1
|
Tang J, Yeoh L, Grotz M, Goodman C, Chisholm S, Nguyen HT, Yu C, Pareek K, McPherson F, Cozijnsen A, Hustadt S, Josling G, Day K, Schulz D, McFadden G, de Koning-Ward T, Petter M, Duffy M. PfGCN5 is essential for Plasmodium falciparum survival and transmission and regulates Pf H2B.Z acetylation and chromatin structure. Nucleic Acids Res 2025; 53:gkaf218. [PMID: 40156869 PMCID: PMC11954527 DOI: 10.1093/nar/gkaf218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Plasmodium falciparum causes most malaria deaths. Its developmental transitions and environmental adaptation are partially regulated by epigenetic mechanisms. Plasmodium falciparum GCN5 (PfGCN5) is an epigenetic regulator that acetylates lysines and can also bind to acetylated lysine residues on histones via its bromodomain (BRD). Here, we showed that PfGCN5 was essential for parasite transmission and survival in human blood and mosquitoes. PfGCN5 regulated genes important for metabolism and development and its BRD was required at euchromatic gene promoters for their proper expression and for acetylation of the variant histone Pf H2B.Z. However, PfGCN5 was most abundant in heterochromatin and loss of the PfGCN5 BRD de-repressed heterochromatic genes and increased levels of acetylated Pf H2B.Z in heterochromatin. The PfGCN5 BRD-binding compound L-45 phenocopied deletion of the PfGCN5 BRD, identifying PfGCN5 as a promising drug target for BRD inhibitors. Thus, PfGCN5 appears to directly contribute to activating euchromatic promoters, but PfGCN5 is also critical for maintaining repressive heterochromatin structure.
Collapse
Affiliation(s)
- Jingyi Tang
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria 3220, Australia
| | - Lee M Yeoh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Life Sciences, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Myriam D Grotz
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, 91054 Erlangen, Germany
| | - Christopher D Goodman
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Scott A Chisholm
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3052, Australia
- Bio21 Institute, 30 Flemington Road Parkville, Victoria 3052, Australia
| | - Hanh H T Nguyen
- Bio21 Institute, 30 Flemington Road Parkville, Victoria 3052, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Chunhao Yu
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, 91054 Erlangen, Germany
| | - Kapil Pareek
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, 91054 Erlangen, Germany
| | - Fairley McPherson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Bio21 Institute, 30 Flemington Road Parkville, Victoria 3052, Australia
| | - Anton Cozijnsen
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Samuel A Hustadt
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, 91054 Erlangen, Germany
| | - Gabrielle A Josling
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Bio21 Institute, 30 Flemington Road Parkville, Victoria 3052, Australia
| | - Danae Schulz
- The Department of Biology, Harvey Mudd College, Claremont, CA 91711, United States
| | - Geoffrey I McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria 3220, Australia
| | - Michaela Petter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, 91054 Erlangen, Germany
| | - Michael F Duffy
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
- Bio21 Institute, 30 Flemington Road Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Lappalainen R, Kumar M, Duraisingh MT. Hungry for control: metabolite signaling to chromatin in Plasmodium falciparum. Curr Opin Microbiol 2024; 78:102430. [PMID: 38306915 PMCID: PMC11157454 DOI: 10.1016/j.mib.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The human malaria parasite Plasmodium falciparum undergoes a complex life cycle in two hosts, mammalian and mosquito, where it is constantly subjected to environmental changes in nutrients. Epigenetic mechanisms govern transcriptional switches and are essential for parasite persistence and proliferation. Parasites infecting red blood cells are auxotrophic for several nutrients, and mounting evidence suggests that various metabolites act as direct substrates for epigenetic modifications, with their abundance directly relating to changes in parasite gene expression. Here, we review the latest understanding of metabolic changes that alter the histone code resulting in changes to transcriptional programmes in malaria parasites.
Collapse
Affiliation(s)
- Ruth Lappalainen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA.
| |
Collapse
|
3
|
Pandit K, Surolia N, Bhattacharjee S, Karmodiya K. The many paths to artemisinin resistance in Plasmodium falciparum. Trends Parasitol 2023; 39:1060-1073. [PMID: 37833166 DOI: 10.1016/j.pt.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Emerging resistance against artemisinin (ART) poses a major challenge in controlling malaria. Parasites with mutations in PfKelch13, the major marker for ART resistance, are known to reduce hemoglobin endocytosis, induce unfolded protein response (UPR), elevate phosphatidylinositol-3-phosphate (PI3P) levels, and stimulate autophagy. Nonetheless, PfKelch13-independent resistance is also reported, indicating extensive complementation by reconfiguration in the parasite metabolome and transcriptome. These findings implicate that there may not be a single 'universal identifier' of ART resistance. This review sheds light on the molecular, transcriptional, and metabolic pathways associated with ART resistance, while also highlighting the interplay between cellular heterogeneity, environmental stress, and ART sensitivity.
Collapse
Affiliation(s)
- Kushankur Pandit
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Namita Surolia
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Souvik Bhattacharjee
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
4
|
Lucky AB, Wang C, Shakri AR, Kalamuddin M, Chim-Ong A, Li X, Miao J. Plasmodium falciparum GCN5 plays a key role in regulating artemisinin resistance-related stress responses. Antimicrob Agents Chemother 2023; 67:e0057723. [PMID: 37702516 PMCID: PMC10583690 DOI: 10.1128/aac.00577-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/24/2023] [Indexed: 09/14/2023] Open
Abstract
Plasmodium falciparum causes the most severe malaria and is exposed to various environmental and physiological stresses in the human host. Given that GCN5 plays a critical role in regulating stress responses in model organisms, we aimed to elucidate PfGCN5's function in stress responses in P. falciparum. The protein level of PfGCN5 was substantially induced under three stress conditions [heat shock, low glucose starvation, and dihydroartemisinin, the active metabolite of artemisinin (ART)]. With a TetR-DOZI conditional knockdown (KD) system, we successfully down-regulated PfGCN5 to ~50% and found that KD parasites became more sensitive to all three stress conditions. Transcriptomic analysis via RNA-seq identified ~1,000 up- and down-regulated genes in the wild-type (WT) and KD parasites under these stress conditions. Importantly, DHA induced transcriptional alteration of many genes involved in many aspects of stress responses, which were heavily shared among the altered genes under heat shock and low glucose conditions, including ART-resistance-related genes such as K13 and coronin. Based on the expression pattern between WT and KD parasites under three stress conditions, ~300-400 genes were identified to be involved in PfGCN5-dependent, general, and stress-condition-specific responses with high levels of overlaps among three stress conditions. Notably, using ring-stage survival assay, we found that KD or inhibition of PfGCN5 could sensitize the ART-resistant parasites to the DHA treatment. All these indicate that PfGCN5 is pivotal in regulating general and ART-resistance-related stress responses in malaria parasites, implicating PfGCN5 as a potential target for malaria intervention.
Collapse
Affiliation(s)
- Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ahmad Rushdi Shakri
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mohammad Kalamuddin
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anongruk Chim-Ong
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Lucky AB, Wang C, Shakri AR, Kalamuddin M, Chim-Ong A, Li X, Miao J. Plasmodium falciparum GCN5 plays a key role in regulating artemisinin resistance-related stress responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523703. [PMID: 36711954 PMCID: PMC9882135 DOI: 10.1101/2023.01.11.523703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Plasmodium falciparum causes the most severe malaria and is exposed to various environmental and physiological stresses in the human host. Given that GCN5 plays a critical role in regulating stress responses in model organisms, we aimed to elucidate PfGCN5's function in stress responses in P. falciparum . The protein level of PfGCN5 was substantially induced under three stress conditions (heat shock, low glucose starvation, and dihydroartemisinin, the active metabolite of artemisinin (ART)). With a TetR-DOZI conditional knockdown (KD) system, we successfully down-regulated PfGCN5 to ∼50% and found that KD parasites became more sensitive to all three stress conditions. Transcriptomic analysis via RNA-seq identified ∼1,000 up-and down-regulated genes in the wildtype (WT) and KD parasites under these stress conditions. Importantly, DHA induced transcriptional alteration of many genes involved in many aspects of stress responses, which were heavily shared among the altered genes under heat shock and low glucose conditions, including ART-resistance-related genes such as K13 and coronin . Based on the expression pattern between WT and KD parasites under three stress conditions, ∼300-400 genes were identified to be involved in PfGCN5-dependent, general and stress-condition-specific responses with high levels of overlaps among three stress conditions. Notably, using ring-stage survival assay (RSA), we found that KD or inhibition of PfGCN5 could sensitize the ART-resistant parasites to the DHA treatment. All these indicate that PfGCN5 is pivotal in regulating general and ART-resistance-related stress responses in malaria parasites, implicating PfGCN5 as a potential target for malaria intervention. IMPORTANCE Malaria leads to about half a million deaths annually and these casualties were majorly caused by the infection of Plasmodium falciparum . This parasite strives to survive by defending against a variety of stress conditions, such as malaria cyclical fever (heat shock), starvation due to low blood sugar (glucose) levels (hypoglycemia), and drug treatment. Previous studies have revealed that P. falciparum has developed unique stress responses to different stresses including ART treatment, and ART-resistant parasites harbor elevated stress responses. In this study, we provide critical evidence on the role of PfGCN5, a histone modifier, and a chromatin coactivator, in regulating general and stress-specific responses in malaria parasites, indicating that PfGCN5 can be used as a potential target for anti-malaria intervention.
Collapse
|
6
|
Nair SC, Munro JT, Mann A, Llinás M, Prigge ST. The mitochondrion of Plasmodium falciparum is required for cellular acetyl-CoA metabolism and protein acetylation. Proc Natl Acad Sci U S A 2023; 120:e2210929120. [PMID: 37068227 PMCID: PMC10151609 DOI: 10.1073/pnas.2210929120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/28/2023] [Indexed: 04/19/2023] Open
Abstract
Coenzyme A (CoA) biosynthesis is an excellent target for antimalarial intervention. While most studies have focused on the use of CoA to produce acetyl-CoA in the apicoplast and the cytosol of malaria parasites, mitochondrial acetyl-CoA production is less well understood. In the current study, we performed metabolite-labeling experiments to measure endogenous metabolites in Plasmodium falciparum lines with genetic deletions affecting mitochondrial dehydrogenase activity. Our results show that the mitochondrion is required for cellular acetyl-CoA biosynthesis and identify a synthetic lethal relationship between the two main ketoacid dehydrogenase enzymes. The activity of these enzymes is dependent on the lipoate attachment enzyme LipL2, which is essential for parasite survival solely based on its role in supporting acetyl-CoA metabolism. We also find that acetyl-CoA produced in the mitochondrion is essential for the acetylation of histones and other proteins outside of the mitochondrion. Taken together, our results demonstrate that the mitochondrion is required for cellular acetyl-CoA metabolism and protein acetylation essential for parasite survival.
Collapse
Affiliation(s)
- Sethu C. Nair
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| | - Justin T. Munro
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA16802
| | - Alexis Mann
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| | - Manuel Llinás
- Department of Chemistry, Pennsylvania State University, University Park, PA16802
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA16802
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
7
|
Quinn JE, Jeninga MD, Limm K, Pareek K, Meißgeier T, Bachmann A, Duffy MF, Petter M. The Putative Bromodomain Protein PfBDP7 of the Human Malaria Parasite Plasmodium Falciparum Cooperates With PfBDP1 in the Silencing of Variant Surface Antigen Expression. Front Cell Dev Biol 2022; 10:816558. [PMID: 35493110 PMCID: PMC9039026 DOI: 10.3389/fcell.2022.816558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/18/2022] [Indexed: 01/08/2023] Open
Abstract
Epigenetic regulation is a critical mechanism in controlling virulence, differentiation, and survival of the human malaria parasite Plasmodium (P.) falciparum. Bromodomain proteins contribute to this process by binding to acetylated lysine residues of histones and thereby targeting the gene regulatory machinery to gene promoters. A protein complex containing the P. falciparum bromodomain proteins (PfBDP) 1 and PfBDP2 (BDP1/BDP2 core complex) was previously shown to play an essential role for the correct transcription of invasion related genes. Here, we performed a functional characterization of a third component of this complex, which we dubbed PfBDP7, because structural modelling predicted a typical bromodomain fold. We confirmed that PfBDP7 is a nuclear protein that interacts with PfBDP1 at invasion gene promoters in mature schizont stage parasites and contributes to their transcription. Although partial depletion of PfBDP7 showed no significant effect on parasite viability, conditional knock down of either PfBDP7 or PfBDP1 resulted in the de-repression of variant surface antigens (VSA), which are important pathogenicity factors. This de-repression was evident both on mRNA and protein level. To understand the underlying mechanism, we mapped the genome wide binding sites of PfBDP7 by ChIPseq and showed that in early schizonts, PfBDP7 and PfBDP1 are commonly enriched in heterochromatic regions across the gene body of all VSA families, including genes coding for PfEMP1, RIFIN, STEVOR, and PfMC-2TM. This suggests that PfBDP7 and PfBDP1 contribute to the silencing of VSAs by associating with heterochromatin. In conclusion, we identified PfBDP7 as a chromatin binding protein that is a constitutive part of the P. falciparum BDP1/BDP2 core complex and established PfBDP1 and PfBDP7 as novel players in the silencing of heterochromatin regulated virulence gene families of the malaria parasite P. falciparum.
Collapse
Affiliation(s)
- Jennifer E. Quinn
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Myriam D. Jeninga
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Limm
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Kapil Pareek
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tina Meißgeier
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Bachmann
- Department of Cellular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Michael F. Duffy
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute, Parkville, VIC, Australia
| | - Michaela Petter
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, Australia
- *Correspondence: Michaela Petter,
| |
Collapse
|
8
|
Ngwa CJ, Farrukh A, Pradel G. Zinc finger proteins of Plasmodium falciparum. Cell Microbiol 2021; 23:e13387. [PMID: 34418264 DOI: 10.1111/cmi.13387] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/14/2023]
Abstract
Zinc finger proteins (ZFPs) are a large diverse family of proteins with one or more zinc finger domains in which zinc is important in stabilising the domain. ZFPs can interact with DNA, RNA, lipids or even other proteins and therefore contribute to diverse cellular processes including transcriptional regulation, ubiquitin-mediated protein degradation, mRNA decay and stability. In this review, we provide the first comprehensive classification of ZFPs of the malaria parasite Plasmodium falciparum and provide a state of knowledge on the main ZFPs in the parasite, which include the C2H2, CCCH, RING finger and the PHD finger proteins. TAKE AWAYS: The Plasmodium falciparum genome encodes 170 putative Zinc finger proteins (ZFPs). The C2H2, CCCH, RING finger and PHD finger subfamilies of ZFPs are most represented. Known ZFP functions include the regulation of mRNA metabolism and proteostasis.
Collapse
Affiliation(s)
- Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Afia Farrukh
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|