1
|
Zhao Z, Dai X, Jiang G, Lin F. Absent, Small, or Homeotic 2-Like-Mediated H3K4 Methylation and Nephrogenesis. J Am Soc Nephrol 2025; 36:798-811. [PMID: 39774048 PMCID: PMC12059113 DOI: 10.1681/asn.0000000600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Key Points Deficits in nephron numbers are associated with higher risk of adult-onset kidney disease seen in congenital anomalies of the kidney and urinary tract. Mouse model experiments suggested that absent, small, or homeotic 2-like was vital for kidney development by activating cell cycle genes through histone methylation. Our findings identified absent, small, or homeotic 2-like–regulated genes as a potential target for treating congenital anomalies of the kidney and urinary tract. Background Many congenital anomalies of the kidney and urinary tract involve deficits in the number of nephrons, which are associated with a higher risk of hypertension and CKD later in life. Prior work has implicated histone modifications in regulating kidney lineage–specific gene transcription and nephron endowment. Our earlier study suggested that absent, small, or homeotic 2-like (ASH2L), a core subunit of the H3K4 methyltransferase complex, plays a role in ureteric bud morphogenesis during mammalian kidney development. However, the potential involvement of ASH2L in nephron formation remains an open question. Methods To investigate the role of ASH2L in nephron development, we inactivated Ash2l specifically in nephron progenitor cells by crossing Six2 -e(Kozak-GFPCre-Wpre-polyA)1 mice with Ash2l fl/fl mice. We used RNA sequencing combined with Cleavage Under Targets and Tagmentation sequencing to screen for gene and epigenomic changes, which were further verified by rescue experiments conducted on ex vivo culture explants. Results Inactivating ASH2L in nephron progenitor cells disrupted H3K4 trimethylation establishment at promoters of genes controlling nephron progenitor cell stemness, differentiation, and cell cycle, inhibiting their progression through the cell cycle and differentiation into epithelial cell types needed to form nephrons. Inhibition of the TGF-β /suppressor of mothers against decapentaplegic signaling pathway partially rescued the dysplastic phenotype of the mutants. Conclusions ASH2L-mediated H3K4 methylation was identified as a novel epigenetic regulator of kidney development. Downregulation of ASH2L expression or H3K4 trimethylation may be linked to congenital anomalies of the kidney and urinary tract.
Collapse
Affiliation(s)
- Ziyi Zhao
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuantong Dai
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Fujun Lin
- Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| |
Collapse
|
2
|
Chodisetty S, Arora A, Malik KK, Goel H, Tyagi S. MLL/WDR5 complex recruits centriolar satellite protein Cep72 to regulate microtubule nucleation and spindle formation. SCIENCE ADVANCES 2024; 10:eadn0086. [PMID: 39661677 PMCID: PMC11633745 DOI: 10.1126/sciadv.adn0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/05/2024] [Indexed: 12/13/2024]
Abstract
Dysfunction of the centrosome, the major microtubule-organizing center of the cell, is implicated in microcephaly. Haploinsufficiency of mixed-lineage leukemia (MLL/KMT2A) protein causes Wiedemann-Steiner syndrome (WSS), a neurodevelopmental disorder associated with microcephaly. However, whether MLL has a function at the centrosome is not clear. Here, we show that loss of the MLL/WDR5 complex affects microtubule nucleation and regrowth. MLL/WDR5 localize to the pericentriolar material and interact with centriolar satellite protein Cep72 and γ-tubulin ring complex proteins (γ-TuRCs). MLL/WDR5 promote the localization of γ-TuRCs and structural proteins like AKAP9 to the centrosome during interphase and mitosis, a phenotype also observed in cells derived from patients with WSS. During mitosis, loss of MLL, WDR5, and Cep72 affects spindle formation and leads to misaligned chromosomes. Last, we show that MLL and WDR5 recruit Cep72 to the centrosome. Our studies provide insight into an undiscovered role of MLL at the centrosome and elucidate how centriolar satellite proteins like Cep72 can be recruited to the centrosome.
Collapse
Affiliation(s)
- Swathi Chodisetty
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 567104, India
| | - Aditi Arora
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, India
| | - Kausika Kumar Malik
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| | - Himanshu Goel
- Hunter Genetics, Hunter New England Local Health District (HNELHD), Waratah, NSW 2298, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| |
Collapse
|
3
|
Citron F, Ho IL, Balestrieri C, Liu Z, Yen EY, Cecchetto L, Perelli L, Zhang L, Montanez LC, Blazanin N, Dyke CA, Shah R, Attanasio S, Srinivasan S, Chen KC, Chen Z, Scognamiglio I, Pham N, Khan H, Jiang S, Pan J, Vanderkruk B, Leung CS, Mattohti M, Rai K, Chu Y, Wang L, Gao S, Deem AK, Carugo A, Wang H, Yao W, Tonon G, Xiong Y, Lorenzi PL, Bonini C, Anna Zal M, Hoffman BG, Heffernan T, Giuliani V, Jeter CR, Lissanu Y, Genovese G, Pilato MD, Viale A, Draetta GF. WRAD core perturbation impairs DNA replication fidelity promoting immunoediting in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619543. [PMID: 39484624 PMCID: PMC11526913 DOI: 10.1101/2024.10.21.619543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
It is unclear how cells counteract the potentially harmful effects of uncoordinated DNA replication in the context of oncogenic stress. Here, we identify the WRAD (WDR5/RBBP5/ASH2L/DPY30) core as a modulator of DNA replication in pancreatic ductal adenocarcinoma (PDAC) models. Molecular analyses demonstrated that the WRAD core interacts with the replisome complex, with disruption of DPY30 resulting in DNA re-replication, DNA damage, and chromosomal instability (CIN) without affecting cancer cell proliferation. Consequently, in immunocompetent models, DPY30 loss induced T cell infiltration and immune-mediated clearance of highly proliferating cancer cells with complex karyotypes, thus improving anti-tumor efficacy upon anti-PD-1 treatment. In PDAC patients, DPY30 expression was associated with high tumor grade, worse prognosis, and limited response to immune checkpoint blockade. Together, our findings indicate that the WRAD core sustains genome stability and suggest that low intratumor DPY30 levels may identify PDAC patients who will benefit from immune checkpoint inhibitors.
Collapse
|
4
|
LaRue-Nolan KC, Arul GLR, Sigafoos AN, Shi J, Fernandez-Zapico ME. Insights into the mechanisms driven by H3K4 KMTs in pancreatic cancer. Biochem J 2024; 481:983-997. [PMID: 39078225 PMCID: PMC11332384 DOI: 10.1042/bcj20230374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Pancreatic cancer is a malignancy arising from the endocrine or exocrine compartment of this organ. Tumors from exocrine origin comprise over 90% of all pancreatic cancers diagnosed. Of these, pancreatic ductal adenocarcinoma (PDAC) is the most common histological subtype. The five-year survival rate for PDAC ranged between 5 and 9% for over four decades, and only recently saw a modest increase to ∼12-13%, making this a severe and lethal disease. Like other cancers, PDAC initiation stems from genetic changes. However, therapeutic targeting of PDAC genetic drivers has remained relatively unsuccessful, thus the focus in recent years has expanded to the non-genetic factors underlying the disease pathogenesis. Specifically, it has been proposed that dynamic changes in the epigenetic landscape promote tumor growth and metastasis. Emphasis has been given to the re-organization of enhancers, essential regulatory elements controlling oncogenic gene expression, commonly marked my histone 3 lysine 4 monomethylation (H3K4me1). H3K4me1 is typically deposited by histone lysine methyltransferases (KMTs). While well characterized as oncogenes in other cancer types, recent work has expanded the role of KMTs as tumor suppressor in pancreatic cancer. Here, we review the role and translational significance for PDAC development and therapeutics of KMTs.
Collapse
Affiliation(s)
- Kayla C. LaRue-Nolan
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, U.S.A
| | | | - Ashley N. Sigafoos
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, U.S.A
| | - Jiaqi Shi
- Department of Pathology and Clinical Labs, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, U.S.A
| | | |
Collapse
|
5
|
Zhang B, Wang Z, Dai X, Gao J, Zhao J, Ma R, Chen Y, Sun Y, Ma H, Li S, Zhou C, Wang JP, Li W. A COMPASS histone H3K4 trimethyltransferase pentamer transactivates drought tolerance and growth/biomass production in Populus trichocarpa. THE NEW PHYTOLOGIST 2024; 241:1950-1972. [PMID: 38095236 DOI: 10.1111/nph.19481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
Histone H3 lysine-4 trimethylation (H3K4me3) activating drought-responsive genes in plants for drought adaptation has long been established, but the underlying regulatory mechanisms are unknown. Here, using yeast two-hybrid, bimolecular fluorescence complementation, biochemical analyses, transient and CRISPR-mediated transgenesis in Populus trichocarpa, we unveiled in this adaptation a regulatory interplay between chromatin regulation and gene transactivation mediated by an epigenetic determinant, a PtrSDG2-1-PtrCOMPASS (complex proteins associated with Set1)-like H3K4me3 complex, PtrSDG2-1-PtrWDR5a-1-PtrRbBP5-1-PtrAsh2-2 (PtrSWRA). Under drought conditions, a transcription factor PtrAREB1-2 interacts with PtrSWRA, forming a PtrSWRA-PtrAREB1-2 pentamer, to recruit PtrSWRA to specific promoter elements of drought-tolerant genes, such as PtrHox2, PtrHox46, and PtrHox52, for depositing H3K4me3 to promote and maintain activated state of such genes for tolerance. CRISPR-edited defects in the pentamer impaired drought tolerance and elevated expression of PtrHox2, PtrHox46, or PtrHox52 improved the tolerance as well as growth in P. trichocarpa. Our findings revealed the identity of the underlying H3K4 trimethyltransferase and its interactive arrangement with the COMPASS for catalysis specificity and efficiency. Furthermore, our study uncovered how the H3K4 trimethyltransferase-COMPASS complex is recruited to the effector genes for elevating H3K4me3 marks for improved drought tolerance and growth/biomass production in plants.
Collapse
Affiliation(s)
- Baofeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhuwen Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jinghui Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jinfeng Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Rong Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yanjie Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Hongyan Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
6
|
Ahmad M, Imran A, Movileanu L. Overlapping characteristics of weak interactions of two transcriptional regulators with WDR5. Int J Biol Macromol 2024; 258:128969. [PMID: 38158065 PMCID: PMC10922662 DOI: 10.1016/j.ijbiomac.2023.128969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The WD40 repeat protein 5 (WDR5) is a nuclear hub that critically influences gene expression by interacting with transcriptional regulators. Utilizing the WDR5 binding motif (WBM) site, WDR5 interacts with the myelocytomatosis (MYC), an oncoprotein transcription factor, and the retinoblastoma-binding protein 5 (RbBP5), a scaffolding element of an epigenetic complex. Given the clinical significance of these protein-protein interactions (PPIs), there is a pressing necessity for a quantitative assessment of these processes. Here, we use biolayer interferometry (BLI) to examine interactions of WDR5 with consensus peptide ligands of MYC and RbBP5. We found that both interactions exhibit relatively weak affinities arising from a fast dissociation process. Remarkably, live-cell imaging identified distinctive WDR5 localizations in the absence and presence of full-length binding partners. Although WDR5 tends to accumulate within nucleoli, WBM-mediated interactions with MYC and RbBP5 require their localization outside nucleoli. We utilize fluorescence resonance energy transfer (FRET) microscopy to confirm these weak interactions through a low FRET efficiency of the MYC-WDR5 and RbBP5-WDR5 complexes in living cells. In addition, we evaluate the impact of peptide and small-molecule inhibitors on these interactions. These outcomes form a fundamental basis for further developments to clarify the multitasking role of the WBM binding site of WDR5.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Ali Imran
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
7
|
Vanderkruk B, Maeshima N, Pasula DJ, An M, McDonald CL, Suresh P, Luciani DS, Lynn FC, Hoffman BG. Methylation of histone H3 lysine 4 is required for maintenance of beta cell function in adult mice. Diabetologia 2023; 66:1097-1115. [PMID: 36912927 PMCID: PMC10163146 DOI: 10.1007/s00125-023-05896-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
AIMS/HYPOTHESIS Beta cells control glucose homeostasis via regulated production and secretion of insulin. This function arises from a highly specialised gene expression programme that is established during development and then sustained, with limited flexibility, in terminally differentiated cells. Dysregulation of this programme is seen in type 2 diabetes but mechanisms that preserve gene expression or underlie its dysregulation in mature cells are not well resolved. This study investigated whether methylation of histone H3 lysine 4 (H3K4), a marker of gene promoters with unresolved functional importance, is necessary for the maintenance of mature beta cell function. METHODS Beta cell function, gene expression and chromatin modifications were analysed in conditional Dpy30 knockout mice, in which H3K4 methyltransferase activity is impaired, and in a mouse model of diabetes. RESULTS H3K4 methylation maintains expression of genes that are important for insulin biosynthesis and glucose responsiveness. Deficient methylation of H3K4 leads to a less active and more repressed epigenome profile that locally correlates with gene expression deficits but does not globally reduce gene expression. Instead, developmentally regulated genes and genes in weakly active or suppressed states particularly rely on H3K4 methylation. We further show that H3K4 trimethylation (H3K4me3) is reorganised in islets from the Leprdb/db mouse model of diabetes in favour of weakly active and disallowed genes at the expense of terminal beta cell markers with broad H3K4me3 peaks. CONCLUSIONS/INTERPRETATION Sustained methylation of H3K4 is critical for the maintenance of beta cell function. Redistribution of H3K4me3 is linked to gene expression changes that are implicated in diabetes pathology.
Collapse
Affiliation(s)
- Ben Vanderkruk
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Nina Maeshima
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Daniel J Pasula
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Meilin An
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Cassandra L McDonald
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Priya Suresh
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Dan S Luciani
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Francis C Lynn
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Brad G Hoffman
- Diabetes Research Group, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Mei PY, Xiao H, Guo Q, Meng WY, Wang ML, Huang QF, Liao YD. Identification and validation of DPY30 as a prognostic biomarker and tumor immune microenvironment infiltration characterization in esophageal cancer. Oncol Lett 2022; 25:68. [PMID: 36644145 PMCID: PMC9827447 DOI: 10.3892/ol.2022.13654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/10/2022] [Indexed: 12/28/2022] Open
Abstract
Esophageal cancer (ESCA) is a lethal malignancy and is associated with the alterations of various genes and epigenetic modifications. The protein dpy-30 homolog (DPY30) is a core member of histone H3K4 methylation catalase and its dysfunction is associated with the occurrence and development of cancer. Therefore, the present study investigated the role of DPY30 in ESCA and evaluated the association between the expression of DPY30, the clinicopathological characteristics of ESCA and the tumor immune microenvironment. It conducted a comprehensive analysis of DPY30 in patients with ESCA using The Cancer Genome Atlas (TCGA) database and clinical tissue microarray specimens of ESCA. Immunohistochemistry was performed to assess the expression levels of DPY30 in tissues. Receiver operating curve analysis, Kaplan-Meier survival analysis and Cox regression analysis were performed to identify the diagnostic and prognostic value of DPY30. Gene Set Enrichment Analysis, protein-protein interaction network and Estimation of Stromal and Immune cells in Malignant Tumor tissues using the Expression data were used to screen DPY30-associated genes and evaluate the immune score of the TCGA samples. The results demonstrated that the expression of mRNA and protein levels of DPY30 were significantly upregulated in tumor tissues compared with normal tissue samples. The expression of DPY30 was closely associated with the poor prognosis of patients with ESCA. The present study also found that DPY30 expression and the pathological characteristics of ESCA were significantly correlated. Additionally, the expression of DPY30 demonstrated a significant positive correlation with various immune cells infiltration. The results suggested that DPY30 might influence tumor immune infiltration. In conclusion, the findings suggested that DPY30 might be a potential prognostic biomarker and an immunotherapeutic target in ESCA.
Collapse
Affiliation(s)
- Pei-Yuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Han Xiao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wang-Yang Meng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Ming-Liang Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Quan-Fu Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China,Correspondence to: Professor Yong-De Liao or Dr Quan-Fu Huang, Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China, E-mail: , E-mail:
| | - Yong-De Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China,Correspondence to: Professor Yong-De Liao or Dr Quan-Fu Huang, Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, P.R. China, E-mail: , E-mail:
| |
Collapse
|
9
|
Liu H, Craig SEL, Molchanov V, Floramo JS, Zhao Y, Yang T. SUMOylation in Skeletal Development, Homeostasis, and Disease. Cells 2022; 11:cells11172710. [PMID: 36078118 PMCID: PMC9454984 DOI: 10.3390/cells11172710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
The modification of proteins by small ubiquitin-related modifier (SUMO) molecules, SUMOylation, is a key post-translational modification involved in a variety of biological processes, such as chromosome organization, DNA replication and repair, transcription, nuclear transport, and cell signaling transduction. In recent years, emerging evidence has shown that SUMOylation regulates the development and homeostasis of the skeletal system, with its dysregulation causing skeletal diseases, suggesting that SUMOylation pathways may serve as a promising therapeutic target. In this review, we summarize the current understanding of the molecular mechanisms by which SUMOylation pathways regulate skeletal cells in physiological and disease contexts.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Yang
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
- Correspondence: ; Tel.: +1-616-234-5820
| |
Collapse
|
10
|
Ma Q, Song C, Yin B, Shi Y, Ye L. The role of Trithorax family regulating osteogenic and Chondrogenic differentiation in mesenchymal stem cells. Cell Prolif 2022; 55:e13233. [PMID: 35481717 PMCID: PMC9136489 DOI: 10.1111/cpr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) hold great promise and clinical efficacy in bone/cartilage regeneration. With a deeper understanding of stem cell biology over the past decade, epigenetics stands out as one of the most promising ways to control MSCs differentiation. Trithorax group (TrxG) proteins, including the COMPASS family, ASH1L, CBP/p300 as histone modifying factors, and the SWI/SNF complexes as chromatin remodelers, play an important role in gene expression regulation during the process of stem cell differentiation. This review summarises the components and functions of TrxG complexes. We provide an overview of the regulation mechanisms of TrxG in MSCs osteogenic and chondrogenic differentiation, and discuss the prospects of epigenetic regulation mediated by TrxG in bone and cartilage regeneration.
Collapse
Affiliation(s)
- Qingge Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Dixit D, Prager BC, Gimple RC, Miller TE, Wu Q, Yomtoubian S, Kidwell RL, Lv D, Zhao L, Qiu Z, Zhang G, Lee D, Park DE, Wechsler-Reya RJ, Wang X, Bao S, Rich JN. Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Sci Transl Med 2022; 14:eabf3917. [PMID: 34985972 DOI: 10.1126/scitranslmed.abf3917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastomas are universally fatal cancers and contain self-renewing glioblastoma stem cells (GSCs) that initiate tumors. Traditional anticancer drug discovery based on in vitro cultures tends to identify targets with poor therapeutic indices and fails to accurately model the effects of the tumor microenvironment. Here, leveraging in vivo genetic screening, we identified the histone H3 lysine 4 trimethylation (H3K4me3) regulator DPY30 (Dpy-30 histone methyltransferase complex regulatory subunit) as an in vivo–specific glioblastoma dependency. On the basis of the hypothesis that in vivo epigenetic regulation may define critical GSC dependencies, we interrogated active chromatin landscapes of GSCs derived from intracranial patient-derived xenografts (PDXs) and cell culture through H3K4me3 chromatin immunoprecipitation and transcriptome analyses. Intracranial-specific genes marked by H3K4me3 included FOS, NFκB, and phosphodiesterase (PDE) family members. In intracranial PDX tumors, DPY30 regulated angiogenesis and hypoxia pathways in an H3K4me3-dependent manner but was dispensable in vitro in cultured GSCs. PDE4B was a key downstream effector of DPY30, and the PDE4 inhibitor rolipram preferentially targeted DPY30-expressing cells and impaired PDX tumor growth in mice without affecting tumor cells cultured in vitro. Collectively, the MLL/SET1 (mixed lineage leukemia/SET domain-containing 1, histone lysine methyltransferase) complex member DPY30 selectively regulates H3K4me3 modification on genes critical to support angiogenesis and tumor growth in vivo, suggesting the DPY30-PDE4B axis as a specific therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Briana C Prager
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tyler E Miller
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Qiulian Wu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Shira Yomtoubian
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Reilly L Kidwell
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Deguan Lv
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Zhixin Qiu
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Derrick Lee
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Donglim Esther Park
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xiuxing Wang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA
| | - Shideng Bao
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44106, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA 92037, USA.,University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
12
|
GRWD1-WDR5-MLL2 Epigenetic Complex Mediates H3K4me3 Mark and Is Essential for Kaposi's Sarcoma-Associated Herpesvirus-Induced Cellular Transformation. mBio 2021; 12:e0343121. [PMID: 34933446 PMCID: PMC8689518 DOI: 10.1128/mbio.03431-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is causally associated with numerous cancers. The mechanism of KSHV-induced oncogenesis remains unclear. By performing a CRISPR-Cas9 screening in a model of KSHV-induced cellular transformation of primary cells, we identified epigenetic regulators that were essential for KSHV-induced cellular transformation. Examination of TCGA data sets of the top 9 genes, including glutamate-rich WD repeat containing 1 (GRWD1), a WD40 family protein upregulated by KSHV, that had positive effects on cell proliferation and survival of KSHV-transformed cells (KMM) but not the matched primary cells (MM), uncovered the predictive values of their expressions for patient survival in numerous types of cancer. We revealed global epigenetic remodeling including H3K4me3 epigenetic active mark in KMM cells compared to MM cells. Knockdown of GRWD1 inhibited cell proliferation, cellular transformation, and tumor formation and caused downregulation of global H3K4me3 mark in KMM cells. GRWD1 interacted with WD repeat domain 5 (WDR5), the core protein of H3K4 methyltransferase complex, and several H3K4me3 methyltransferases, including myeloid leukemia 2 (MLL2). Knockdown of WDR5 and MLL2 phenocopied GRWD1 knockdown, caused global reduction of H3K4me3 mark, and altered the expression of similar sets of genes. Transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses further identified common and distinct cellular genes and pathways that were regulated by GRWD1, WDR5, and MLL2. These results indicate that KSHV hijacks the GRWD1-WDR5-MLL2 epigenetic complex to regulate H3K4me3 methylation of specific genes, which is essential for KSHV-induced cellular transformation. Our work has identified an epigenetic complex as a novel therapeutic target for KSHV-induced cancers. IMPORTANCE By performing a genome-wide CRISPR-Cas9 screening, we have identified cellular epigenetic regulators that are essential for KSHV-induced cellular transformation. Among them, GRWD1 regulates epigenetic active mark H3K4me3 by interacting with WDR5 and MLL2 and recruiting them to chromatin loci of specific genes in KSHV-transformed cells. Hence, KSHV hijacks the GRWD1-WDR5-MLL2 complex to remodel cellular epigenome and induce cellular transformation. Since the dysregulation of GRWD1 is associated with poor prognosis in several types of cancer, GRWD1 might also be a critical driver in other viral or nonviral cancers.
Collapse
|
13
|
Hernández-Quiles M, Baak R, Borgman A, den Haan S, Sobrevals Alcaraz P, van Es R, Kiss-Toth E, Vos H, Kalkhoven E. Comprehensive Profiling of Mammalian Tribbles Interactomes Implicates TRIB3 in Gene Repression. Cancers (Basel) 2021; 13:6318. [PMID: 34944947 PMCID: PMC8699236 DOI: 10.3390/cancers13246318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
The three human Tribbles (TRIB) pseudokinases have been implicated in a plethora of signaling and metabolic processes linked to cancer initiation and progression and can potentially be used as biomarkers of disease and prognosis. While their modes of action reported so far center around protein-protein interactions, the comprehensive profiling of TRIB interactomes has not been reported yet. Here, we have developed a robust mass spectrometry (MS)-based proteomics approach to characterize Tribbles' interactomes and report a comprehensive assessment and comparison of the TRIB1, -2 and -3 interactomes, as well as domain-specific interactions for TRIB3. Interestingly, TRIB3, which is predominantly localized in the nucleus, interacts with multiple transcriptional regulators, including proteins involved in gene repression. Indeed, we found that TRIB3 repressed gene transcription when tethered to DNA in breast cancer cells. Taken together, our comprehensive proteomic assessment reveals previously unknown interacting partners and functions of Tribbles proteins that expand our understanding of this family of proteins. In addition, our findings show that MS-based proteomics provides a powerful tool to unravel novel pseudokinase biology.
Collapse
Affiliation(s)
- Miguel Hernández-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Rosalie Baak
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Anouska Borgman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Suzanne den Haan
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Paula Sobrevals Alcaraz
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Robert van Es
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, UK;
| | - Harmjan Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| |
Collapse
|
14
|
Gene Transcription as a Therapeutic Target in Leukemia. Int J Mol Sci 2021; 22:ijms22147340. [PMID: 34298959 PMCID: PMC8304797 DOI: 10.3390/ijms22147340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Blood malignancies often arise from undifferentiated hematopoietic stem cells or partially differentiated stem-like cells. A tight balance of multipotency and differentiation, cell division, and quiescence underlying normal hematopoiesis requires a special program governed by the transcriptional machinery. Acquisition of drug resistance by tumor cells also involves reprogramming of their transcriptional landscape. Limiting tumor cell plasticity by disabling reprogramming of the gene transcription is a promising strategy for improvement of treatment outcomes. Herein, we review the molecular mechanisms of action of transcription-targeted drugs in hematological malignancies (largely in leukemia) with particular respect to the results of clinical trials.
Collapse
|
15
|
Imran A, Moyer BS, Canning AJ, Kalina D, Duncan TM, Moody KJ, Wolfe AJ, Cosgrove MS, Movileanu L. Kinetics of the multitasking high-affinity Win binding site of WDR5 in restricted and unrestricted conditions. Biochem J 2021; 478:2145-2161. [PMID: 34032265 PMCID: PMC8214142 DOI: 10.1042/bcj20210253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023]
Abstract
Recent advances in quantitative proteomics show that WD40 proteins play a pivotal role in numerous cellular networks. Yet, they have been fairly unexplored and their physical associations with other proteins are ambiguous. A quantitative understanding of these interactions has wide-ranging significance. WD40 repeat protein 5 (WDR5) interacts with all members of human SET1/MLL methyltransferases, which regulate methylation of the histone 3 lysine 4 (H3K4). Here, using real-time binding measurements in a high-throughput setting, we identified the kinetic fingerprint of transient associations between WDR5 and 14-residue WDR5 interaction (Win) motif peptides of each SET1 protein (SET1Win). Our results reveal that the high-affinity WDR5-SET1Win interactions feature slow association kinetics. This finding is likely due to the requirement of SET1Win to insert into the narrow WDR5 cavity, also named the Win binding site. Furthermore, our explorations indicate fairly slow dissociation kinetics. This conclusion is in accordance with the primary role of WDR5 in maintaining the functional integrity of a large multisubunit complex, which regulates the histone methylation. Because the Win binding site is considered a key therapeutic target, the immediate outcomes of this study could form the basis for accelerated developments in medical biotechnology.
Collapse
Affiliation(s)
- Ali Imran
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Brandon S. Moyer
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
| | - Ashley J. Canning
- Department of Biochemistry and Molecular Biology, State University of New York - Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, New York 13210, USA
| | - Dan Kalina
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, USA
| | - Thomas M. Duncan
- Department of Biochemistry and Molecular Biology, State University of New York - Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, New York 13210, USA
| | - Kelsey J. Moody
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, USA
| | - Aaron J. Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Ichor Therapeutics, Inc., 2521 US Route 11, LaFayette, New York 13084, USA
- Department of Chemistry, State University of New York, College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, USA
| | - Michael S. Cosgrove
- Department of Biochemistry and Molecular Biology, State University of New York - Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, New York 13210, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- The BioInspired Institute, Syracuse University, Syracuse, New York, 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
16
|
Zhou S, Liu X, Sun W, Zhang M, Yin Y, Pan S, He D, Shen M, Yang J, Zheng Q, Wang W. The COMPASS-like complex modulates fungal development and pathogenesis by regulating H3K4me3-mediated targeted gene expression in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:422-439. [PMID: 33559339 PMCID: PMC7938624 DOI: 10.1111/mpp.13035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 05/07/2023]
Abstract
Histone-3-lysine-4 (H3K4) methylation is catalysed by the multiprotein complex known as the Set1/COMPASS or MLL/COMPASS-like complex, an element that is highly evolutionarily conserved from yeast to humans. However, the components and mechanisms by which the COMPASS-like complex targets the H3K4 methylation of plant-pathogenic genes in fungi remain elusive. Here we present a comprehensive analysis combining biochemical, molecular, and genome-wide approaches to characterize the roles of the COMPASS-like family in the rice blast fungus Magnaporthe oryzae, a model plant pathogen. We purified and identified six conserved subunits of COMPASS from M. oryzae: MoBre2 (Cps60/ASH2L), MoSpp1 (Cps40/Cfp1), MoSwd2 (Cps35), MoSdc1 (Cps25/DPY30), MoSet1 (MLL/ALL), and MoRbBP5 (Cps50), using an affinity tag on MoBre2. We determined the sequence repeat in dual-specificity kinase splA and ryanodine receptors domain of MoBre2 can interact directly with the DPY30 domain of MoSdc1 in vitro. Furthermore, we found that deletion of the genes encoding COMPASS subunits of MoBre2, MoSPP1, and MoSwd2 caused similar defects regarding invasive hyphal development and pathogenicity. Genome-wide profiling of H3K4me3 revealed that it has remarkable co-occupancy at the transcription start site regions of target genes. Significantly, these target genes are often involved in spore germination and pathogenesis. Decreased gene expression caused by the deletion of MoBre2, MoSwd2, or MoSpp1 was highly correlated with a decrease in H3K4me3. These results suggest that MoBre2, MoSpp1, and MoSwd2 function as a whole COMPASS complex, contributing to fungal development and pathogenesis by regulating H3K4me3-targeted genes in M. oryzae.
Collapse
Affiliation(s)
- Sida Zhou
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Xiuying Liu
- Center for Research and CooperationNovogene Bioinformatics InstituteBeijingChina
| | - Wanyu Sun
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Mengyu Zhang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Yue Yin
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Song Pan
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Dan He
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Mi Shen
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jun Yang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Qi Zheng
- Center for Research and CooperationNovogene Bioinformatics InstituteBeijingChina
| | - Weixiang Wang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| |
Collapse
|
17
|
Abstract
The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG - the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes - regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies.
Collapse
|
18
|
Sugeedha J, Gautam J, Tyagi S. SET1/MLL family of proteins: functions beyond histone methylation. Epigenetics 2020; 16:469-487. [PMID: 32795105 PMCID: PMC8078731 DOI: 10.1080/15592294.2020.1809873] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SET1 family of enzymes are well known for their involvement in the histone 3 lysine 4 (H3K4) methylation, a conserved trait of euchromatin associated with transcriptional activation. These methyltransferases are distinct, and involved in various biological functions in the cell. Impairment in the function of SET1 family members leads to a number of abnormalities such as skeletal and neurological defects, leukaemogenesis and even lethality. Tremendous progress has been made in understanding the unique biological roles and the mechanism of SET1 enzymes in context with H3K4 methylation/canonical functions. However, in recent years, several studies have indicated the novel role of SET1 family proteins, other than H3K4 methylation, which are equally important for cellular functions. In this review, we focus on these non-canonical function of SET1 family members.
Collapse
Affiliation(s)
- Jeyapal Sugeedha
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Jyoti Gautam
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| |
Collapse
|
19
|
Upregulation of DPY30 promotes cell proliferation and predicts a poor prognosis in cholangiocarcinoma. Biomed Pharmacother 2019; 123:109766. [PMID: 31846841 DOI: 10.1016/j.biopha.2019.109766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Modification of lysine 4 on histone H3 methylation by SET1 and MLL family methyltransferase complexes is tightly linked to cancer progression. DPY30 is an important subunit of SET1 and MLL complexes, however, its expression and roles in cancer progression was little known, especially in cholangiocarcinoma (CCA). MATERIALS AND METHODS The Q-PCR and IHC were performed to detect the levels of DPY30 mRNA and protein in CCA tissues. Effect of DPY30 knockdown on the proliferation of CCA cells was detected by MTS and colony formation, and cell cycle distribution was analyzed by flow cytometer. The glucose uptake, lactate release and ATP production assays were performed to detect the glycolysis of CCA cells. RESULTS The level of DPY30 mRNA and protein in CCA tissues were all significantly higher than that of pericancer tissues, and its upregulation was closely associated with pathological differentiation, tumor size, and TNM stage. In addition, Kaplan-Meier analysis of overall survival revealed that DPY30 upregulation was significantly associated with poor survival, and univariate and multivariate analysis indicated that it was an independently prognosis factor in CCA patients. Moreover, DPY30 knockdown inhibited in-vitro growth and induced cell cycle arrest at G2/M and decreased glycolysis in CCA cells. CONCLUSIONS DPY30 upregulation may promote the development of CCA and was associated with the aggressive malignant behavior and poor survival outcome of CCA patients. DPY30 might serve as a potential novel target for treatment of CCA patients.
Collapse
|
20
|
Newton T, Allison R, Edgar JR, Lumb JH, Rodger CE, Manna PT, Rizo T, Kohl Z, Nygren AOH, Arning L, Schüle R, Depienne C, Goldberg L, Frahm C, Stevanin G, Durr A, Schöls L, Winner B, Beetz C, Reid E. Mechanistic basis of an epistatic interaction reducing age at onset in hereditary spastic paraplegia. Brain 2019; 141:1286-1299. [PMID: 29481671 PMCID: PMC5917785 DOI: 10.1093/brain/awy034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Many genetic neurological disorders exhibit variable expression within affected families, often exemplified by variations in disease age at onset. Epistatic effects (i.e. effects of modifier genes on the disease gene) may underlie this variation, but the mechanistic basis for such epistatic interactions is rarely understood. Here we report a novel epistatic interaction between SPAST and the contiguous gene DPY30, which modifies age at onset in hereditary spastic paraplegia, a genetic axonopathy. We found that patients with hereditary spastic paraplegia caused by genomic deletions of SPAST that extended into DPY30 had a significantly younger age at onset. We show that, like spastin, the protein encoded by SPAST, the DPY30 protein controls endosomal tubule fission, traffic of mannose 6-phosphate receptors from endosomes to the Golgi, and lysosomal ultrastructural morphology. We propose that additive effects on this pathway explain the reduced age at onset of hereditary spastic paraplegia in patients who are haploinsufficient for both genes.
Collapse
Affiliation(s)
- Timothy Newton
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Rachel Allison
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - James R Edgar
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jennifer H Lumb
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Catherine E Rodger
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Paul T Manna
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Tania Rizo
- Department of Stem Cell Biology, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Zacharias Kohl
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | | | - Larissa Arning
- Department of Human Genetics, Ruhr-University, Bochum, Germany
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Christel Depienne
- ICM Brain and Spine Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universites, UPMC Univ Paris VI UMR_S1127, Paris, France.,APHP, Genetic Department, Pitie-Salpêtrière University Hospital, Paris, France
| | - Lisa Goldberg
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Giovanni Stevanin
- ICM Brain and Spine Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universites, UPMC Univ Paris VI UMR_S1127, Paris, France.,APHP, Genetic Department, Pitie-Salpêtrière University Hospital, Paris, France.,Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France
| | - Alexandra Durr
- ICM Brain and Spine Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universites, UPMC Univ Paris VI UMR_S1127, Paris, France.,APHP, Genetic Department, Pitie-Salpêtrière University Hospital, Paris, France
| | - Ludger Schöls
- Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Beate Winner
- Department of Molecular Neurology, Friedrich-Alexander University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Christian Beetz
- Department of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Evan Reid
- Department of Medical Genetics and Cambridge Institute for Medical Research, University of Cambridge, UK
| |
Collapse
|
21
|
A novel de novo frameshift variant in SETD1B causes epilepsy. J Hum Genet 2019; 64:821-827. [DOI: 10.1038/s10038-019-0617-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
|
22
|
Karole AM, Chodisetty S, Ali A, Kumari N, Tyagi S. Novel sub-cellular localizations and intra-molecular interactions may define new functions of Mixed Lineage Leukemia protein. Cell Cycle 2018; 17:2684-2696. [PMID: 30489191 DOI: 10.1080/15384101.2018.1553338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Mixed-lineage leukemia (MLL) protein is the best-characterized member of SET family of histone 3 lysine 4 methyltransferase, known for its transcriptional-activation role during development. mll gene rearrangements cause multiple kinds of aggressive leukemia in both children and adults. An important 'first' step in understanding the role of MLL in leukemogenesis would be to identify its localization throughout the cell cycle. In order to fully understand the breath of MLL functions in proliferating cells, we have analyzed its sub-cellular localization during the cell cycle. Our results show that MLL localizes to nucleolus and centrosome in interphase. During mitosis, it localizes to centrosomes and midbody in addition to previously reported spindle apparatus. Our results show that MLLN is required to translocate MLLC to the nucleolus. These finding suggest functional roles for MLL in nucleolus and mitosis. We also show how MLL-fusion proteins (MLL-FPs) localize to the same sub-cellular organelles like endogenous MLL. Our results indicate that MLL-fusion proteins may not only disturb the cell homeostasis by gain-of-function of the chimeric protein, but also by interfering with the functions of endogenous MLL.
Collapse
Affiliation(s)
- Amit Mahendra Karole
- a Laboratory of Cell Cycle Regulation , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Uppal , Hyderabad 500039 , India.,b Graduate Studies , Manipal Academy of Higher Education , Manipal , India
| | - Swathi Chodisetty
- a Laboratory of Cell Cycle Regulation , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Uppal , Hyderabad 500039 , India.,b Graduate Studies , Manipal Academy of Higher Education , Manipal , India
| | - Aamir Ali
- a Laboratory of Cell Cycle Regulation , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Uppal , Hyderabad 500039 , India.,b Graduate Studies , Manipal Academy of Higher Education , Manipal , India
| | - Nidhi Kumari
- a Laboratory of Cell Cycle Regulation , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Uppal , Hyderabad 500039 , India
| | - Shweta Tyagi
- a Laboratory of Cell Cycle Regulation , Centre for DNA Fingerprinting and Diagnostics (CDFD) , Uppal , Hyderabad 500039 , India
| |
Collapse
|
23
|
Liu B. DPY30 functions in glucose homeostasis via integrating activated histone epigenetic modifications. Biochem Biophys Res Commun 2018; 507:286-290. [DOI: 10.1016/j.bbrc.2018.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
|
24
|
Bryzgalov LO, Korbolina EE, Brusentsov II, Leberfarb EY, Bondar NP, Merkulova TI. Novel functional variants at the GWAS-implicated loci might confer risk to major depressive disorder, bipolar affective disorder and schizophrenia. BMC Neurosci 2018; 19:22. [PMID: 29745862 PMCID: PMC5998904 DOI: 10.1186/s12868-018-0414-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A challenge of understanding the mechanisms underlying cognition including neurodevelopmental and neuropsychiatric disorders is mainly given by the potential severity of cognitive disorders for the quality of life and their prevalence. However, the field has been focused predominantly on protein coding variation until recently. Given the importance of tightly controlled gene expression for normal brain function, the goal of the study was to assess the functional variation including non-coding variation in human genome that is likely to play an important role in cognitive functions. To this end, we organized and utilized available genome-wide datasets from genomic, transcriptomic and association studies into a comprehensive data corpus. We focused on genomic regions that are enriched in regulatory activity-overlapping transcriptional factor binding regions and repurpose our data collection especially for identification of the regulatory SNPs (rSNPs) that showed associations both with allele-specific binding and allele-specific expression. We matched these rSNPs to the nearby and distant targeted genes and then selected the variants that could implicate the etiology of cognitive disorders according to Genome-Wide Association Studies (GWAS). Next, we use DeSeq 2.0 package to test the differences in the expression of the certain targeted genes between the controls and the patients that were diagnosed bipolar affective disorder and schizophrenia. Finally, we assess the potential biological role for identified drivers of cognition using DAVID and GeneMANIA. RESULTS As a result, we selected fourteen regulatory SNPs locating within the loci, implicated from GWAS for cognitive disorders with six of the variants unreported previously. Grouping of the targeted genes according to biological functions revealed the involvement of processes such as 'posttranscriptional regulation of gene expression', 'neuron differentiation', 'neuron projection development', 'regulation of cell cycle process' and 'protein catabolic processes'. We identified four rSNP-targeted genes that showed differential expression between patient and control groups depending on brain region: NRAS-in schizophrenia cohort, CDC25B, DDX21 and NUCKS1-in bipolar disorder cohort. CONCLUSIONS Overall, our findings are likely to provide the keys for unraveling the mechanisms that underlie cognitive functions including major depressive disorder, bipolar disorder and schizophrenia etiopathogenesis.
Collapse
Affiliation(s)
- Leonid O. Bryzgalov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
| | - Elena E. Korbolina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
- The Novosibirsk State University, 1 Pirogova st., Novosibirsk, Russian Federation 630090
| | - Ilja I. Brusentsov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
| | - Elena Y. Leberfarb
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
| | - Natalia P. Bondar
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
- The Novosibirsk State University, 1 Pirogova st., Novosibirsk, Russian Federation 630090
| | - Tatiana I. Merkulova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, Novosibirsk, Russian Federation 630090
- The Novosibirsk State University, 1 Pirogova st., Novosibirsk, Russian Federation 630090
| |
Collapse
|
25
|
Ali A, Veeranki SN, Chinchole A, Tyagi S. MLL/WDR5 Complex Regulates Kif2A Localization to Ensure Chromosome Congression and Proper Spindle Assembly during Mitosis. Dev Cell 2017. [PMID: 28633016 DOI: 10.1016/j.devcel.2017.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mixed-lineage leukemia (MLL), along with multisubunit (WDR5, RbBP5, ASH2L, and DPY30) complex catalyzes the trimethylation of H3K4, leading to gene activation. Here, we characterize a chromatin-independent role for MLL during mitosis. MLL and WDR5 localize to the mitotic spindle apparatus, and loss of function of MLL complex by RNAi results in defects in chromosome congression and compromised spindle formation. We report interaction of MLL complex with several kinesin and dynein motors. We further show that the MLL complex associates with Kif2A, a member of the Kinesin-13 family of microtubule depolymerase, and regulates the spindle localization of Kif2A during mitosis. We have identified a conserved WDR5 interaction (Win) motif, so far unique to the MLL family, in Kif2A. The Win motif of Kif2A engages in direct interactions with WDR5 for its spindle localization. Our findings highlight a non-canonical mitotic function of MLL complex, which may have a direct impact on chromosomal stability, frequently compromised in cancer.
Collapse
Affiliation(s)
- Aamir Ali
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India; Graduate Studies, Manipal University, Manipal, India
| | - Sailaja Naga Veeranki
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India
| | - Akash Chinchole
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India; Graduate Studies, Manipal University, Manipal, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad 500001, India.
| |
Collapse
|