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Xi-Feng Lei
- Department of General Surgery, The Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Jian-Long Yao
- Department of General Surgery, The Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Yi-Jin Wang
- Department of General Surgery, The Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Wei Zhang
- Department of General Surgery, The Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| |
Collapse
|
18
|
Cheng JH, Pan DZC, Tsai ZTY, Tsai HK. Genome-wide analysis of enhancer RNA in gene regulation across 12 mouse tissues. Sci Rep 2015. [PMID: 26219400 PMCID: PMC4518263 DOI: 10.1038/srep12648] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enhancers play a crucial role in gene regulation but the participation of enhancer transcripts (i.e. enhancer RNA, eRNAs) in regulatory systems remains unclear. We provide a computational analysis on eRNAs using genome-wide data across 12 mouse tissues. The expression of genes targeted by transcribing enhancer is positively correlated with eRNA expression and significantly higher than expression of genes targeted by non-transcribing enhancers. This result implies eRNA transcription indicates a state of enhancer that further increases gene expression. This state of enhancer is tissue-specific, as the same enhancer differentially transcribes eRNAs across tissues. Therefore, the presence of eRNAs describes a tissue-specific state of enhancer that is generally associated with higher expressed target genes, surmising as to whether eRNAs have gene activation potential. We further found a large number of eRNAs contain regions in which sequences and secondary structures are similar to microRNAs. Interestingly, an increasing number of recent studies hypothesize that microRNAs may switch from their general repressive role to an activating role when targeting promoter sequences. Collectively, our results provide speculation that eRNAs may be associated with the selective activation of enhancer target genes.
Collapse
Affiliation(s)
- Jen-Hao Cheng
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - David Zhi-Chao Pan
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Zing Tsung-Yeh Tsai
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| |
Collapse
|
19
|
Abstract
Shikonin, a natural naphthoquinone isolated from a traditional Chinese medicinal herb, can exert inhibitory effect on tumor cell growth. However, little has been known concerning the effect of shikonin on lung adenocarcinoma cell and underlying mechanisms. In the present study, we investigated the effect of shikonin on the proliferation, cell cycle arrest, and apoptosis in human lung adenocarcinoma cells. We found that shikonin significantly suppressed the proliferation of lung adenocarcinoma cells compared with control in dose- and time-dependent manner (P < 0.05). In the meantime, our results showed that shikonin markedly increased the proportion of A549 cells at stage G1 as well as induced apoptosis in A549 cells. Furthermore, suppressed CCND1 and elevated caspase3 and caspase7 expression levels at mRNA were found in this study, indicating that shikonin may inhibit the growth of lung adenocarcinoma cell by changing cell cycle and promoting cell apoptosis through the regulation of CCND1, caspase3, and caspase7. Although more studies are needed, this study suggests that shikonin has the potential to be used as an anti-cancer agent in the treatment of lung adenocarcinoma.
Collapse
|
20
|
Abstract
Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell-cell adhesion, cell-ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jiaping Zhang
- a Institute of Burn Research ; State Key Laboratory of Trauma; Burns and Combined Injury; Southwest Hospital; The Third Military Medical University ; Chongqing , China
| | - Yuesheng Huang
- a Institute of Burn Research ; State Key Laboratory of Trauma; Burns and Combined Injury; Southwest Hospital; The Third Military Medical University ; Chongqing , China
| |
Collapse
|
21
|
Lu Z, Luo T, Nie M, Pang T, Zhang X, Shen X, Ma L, Bi J, Wei G, Fang G, Xue X. TSPAN1 functions as an oncogene in gastric cancer and is downregulated by miR-573. FEBS Lett 2015; 589:1988-94. [PMID: 26054975 DOI: 10.1016/j.febslet.2015.05.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/24/2015] [Accepted: 05/26/2015] [Indexed: 01/07/2023]
Abstract
Tetraspanin 1 (TSPAN1) has been reported to be upregulated in gastric cancer (GC). However, whilst TSPAN1 is positively correlated with clinical stage and negatively correlated with survival rates, its function in GC remains elusive. Here we show that expression of TSPAN1 is significantly higher in GC tissues compared to non-cancerous tissues. Furthermore, we demonstrate that RNAi-mediated down-regulation of TSPAN1 expression markedly blocks GC cell proliferation, cell cycle progression and invasive activity. We identified TSPAN1 as a novel target gene of miR-573. Overexpression of miR-573 suppressed proliferation and invasion of GC cells by down-regulation of TSPAN1 expression. Restoration of TSPAN1 rescued the effects of miR-573 overexpression. Therefore, our findings suggest that the miR-573/TSPAN1 axis is important in the control of gastric carcinogenesis.
Collapse
Affiliation(s)
- Zhengmao Lu
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Tianhang Luo
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Mingming Nie
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Tao Pang
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Xin Zhang
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Xiaojun Shen
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Liye Ma
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Jianwei Bi
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Guo Wei
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Guoen Fang
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Xuchao Xue
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
22
|
miR-148b reverses cisplatin-resistance in non-small cell cancer cells via negatively regulating DNA (cytosine-5)-methyltransferase 1(DNMT1) expression. J Transl Med 2015; 13:132. [PMID: 25927928 PMCID: PMC4417300 DOI: 10.1186/s12967-015-0488-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/14/2015] [Indexed: 12/19/2022] Open
Abstract
Background The emergence of drug resistance in cancer patients limits the success rate of clinical chemotherapy. MicroRNAs (miRNAs) may play a role in chemoresistance and may be involved in modulating of some drug resistance-related pathways in cancer cells. In this study, the involvement of microRNA-148b (miR-148b) and its roles in the development of chemoresistance in lung cancer are determined. Methods This study was performed in two lung cancer cell lines (A549 and SPC-A1). The levels of miR-148b and DNMT1 mRNA expression were determined by using Quantitative Real-Time PCR. Proteins of DNMTs are represented by western blot assay. Cell viability was assessed by MTT assay. Cell apoptosis was evaluated using flow cytometry. Results The data showed a down-regulated of miR-148b expression and evaluated methyltransferases (DNMTs) expression in cisplatin-resisted human non-small cell lung cancer (NSCLC) cell line-A549/DDP and SPC-A1/DDP compared with their parental A549 and SPC-A1 cell line. In transfection experiments, miR-148b mimics reduced the DNMT1 expression, as well as enhanced the sensitivity of cells to cisplatin and cisplatin-induced apoptosis in A549/DDP or SPC-A1/DDP cells. While miR-148b inhibitor increased DNMT1 expression, as well as attenuated the sensitivity of cells to cisplatin in A549 and SPC-A1 cells. miR-148b was showed to exert negative effect on DNMT1 expression by targeting its 3′UTR in A549/DDP and A549 cells. Importantly, silenced DNMT1 increases cisplatin sensitivity of A549/DDP cells and over-expressed DNMT1 reverses pro-apoptosis effect of miR-148b mimic. Conclusions miR-148b reverses cisplatin-resistance in non-small cell cancer cells via negatively regulating DNMT1 expression.
Collapse
|
23
|
Guo H, Li Q, Li W, Zheng T, Zhao S, Liu Z. MiR-96 downregulates RECK to promote growth and motility of non-small cell lung cancer cells. Mol Cell Biochem 2014; 390:155-60. [PMID: 24469470 DOI: 10.1007/s11010-014-1966-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/14/2014] [Indexed: 01/25/2023]
Abstract
MicroRNAs play critical roles in the development and progression of non-small cell lung cancer (NSCLC). miR-96 acts as an oncogene in some malignancies, while its role in NSCLC is unclear. Here, we validated that miR-96 was significantly increased in both human NSCLC tissues and cell lines. Inhibition of miR-96 expression remarkably reduced cell proliferation, colony formation, migration, and invasion of NSCLC cells. Reversion-inducing-cysteine-rich protein with kazal motifs (RECK) was identified as a target of miR-96 in NSCLC cells. In addition, the expression of RECK was found to be negatively correlated with the expression of miR-96 in NSCLC tissues. Our data suggest that miR-96 might promote the growth and motility of NSCLC cells partially by targeting RECK.
Collapse
Affiliation(s)
- Haizhou Guo
- Department of thoracic surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | | | | | | | | | | |
Collapse
|
24
|
Differentially expressed wound healing-related microRNAs in the human diabetic cornea. PLoS One 2013; 8:e84425. [PMID: 24376808 PMCID: PMC3869828 DOI: 10.1371/journal.pone.0084425] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/14/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC) in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6) and diabetic (n=6) central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR) and by in situ hybridization (ISH) in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR) or their inhibitors (antagomirs) using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.
Collapse
|