1
|
Li YI, Pagulayan K, Rau H, Hendrickson R, Schindler AG. Gut Microbial Composition Is Associated with Symptom Self-Report in Trauma-Exposed Iraq and Afghanistan Veterans. Neurotrauma Rep 2025; 6:1-12. [PMID: 40012717 PMCID: PMC11850977 DOI: 10.1089/neur.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Iraq and Afghanistan War-era Veterans are at elevated risk for physical injuries and psychiatric illnesses, in particular the polytrauma triad of mild traumatic brain injury (mTBI), post-traumatic stress disorder (PTSD), and chronic pain. The gut microbiome has been implicated in modulation of critical processes beyond digestion, including immune system functioning and stress responsivity, and may be an important factor in understanding physical and mental health outcomes following deployment and trauma exposure. However, minimal research to date has sought to characterize gut microbiome composition in this population. Male Veterans of the conflicts in Iraq and Afghanistan who previously completed a Veterans Affairs' comprehensive TBI evaluation were enrolled in the current study. Participants completed self-report measures of PTSD symptom severity, pain intensity and interference, fatigue, cognitive symptoms, substance use, and sleep quality. They also submitted fecal samples, and metagenomic sequencing was used to calculate alpha and beta diversity and taxonomic microbial composition. Associations between microbiome data and clinical variables were then examined. Alpha and beta diversity measures were not significantly correlated with clinical outcomes. Fatigue, post-concussive symptoms, executive function symptoms, and cannabis use were associated with differences in gut microbial composition, specifically Verrucomicrobiota. Together, results suggest that altered gut microbiome composition is associated with psychiatric and cognitive symptoms in Veterans and highlight a potential new therapeutic target of interest. Future research is needed to examine whether probiotic treatment is effective for reducing symptoms common in this clinical population.
Collapse
Affiliation(s)
- Y. Irina Li
- Northwest Mental Illness Research, Education and Clinical Center, Veterans Affairs (VA) Puget Sound Health Care System, Seattle, Washington, USA
- Department of Anesthesiology, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Kathleen Pagulayan
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Holly Rau
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Rebecca Hendrickson
- Northwest Mental Illness Research, Education and Clinical Center, Veterans Affairs (VA) Puget Sound Health Care System, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Abigail G. Schindler
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
- Graduate Program in Neuroscience, University of Washington, Seattle, Washington, USA
- VA Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Pasam T, Padhy HP, Dandekar MP. Lactobacillus Helveticus Improves Controlled Cortical Impact Injury-Generated Neurological Aberrations by Remodeling of Gut-Brain Axis Mediators. Neurochem Res 2024; 50:3. [PMID: 39541016 DOI: 10.1007/s11064-024-04251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Considerable studies augured the potential of gut microbiota-based interventions in brain injury-associated complications. Based on our earlier study results, we envisaged the sex-specific neuroprotective effect of Lactobacillus helveticus by remodeling of gut-brain axis. In this study, we investigated the effect of L. helveticus on neurological complications in a mouse model of controlled cortical impact (CCI). Adult, male and female, C57BL/6 mice underwent CCI surgery and received L. helveticus treatment for six weeks. Sensorimotor function was evaluated via neurological severity score and rotarod test. Long-term effects on anxiety-like behavior and cognition were assessed using the elevated-zero maze (EZM) and novel object recognition test (NORT). Brain perilesional area, blood, colon, and fecal samples were collected post-CCI for molecular biology analysis. CCI-operated mice displayed significant neurological impairments at 1-, 3-, 5-, and 7-days post-injury (dpi) and exhibited altered behavior in EZM and NORT compared to sham-operated mice. However, these behavioral changes were ameliorated in mice receiving L. helveticus. GFAP, Iba-1, TNF-α, and IL-1β expressions and corticotrophin-releasing hormone (CRH) levels were elevated in the perilesional cortex of CCI-operated male/female mice. These elevated biomarkers and decreased BDNF levels in both male/female mice were modified by L. helveticus treatment. Additionally, L. helveticus treatment restored altered short-chain fatty acids (SCFAs) levels in fecal samples and improved intestinal integrity but did not affect decreased plasma levels of progesterone and testosterone in CCI mice. These results indicate that L. helveticus exerts beneficial effects in the CCI mouse model by mitigating inflammation and remodeling of gut microbiota-brain mediators.
Collapse
Affiliation(s)
- Tulasi Pasam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
3
|
Smith AM, Challagundla L, McGee IG, Warfield ZJ, Santos CDSE, Garrett MR, Grayson BE. Temporal shifts to the gut microbiome associated with cognitive dysfunction following high-fat diet consumption in a juvenile model of traumatic brain injury. Physiol Genomics 2024; 56:301-316. [PMID: 38145288 PMCID: PMC11283908 DOI: 10.1152/physiolgenomics.00113.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023] Open
Abstract
The gut-brain axis interconnects the central nervous system (CNS) and the commensal bacteria of the gastrointestinal tract. The composition of the diet consumed by the host influences the richness of the microbial populations. Traumatic brain injury (TBI) produces profound neurocognitive damage, but it is unknown how diet influences the microbiome following TBI. The present work investigates the impact of a chow diet versus a 60% fat diet (HFD) on fecal microbiome populations in juvenile rats following TBI. Twenty-day-old male rats were placed on one of two diets for 9 days before sustaining either a Sham or TBI via the Closed Head Injury Model of Engineered Rotational Acceleration (CHIMERA). Fecal samples were collected at both 1- and 9-days postinjury. Animals were cognitively assessed in the novel object recognition tests at 8 days postinjury. Fecal microbiota DNA was isolated and sequenced. Twenty days of HFD feeding did not alter body weight, but fat mass was elevated in HFD compared with Chow rats. TBI animals had a greater percentage of entries to the novel object quadrant than Sham counterparts, P < 0.05. The Firmicutes/Bacteroidetes ratio was significantly higher in TBI than in the Sham, P < 0.05. Microbiota of the Firmicutes lineage exhibited perturbations by both injury and diet that were sustained at both time points. Linear regression analyses were performed to associate bacteria with metabolic and neurocognitive endpoints. For example, counts of Lachnospiraceae were negatively associated with percent entries into the novel object quadrant. Taken together, these data suggest that both diet and injury produce robust shifts in microbiota, which may have long-term implications for chronic health.NEW & NOTEWORTHY Traumatic brain injury (TBI) produces memory and learning difficulties. Diet profoundly influences the populations of gut microbiota. Following traumatic brain injury in a pediatric model consuming either a healthy or high-fat diet (HFD), significant shifts in bacterial populations occur, of which, some are associated with diet, whereas others are associated with neurocognitive performance. More work is needed to determine whether these microbes can therapeutically improve learning following trauma to the brain.
Collapse
Affiliation(s)
- Allie M Smith
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lavanya Challagundla
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ian G McGee
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Zyra J Warfield
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | | | - Michael R Garrett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Bernadette E Grayson
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
4
|
Du Q, Li Q, Liao G, Li J, Ye P, Zhang Q, Gong X, Yang J, Li K. Emerging trends and focus of research on the relationship between traumatic brain injury and gut microbiota: a visualized study. Front Microbiol 2023; 14:1278438. [PMID: 38029105 PMCID: PMC10654752 DOI: 10.3389/fmicb.2023.1278438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Traumatic brain injury (TBI) is one of the most serious types of trauma and imposes a heavy social and economic burden on healthcare systems worldwide. The development of emerging biotechnologies is uncovering the relationship between TBI and gut flora, and gut flora as a potential intervention target is of increasing interest to researchers. Nevertheless, there is a paucity of research employing bibliometric methodologies to scrutinize the interrelation between these two. Therefore, this study visualized the relationship between TBI and gut flora based on bibliometric methods to reveal research trends and hotspots in the field. The ultimate objective is to catalyze progress in the preclinical and clinical evolution of strategies for treating and managing TBI. Methods Terms related to TBI and gut microbiota were combined to search the Scopus database for relevant documents from inception to February 2023. Visual analysis was performed using CiteSpace and VOSviewer. Results From September 1972 to February 2023, 2,957 documents published from 98 countries or regions were analyzed. The number of published studies on the relationship between TBI and gut flora has risen exponentially, with the United States, China, and the United Kingdom being representative of countries publishing in related fields. Research has formed strong collaborations around highly productive authors, but there is a relative lack of international cooperation. Research in this area is mainly published in high-impact journals in the field of neurology. The "intestinal microbiota and its metabolites," "interventions," "mechanism of action" and "other diseases associated with traumatic brain injury" are the most promising and valuable research sites. Targeting the gut flora to elucidate the mechanisms for the development of the course of TBI and to develop precisely targeted interventions and clinical management of TBI comorbidities are of great significant research direction and of interest to researchers. Conclusion The findings suggest that close attention should be paid to the relationship between gut microbiota and TBI, especially the interaction, potential mechanisms, development of emerging interventions, and treatment of TBI comorbidities. Further investigation is needed to understand the causal relationship between gut flora and TBI and its specific mechanisms, especially the "brain-gut microbial axis."
Collapse
Affiliation(s)
- Qiujing Du
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Qijie Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiafei Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Peiling Ye
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Qi Zhang
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiaotong Gong
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Jiaju Yang
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Ka Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Sgro M, Ray J, Foster E, Mychasiuk R. Making migraine easier to stomach: the role of the gut-brain-immune axis in headache disorders. Eur J Neurol 2023; 30:3605-3621. [PMID: 37329292 DOI: 10.1111/ene.15934] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND PURPOSE Headache disorders place a significant burden on the healthcare system, being the leading cause of disability in those under 50 years. Novel studies have interrogated the relationship between headache disorders and gastrointestinal dysfunction, suggesting a link between the gut-brain-immune (GBI) axis and headache pathogenesis. Although the exact mechanisms driving the complex relationship between the GBI axis and headache disorders remain unclear, there is a growing appreciation that a healthy and diverse microbiome is necessary for optimal brain health. METHODS A literature search was performed through multiple reputable databases in search of Q1 journals within the field of headache disorders and gut microbiome research and were critically and appropriately evaluated to investigate and explore the following; the role of the GBI axis in dietary triggers of headache disorders and the evidence indicating that diet can be used to alleviate headache severity and frequency. The relationship between the GBI axis and post-traumatic headache is then synthesized. Finally, the scarcity of literature regarding paediatric headache disorders and the role that the GBI axis plays in mediating the relationship between sex hormones and headache disorders are highlighted. CONCLUSIONS There is potential for novel therapeutic targets for headache disorders if understanding of the GBI axis in their aetiology, pathogenesis and recovery is increased.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jason Ray
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| | - Emma Foster
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Munley JA, Kirkpatrick SL, Gillies GS, Bible LE, Efron PA, Nagpal R, Mohr AM. The Intestinal Microbiome after Traumatic Injury. Microorganisms 2023; 11:1990. [PMID: 37630549 PMCID: PMC10459834 DOI: 10.3390/microorganisms11081990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
The intestinal microbiome plays a critical role in host immune function and homeostasis. Patients suffering from-as well as models representing-multiple traumatic injuries, isolated organ system trauma, and various severities of traumatic injury have been studied as an area of interest in the dysregulation of immune function and systemic inflammation which occur after trauma. These studies also demonstrate changes in gut microbiome diversity and even microbial composition, with a transition to a pathobiome state. In addition, sex has been identified as a biological variable influencing alterations in the microbiome after trauma. Therapeutics such as fecal transplantation have been utilized to ameliorate not only these microbiome changes but may also play a role in recovery postinjury. This review summarizes the alterations in the gut microbiome that occur postinjury, either in isolated injury or multiple injuries, along with proposed mechanisms for these changes and future directions for the field.
Collapse
Affiliation(s)
- Jennifer A. Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Stacey L. Kirkpatrick
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Gwendolyn S. Gillies
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Letitia E. Bible
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, Florida State University College of Health and Human Sciences, Tallahassee, FL 32306, USA;
| | - Alicia M. Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.A.M.); (S.L.K.); (G.S.G.); (L.E.B.); (P.A.E.)
| |
Collapse
|
7
|
Baskin BM, Logsdon AF, Janet Lee S, Foresi BD, Peskind E, Banks WA, Cook DG, Schindler AG. Timing matters: Sex differences in inflammatory and behavioral outcomes following repetitive blast mild traumatic brain injury. Brain Behav Immun 2023; 110:222-236. [PMID: 36907289 PMCID: PMC10106404 DOI: 10.1016/j.bbi.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Repetitive blast-related mild traumatic brain injury (mTBI) caused by exposure to high explosives is increasingly common among warfighters as well as civilians. While women have been serving in military positions with increased risk of blast exposure since 2016, there are few published reports examining sex as a biological variable in models of blast mTBI, greatly limiting diagnosis and treatment capabilities. As such, here we examined outcomes of repetitive blast trauma in female and male mice in relation to potential behavioral, inflammatory, microbiome, and vascular dysfunction at multiple timepoints. METHODS In this study we utilized a well-established blast overpressure model to induce repetitive (3x) blast-mTBI in both female and male mice. Acutely following repetitive exposure, we measured serum and brain cytokine levels, blood-brain barrier (BBB) disruption, fecal microbial abundance, and locomotion and anxiety-like behavior in the open field assay. At the one-month timepoint, in female and male mice we assessed behavioral correlates of mTBI and PTSD-related symptoms commonly reported by Veterans with a history of blast-mTBI using the elevated zero maze, acoustic startle, and conditioned odorant aversion paradigms. RESULTS Repetitive blast exposure resulted in both similar (e.g., increased IL-6), and disparate (e.g., IL-10 increase only in females) patterns of acute serum and brain cytokine as well as gut microbiome changes in female and male mice. Acute BBB disruption following repetitive blast exposure was apparent in both sexes. While female and male blast mice both exhibited acute locomotor and anxiety-like deficits in the open field assay, only male mice exhibited adverse behavioral outcomes that lasted at least one-month. DISCUSSION Representing a novel survey of potential sex differences following repetitive blast trauma, our results demonstrate unique similar yet divergent patterns of blast-induced dysfunction in female vs. male mice and highlight novel targets for future diagnosis and therapeutic development.
Collapse
Affiliation(s)
- Britahny M Baskin
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Aric F Logsdon
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Suhjung Janet Lee
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian D Foresi
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Elaine Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David G Cook
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Abigail G Schindler
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; VA Northwest Mental Illness Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| |
Collapse
|
8
|
Involvement of Microbiome Gut–Brain Axis in Neuroprotective Effect of Quercetin in Mouse Model of Repeated Mild Traumatic Brain Injury. Neuromolecular Med 2022:10.1007/s12017-022-08732-z. [DOI: 10.1007/s12017-022-08732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
|
9
|
Sgro M, Iacono G, Yamakawa GR, Kodila ZN, Marsland BJ, Mychasiuk R. Age matters: Microbiome depletion prior to repeat mild traumatic brain injury differentially alters microbial composition and function in adolescent and adult rats. PLoS One 2022; 17:e0278259. [PMID: 36449469 PMCID: PMC9710846 DOI: 10.1371/journal.pone.0278259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/13/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of the gut microbiome has been shown to perpetuate neuroinflammation, alter intestinal permeability, and modify repetitive mild traumatic brain injury (RmTBI)-induced deficits. However, there have been no investigations regarding the comparative effects that the microbiome may have on RmTBI in adolescents and adults. Therefore, we examined the influence of microbiome depletion prior to RmTBI on microbial composition and metabolome, in adolescent and adult Sprague Dawley rats. Rats were randomly assigned to standard or antibiotic drinking water for 14 days, and to subsequent sham or RmTBIs. The gut microbiome composition and metabolome were analysed at baseline, 1 day after the first mTBI, and at euthanasia (11 days following the third mTBI). At euthanasia, intestinal samples were also collected to quantify tight junction protein (TJP1 and occludin) expression. Adolescents were significantly more susceptible to microbiome depletion via antibiotic administration which increased pro-inflammatory composition and metabolites. Furthermore, RmTBI induced a transient increase in 'beneficial bacteria' (Lachnospiraceae and Faecalibaculum) in only adolescents that may indicate compensatory action in response to the injury. Finally, microbiome depletion prior to RmTBI generated a microbiome composition and metabolome that exemplified a potentially chronic pathogenic and inflammatory state as demonstrated by increased Clostridium innocuum and Erysipelatoclostridium and reductions in Bacteroides and Clostridium Sensu Stricto. Results highlight that adolescents are more vulnerable to RmTBI compared to adults and dysbiosis prior to injury may exacerbate secondary inflammatory cascades.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Giulia Iacono
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Zoe N. Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J. Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
10
|
Effects of Traumatic Brain Injury on the Gut Microbiota Composition and Serum Amino Acid Profile in Rats. Cells 2022; 11:cells11091409. [PMID: 35563713 PMCID: PMC9102408 DOI: 10.3390/cells11091409] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) heavily impacts the body: it damages the brain tissue and the peripheral nervous system and shifts homeostasis in many types of tissue. An acute brain injury compromises the “brain–gut-microbiome axis”, a well-balanced network formed by the brain, gastrointestinal tract, and gut microbiome, which has a complex effect: damage to the brain alters the composition of the microbiome; the altered microbiome affects TBI severity, neuroplasticity, and metabolic pathways through various bacterial metabolites. We modeled TBI in rats. Using a bioinformatics approach, we sought to identify correlations between the gut microbiome composition, TBI severity, the rate of neurological function recovery, and blood metabolome. We found that the TBI caused changes in the abundance of 26 bacterial genera. The most dramatic change was observed in the abundance of Agathobacter species. The TBI also altered concentrations of several metabolites, specifically citrulline and tryptophan. We found no significant correlations between TBI severity and the pre-existing gut microbiota composition or blood metabolites. However, we discovered some differences between the two groups of subjects that showed high and low rates of neurological function recovery, respectively. The present study highlights the role of the brain–gut-microbiome axis in TBI.
Collapse
|
11
|
Aghakhani N. Relationship between mild traumatic brain injury and the gut microbiome: A scoping review. J Neurosci Res 2022; 100:827-834. [PMID: 34964504 DOI: 10.1002/jnr.25004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/07/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022]
Abstract
There is increasing evidence for the important role of gut microbiota (GMB) in the development and progression of neurologic pathologies. Some studies have shown that modifying the microbiome profile can confer benefits to patients. Mild traumatic brain injury (mTBI) is a common occurrence in the general population. Although most patients recover, in a minority, disabling symptoms can persist for several months. We carried out a review of the literature to assess the effect of mTBI on GMB and to determine whether alleviating dysbiosis can improve clinical outcomes in mTBI patients. We performed searches in Medline/PubMed and Embase using the keywords "MTBI" AND "microbiome" OR "microbiota". Additional articles were identified by manual searches and using the Google search engine. In animal models, a clear perturbation of GMB was reported following TBI and probiotic supplementation (Lactobacillus acidophilus or Clostridium butyricum) improved neurologic function. There were no studies on changes in GMB after mTBI in humans; however, pre- or probiotic supplementation reduced the infection rate in patients with severe TBI and shortened the time spent in the intensive care unit without conferring any neurologic benefits. Thus, although the findings from animal models are promising, clinical studies are needed to determine whether therapeutic strategies that restore gut microbiome profile can improve long-term outcomes of patients with mTBI.
Collapse
Affiliation(s)
- Nozar Aghakhani
- Department of Neurosurgery, Center for Evaluation and Multidisciplinary Care of the Mild Traumatic Brain Injury, Bicêtre University Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
12
|
Minocycline fails to treat chronic traumatic brain injury-induced impulsivity and attention deficits. Exp Neurol 2022; 348:113924. [PMID: 34774860 PMCID: PMC9295442 DOI: 10.1016/j.expneurol.2021.113924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury (TBI) impacts millions worldwide and can cause lasting psychiatric symptoms. Chronic neuroinflammation is a characteristic of post-injury pathology and is also associated with psychiatric conditions such as ADHD and bipolar disorder. Therefore, the current study sought to determine whether TBI-induced impulsivity and inattention could be treated using minocycline, an antibiotic with anti-inflammatory properties. Rats were trained on the five-choice serial reaction time task (5CSRT), a measure of motor impulsivity and attention. After behavior was stable on the 5CSRT, rats received either a bilateral frontal TBI or sham procedure. Minocycline was given at either an early (1 h post-injury) or chronic (9 weeks post-injury) timepoint. Minocycline was delivered every 12 h for 5 days (45 mg/kg, i.p.). Behavioral testing on the 5CSRT began again after one week of recovery and continued for 12 more weeks, then rats were transcardially perfused. Impulsivity and inattention were both substantially increased following TBI. Minocycline had no therapeutic effects at either the early or late time points. TBI rats had increased lesion volume, but minocycline did not attenuate lesion size. Additionally, microglia count measured by IBA-1+ cells was only increased acutely after TBI, and minocycline did not differentially change the number of microglia in TBI rats. Despite this, minocycline had clear effects on the gut microbiome. Based on the results of this study, minocycline may have limited efficacy for post-injury psychiatric-like symptoms.
Collapse
|
13
|
Ferrara M, Bertozzi G, Zanza C, Longhitano Y, Piccolella F, Lauritano CE, Volonnino G, Manetti AC, Maiese A, La Russa R. Traumatic Brain Injury and Gut Brain Axis: The Disruption of an Alliance. Rev Recent Clin Trials 2022; 17:268-279. [PMID: 35733301 DOI: 10.2174/1574887117666220622143423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/13/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can be considered a "silent epidemic", causing morbidity, disability, and mortality in all age cohorts. Therefore, a greater understanding of the underlying pathophysiological intricate mechanisms and interactions with other organs and systems is necessary to intervene not only in the treatment but also in the prevention of complications. In this complex of reciprocal interactions, the complex brain-gut axis has captured a growing interest. SCOPE The purpose of this manuscript is to examine and systematize existing evidence regarding the pathophysiological processes that occur following TBI and the influences exerted on these by the brain-gut axis. LITERATURE REVIEW A systematic review of the literature was conducted according to the PRISMA methodology. On the 8th of October 2021, two independent databases were searched: PubMed and Scopus. Following the inclusion and exclusion criteria selected, 24 (12 from PubMed and 12 from Scopus) eligible manuscripts were included in the present review. Moreover, references from the selected articles were also updated following the criteria mentioned above, yielding 91 included manuscripts. DISCUSSION Published evidence suggests that the brain and gut are mutually influenced through four main pathways: microbiota, inflammatory, nervous, and endocrine. CONCLUSION These pathways are bidirectional and interact with each other. However, the studies conducted so far mainly involve animals. An autopsy methodological approach to corpses affected by traumatic brain injury or intestinal pathology could represent the keystone for future studies to clarify the complex pathophysiological processes underlying the interaction between these two main systems.
Collapse
Affiliation(s)
- Michela Ferrara
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, Rome, 00161, Italy
| | - Giuseppe Bertozzi
- Section of Legal Medicine, Department of Clinical and Experimental Medicine, University
of Foggia, Foggia, Italy
| | - Christian Zanza
- Foundation of "Ospedale Alba-Bra Onlus and Department of Anesthesia and Critical Care and Emergency Medicine- "Michele and Pietro Ferrero Hospital" Verduno, Cuneo, Italy
| | - Yaroslava Longhitano
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Fabio Piccolella
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Cristiano Ernesto Lauritano
- Department of Anesthesia and Critical Care - AON SS Antonio and Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Gianpietro Volonnino
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, Rome, 00161, Italy
| | - Alice Chiara Manetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, 56126, Italy
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, Pisa, 56126, Italy
| | - Raffaele La Russa
- Section of Legal Medicine, Department of Clinical and Experimental Medicine, University
of Foggia, Foggia, Italy
| |
Collapse
|
14
|
Lim SW, Su HC, Nyam TTE, Chio CC, Kuo JR, Wang CC. Ceftriaxone therapy attenuates brain trauma in rats by affecting glutamate transporters and neuroinflammation and not by its antibacterial effects. BMC Neurosci 2021; 22:54. [PMID: 34521349 PMCID: PMC8439027 DOI: 10.1186/s12868-021-00659-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ceftriaxone is a β-lactam antibiotic used to treat central nervous system infections. Whether the neuroprotective effects of ceftriaxone after TBI are mediated by attenuating neuroinflammation but not its antibacterial actions is not well established. METHODS Anesthetized male Sprague-Dawley rats were divided into sham-operated, TBI + vehicle, and TBI + ceftriaxone groups. Ceftriaxone was intraperitoneally injected at 0, 24, and 48 h with 50 or 250 mg/kg/day after TBI. During the first 120 min after TBI, we continuously measured heart rate, arterial pressure, intracranial pressure (ICP), and cerebral perfusion pressure. The infarct volume was measured by TTC staining. Motor function was measured using the inclined plane. Glutamate transporter 1 (GLT-1), neuronal apoptosis and TNF-α expression in the perilesioned cortex were investigated using an immunofluorescence assay. Bacterial evaluation was performed by Brown and Brenn's Gram staining. These parameters above were measured at 72 h after TBI. RESULTS Compared with the TBI + vehicle group, the TBI + ceftriaxone 250 mg/kg group showed significantly lower ICP, improved motor dysfunction, reduced body weight loss, decreased infarct volume and neuronal apoptosis, decreased TBI-induced microglial activation and TNF-α expression in microglia, and increased GLT-1 expression in neurons and microglia. However, the grades of histopathological changes of antibacterial effects are zero. CONCLUSIONS The intraperitoneal injection of ceftriaxone with 250 mg/kg/day for three days may attenuate TBI by increasing GLT-1 expression and reducing neuroinflammation and neuronal apoptosis, thereby resulting in an improvement in functional outcomes, and this neuroprotective effect is not related to its antibacterial effects.
Collapse
Affiliation(s)
- Sher-Wei Lim
- Department of Neurosurgery, Chi-Mei Medical Center, Chiali, Tainan, Taiwan
- Department of Nursing, Min-Hwei College of Health Care Management, Tainan, Taiwan
| | - Hui-Chen Su
- Departments of Pharmacy, Chi-Mei Medical Center, Tainan, Taiwan
| | - Tee-Tau Eric Nyam
- Departments of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
| | - Chung-Ching Chio
- Departments of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
| | - Jinn-Rung Kuo
- Departments of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
- Departments of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Che-Chuan Wang
- Departments of Neurosurgery, Chi-Mei Medical Center, 901 Chung Hwa Road, Yung Kang City, Tainan, Taiwan
- Departments of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| |
Collapse
|
15
|
Faden AI, Barrett JP, Stoica BA, Henry RJ. Bidirectional Brain-Systemic Interactions and Outcomes After TBI. Trends Neurosci 2021; 44:406-418. [PMID: 33495023 DOI: 10.1016/j.tins.2020.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a debilitating disorder associated with chronic progressive neurodegeneration and long-term neurological decline. Importantly, there is now substantial and increasing evidence that TBI can negatively impact systemic organs, including the pulmonary, gastrointestinal (GI), cardiovascular, renal, and immune system. Less well appreciated, until recently, is that such functional changes can affect both the response to subsequent insults or diseases, as well as contribute to chronic neurodegenerative processes and long-term neurological outcomes. In this review, we summarize evidence showing bidirectional interactions between the brain and systemic organs following TBI and critically assess potential underlying mechanisms.
Collapse
Affiliation(s)
- Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Stefanaki C, Mastorakos G, Chrousos GP. Gut Microbiome and Mental Stress-Related Disorders: The Interplay of Classic and Microbial Endocrinology. THE MICROBIOMES OF HUMANS, ANIMALS, PLANTS, AND THE ENVIRONMENT 2021:229-242. [DOI: 10.1007/978-3-030-59642-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Moran MM, Wilson BM, Li J, Engen PA, Naqib A, Green SJ, Virdi AS, Plaas A, Forsyth CB, Keshavarzian A, Sumner DR. The gut microbiota may be a novel pathogenic mechanism in loosening of orthopedic implants in rats. FASEB J 2020; 34:14302-14317. [PMID: 32931052 DOI: 10.1096/fj.202001364r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023]
Abstract
Particles released from implants cause inflammatory bone loss, which is a key factor in aseptic loosening, the most common reason for joint replacement failure. With the anticipated increased incidence of total joint replacement in the next decade, implant failure will continue to burden patients. The gut microbiome is increasingly recognized as an important factor in bone physiology, however, its role in implant loosening is currently unknown. We tested the hypothesis that implant loosening is associated with changes in the gut microbiota in a preclinical model. When the particle challenge caused local joint inflammation, decreased peri-implant bone volume, and decreased implant fixation, the gut microbiota was affected. When the particle challenge did not cause this triad of local effects, the gut microbiota was not affected. Our results suggest that cross-talk between these compartments is a previously unrecognized mechanism of failure following total joint replacement.
Collapse
Affiliation(s)
- Meghan M Moran
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Brittany M Wilson
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Jun Li
- Department of Internal Medicine, Division of Rheumatology, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Phillip A Engen
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush Medical College, Chicago, IL, USA
| | - Ankur Naqib
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA.,Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush Medical College, Chicago, IL, USA
| | - Stefan J Green
- Genome Research Core, Research Resources Center, University of Illinois-Chicago, Chicago, IL, USA
| | - Amarjit S Virdi
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Anna Plaas
- Department of Internal Medicine, Division of Rheumatology, Rush Medical College, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush Medical College, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush Medical College, Chicago, IL, USA
| | - Dale R Sumner
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
18
|
Microbial Diversity and Community Structures Among Those With Moderate to Severe TBI: A United States-Veteran Microbiome Project Study. J Head Trauma Rehabil 2020; 35:332-341. [PMID: 32881767 DOI: 10.1097/htr.0000000000000615] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the association between distal moderate/severe traumatic brain injury (TBI) history and the human gut microbiome. SETTING Veterans Affairs Medical Center. PARTICIPANTS Veterans from the United States-Veteran Microbiome Project (US-VMP). Veterans with moderate/severe TBI (n = 34) were compared with (1) Veterans with a history of no TBI (n = 79) and (2) Veterans with a history of no TBI or mild TBI only (n = 297). DESIGN Microbiome analyses from 16S rRNA gene sequencing with gut microbiota function inferred using PICRUSt2. MAIN MEASURES α-Diversity and β-diversity of the gut microbiome, as well as taxonomic and functional signatures associated with moderate/severe TBI. RESULTS There were no significant differences in gut bacterial α- and β-diversity associated with moderate/severe TBI status. No differentially abundant taxa were identified when comparing samples from moderate/severe TBI to those with no TBI or no TBI/mild TBI. CONCLUSION Results suggest that moderate/severe TBI-related changes to the gut microbiome do not persist for years postinjury.
Collapse
|
19
|
Angoa-Pérez M, Zagorac B, Anneken JH, Briggs DI, Winters AD, Greenberg JM, Ahmad M, Theis KR, Kuhn DM. Repetitive, mild traumatic brain injury results in a progressive white matter pathology, cognitive deterioration, and a transient gut microbiota dysbiosis. Sci Rep 2020; 10:8949. [PMID: 32488168 PMCID: PMC7265445 DOI: 10.1038/s41598-020-65972-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/09/2020] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is often accompanied by gastrointestinal and metabolic disruptions. These systemic manifestations suggest possible involvement of the gut microbiota in head injury outcomes. Although gut dysbiosis after single, severe TBI has been documented, the majority of head injuries are mild, such as those that occur in athletes and military personnel exposed to repetitive head impacts. Therefore, it is important to determine if repetitive, mild TBI (rmTBI) will also disrupt the gut microbiota. Male mice were exposed to mild head impacts daily for 20 days and assessed for cognitive behavior, neuropathology and disruptions in the gut microbiota at 0, 45 or 90 days after injury. Deficits in recognition memory were evident at the late post-injury points. Brains show an early increase in microglial activation at the 0-day time point that persisted until 90 days post-injury. This was compounded by substantial increases in astrocyte reactivity and phosphorylated tau at the 90-day time point. In contrast, changes in the microbial community were minor and transient, and very few differences were observed in mice exposed to rmTBI compared to controls. While the progressive emergence of white matter damage and cognitive alterations after rmTBI resembles the alterations observed in athletes and military personnel exposed to rmTBI, these changes could not be linked to systematic modifications in the gut microbiota.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA. .,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - John H Anneken
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Denise I Briggs
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.,Stanford Behavioral and Functional Neuroscience Laboratory, Department of Neurosurgery, Stanford University Medical School, Stanford, CA, USA
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jonathan M Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Madison Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.,Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, USA
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|