1
|
Bheemireddy S, Sowdhamini R, Srinivasan N. Computational analysis of the effect of a binding protein (RbpA) on the dynamics of Mycobacterium tuberculosis RNA polymerase assembly. PLoS One 2025; 20:e0317187. [PMID: 39883746 PMCID: PMC11781615 DOI: 10.1371/journal.pone.0317187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND RNA polymerase-binding protein A (RbpA) is an actinomycetes-specific protein crucial for the growth and survival of the pathogen Mycobacterium tuberculosis. Its role is essential and influences the transcription and antibiotic responses. However, the regulatory mechanisms underlying RbpA-mediated transcription remain unknown. In this study, we employed various computational techniques to investigate the role of RbpA in the formation and dynamics of the RNA polymerase complex. RESULTS Our analysis reveals significant structural rearrangements in RNA polymerase happen upon interaction with RbpA. Hotspot residues, crucial amino acids in the RbpA-mediated transcriptional regulation, were identified through our examination. The study elucidates the dynamic behavior within the complex, providing insights into the flexibility and functional dynamics of the RbpA-RNA polymerase interaction. Notably, potential allosteric mechanisms, involving the interface of subunits α1 and α2 were uncovered, shedding light on how RbpA modulates transcriptional activity. CONCLUSIONS Finally, potential ligands meant for the α1-α2 binding site were identified through virtual screening. The outcomes of our computational study serve as a foundation for experimental investigations into inhibitors targeting the RbpA-regulated dynamics in RNA polymerase. Overall, this research contributes valuable information for understanding the intricate regulatory networks of RbpA in the context of transcription and suggests potential avenues for the development of RbpA-targeted therapeutics.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bengaluru, Karnataka, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bengaluru, Karnataka, India
| | | |
Collapse
|
2
|
Molaakbari E, Aallae MR, Golestanifar F, Garakani-Nejad Z, Khosravi A, Rezapour M, Eshaghi Malekshah R, Ghomi M, Ren G. In silico assessment of hesperidin on SARS-CoV-2 main protease and RNA polymerase: Molecular docking and dynamics simulation approach. Biochem Biophys Rep 2024; 39:101804. [PMID: 39193225 PMCID: PMC11347860 DOI: 10.1016/j.bbrep.2024.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
The present study uses molecular docking and dynamic simulations to evaluate the inhibitory effect of flavonoid glycosides-based compounds on coronavirus Main protease (Mpro) and RNA polymerase. The Molegro Virtual Docker (MVD) software is utilized to simulate and calculate the binding parameters of compounds with coronavirus. The docking results show that the selected herbal compounds are more effective than those of chemical compounds. It is also revealed that five herbal ligands and two chemical ligands have the best docking scores. Furthermore, a Molecular Dynamics (MD) simulation was conducted for Hesperidin, confirming docking results. Analysis based on different parameters such as Root-mean-square deviation (RMSD), Root mean square fluctuation (RMSF), Radius of gyration (Rg), Solvent accessibility surface area (SASA), and the total number of hydrogen bonds suggests that Hesperidin formed a stable complex with Mpro. Absorption, Distribution, Metabolism, Excretion, And Toxicity (ADMET) analysis was performed to compare Hesperidin and Grazoprevir as potential antiviral medicines, evaluating both herbal and chemical ligand results. According to the study, herbal compounds could be effective on coronavirus and are admissible candidates for developing potential operative anti-viral medicines. Hesperidin was found to be the most acceptable interaction. Grazoprevir is an encouraging candidate for drug development and clinical trials, with the potential to become a highly effective Mpro inhibitor. Compared to RNA polymerase, Mpro showed a greater affinity for bonding with Hesperidin. van der Waals and electrostatic energies dominated, creating a stable Hesperidin-Mpro and Hesperidin-RNA polymerase complex.
Collapse
Affiliation(s)
- Elaheh Molaakbari
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | | | | | | | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Mohsen Rezapour
- Department of Biostatics and Data Science, University of Texas, Health Science Center at Houston, Texas, USA
| | | | - Mahsa Ghomi
- Students Research Committee, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Guogang Ren
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
3
|
Muthusamy K, Ramasamy G, Ravikumar C, Natesan S, Muthurajan R, Uthandi S, Kalyanasundaram K, Tiwari V. Exploring bixin from Bixa orellana L. seeds: quantification and in silico insights into its anti-cancer potential. J Biomol Struct Dyn 2023; 42:12244-12258. [PMID: 37837422 DOI: 10.1080/07391102.2023.2268202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Bixin, the key pigment of Bixa orellana L., is an apo-carotenoid found in the seed arils. The present study aimed to quantitatively determine the bixin content of seeds and explore its anti-cancer activity through in silico studies. The bixin content from the seeds of the local genotype, TNMTP8, quantified by RP-HPLC was 4.58 mg per gram. The prediction of pharmacological activity suggested that bixin may serve as a BRAF, MMP9, TNF expression inhibitors, and TP53 expression enhancer. According to molecular docking analysis, bixin interacted with eight different skin cancer targets and had the lowest binding energy compared to the standard drug, 5-fluorouracil. The binding score between bixin and the targets ranged from -4.7 to -8.7 kcal/mol. The targets BRAF and SIRT3 interacted well with bixin, with binding energies as low as -8.3 and -8.7 kcal/mol, respectively. Hence, the dynamic behavior of these two docked complexes throughout a 500 ns trajectory run was investigated further. The Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) values, and total contacts as a function of time recorded during scrutiny suggest that both complexes were stable. This was validated by post-molecular dynamics analysis using Molecular Mechanics Generalized Born Surface Area (MM-GBSA). Principal component analysis (PCA) was used to analyze the significant differences in motion exhibited by BRAF-Bixin and SIRT3-Bixin. The results showed that bixin is a promising source for potential treatment interventions in skin cancer therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kaviyapriya Muthusamy
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Gnanam Ramasamy
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Caroline Ravikumar
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Senthil Natesan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Raveendran Muthurajan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kumaran Kalyanasundaram
- Department of Forest Biology and Tree Improvement, Forest College and Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
| | - Vikas Tiwari
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
4
|
Abou Baker DH, Hassan EM, El Gengaihi S. An overview on medicinal plants used for combating coronavirus: Current potentials and challenges. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2023; 13:100632. [PMID: 37251276 PMCID: PMC10198795 DOI: 10.1016/j.jafr.2023.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Worldwide, Severe acute respiratory syndrome Coronavirus (SARS-CoV-2) pandemic crisis, causing many morbidities, mortality, and devastating impact on economies, so the current outbreak of the CoV-2 is a major concern for global health. The infection spread quickly and caused chaos in many countries around the world. The slow discovery of CoV-2 and the limited treatment options are among the main challenges. Therefore, the development of a drug that is safe and effective against CoV-2 is urgently needed. The present overview briefly summarizes CoV-2 drug targets ex: RNA-dependent RNA polymerase (RdRp), papain-like protease (PLpro), 3-chymotrypsin-like protease (3CLpro), transmembrane serine protease enzymes (TMPRSS2), angiotensin-converting enzyme 2 (ACE2), structural protein (N, S, E, and M), and virulence factors (NSP1, ORF7a, and NSP3c) for which drug design perspective can be considered. In addition, summarize all anti-COVID-19 medicinal plants and phytocompounds and their mechanisms of action to be used as a guide for further studies.
Collapse
Affiliation(s)
- Doha H Abou Baker
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Emad M Hassan
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Souad El Gengaihi
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Chu W, Shastry S, Barbieri E, Prodromou R, Greback-Clarke P, Smith W, Moore B, Kilgore R, Cummings C, Pancorbo J, Gilleskie G, Daniele MA, Menegatti S. Peptide ligands for the affinity purification of adeno-associated viruses from HEK 293 cell lysates. Biotechnol Bioeng 2023; 120:2283-2300. [PMID: 37435968 PMCID: PMC10440015 DOI: 10.1002/bit.28495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Adeno-associated viruses (AAVs) are the vector of choice for delivering gene therapies that can cure inherited and acquired diseases. Clinical research on various AAV serotypes significantly increased in recent years alongside regulatory approvals of AAV-based therapies. The current AAV purification platform hinges on the capture step, for which several affinity resins are commercially available. These adsorbents rely on protein ligands-typically camelid antibodies-that provide high binding capacity and selectivity, but suffer from low biochemical stability and high cost, and impose harsh elution conditions (pH < 3) that can harm the transduction activity of recovered AAVs. Addressing these challenges, this study introduces peptide ligands that selectively capture AAVs and release them under mild conditions (pH = 6.0). The peptide sequences were identified by screening a focused library and modeled in silico against AAV serotypes 2 and 9 (AAV2 and AAV9) to select candidate ligands that target homologous sites at the interface of the VP1-VP2 and VP2-VP3 virion proteins with mild binding strength (KD ~ 10-5 -10- 6 M). Selected peptides were conjugated to Toyopearl resin and evaluated via binding studies against AAV2 and AAV9, demonstrating the ability to target both serotypes with values of dynamic binding capacity (DBC10% > 1013 vp/mL of resin) and product yields (~50%-80%) on par with commercial adsorbents. The peptide-based adsorbents were finally utilized to purify AAV2 from a HEK 293 cell lysate, affording high recovery (50%-80%), 80- to 400-fold reduction of host cell proteins (HCPs), and high transduction activity (up to 80%) of the purified viruses.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Greback-Clarke
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Will Smith
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Brandyn Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Christopher Cummings
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Jennifer Pancorbo
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Gary Gilleskie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
| | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Abaeva IS, Arhab Y, Miścicka A, Hellen CUT, Pestova TV. In vitro reconstitution of SARS CoV-2 Nsp1-induced mRNA cleavage reveals the key roles of the N-terminal domain of Nsp1 and the RRM domain of eIF3g. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542379. [PMID: 37292671 PMCID: PMC10245999 DOI: 10.1101/2023.05.25.542379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS CoV-2 nonstructural protein 1 (Nsp1) is the major pathogenesis factor that inhibits host translation using a dual strategy of impairing initiation and inducing endonucleolytic cleavage of cellular mRNAs. To investigate the mechanism of cleavage, we reconstituted it in vitro on β-globin, EMCV IRES and CrPV IRES mRNAs that use unrelated initiation mechanisms. In all instances, cleavage required Nsp1 and only canonical translational components (40S subunits and initiation factors), arguing against involvement of a putative cellular RNA endonuclease. Requirements for initiation factors differed for these mRNAs, reflecting their requirements for ribosomal attachment. Cleavage of CrPV IRES mRNA was supported by a minimal set of components consisting of 40S subunits and eIF3g's RRM domain. The cleavage site was located in the coding region 18 nucleotides downstream from the mRNA entrance indicating that cleavage occurs on the solvent side of the 40S subunit. Mutational analysis identified a positively charged surface on Nsp1's N-terminal domain (NTD) and a surface above the mRNA-binding channel on eIF3g's RRM domain that contain residues essential for cleavage. These residues were required for cleavage on all three mRNAs, highlighting general roles of Nsp1-NTD and eIF3g's RRM domain in cleavage per se, irrespective of the mode of ribosomal attachment.
Collapse
Affiliation(s)
- Irina S. Abaeva
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Anna Miścicka
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Tatyana V. Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
7
|
Li T, Fu J, Cheng J, Elfiky AA, Wei C, Fu J. New progresses on cell surface protein HSPA5/BiP/GRP78 in cancers and COVID-19. Front Immunol 2023; 14:1166680. [PMID: 37275848 PMCID: PMC10232979 DOI: 10.3389/fimmu.2023.1166680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023] Open
Abstract
Heat-shock-protein family A (Hsp70) member 5 (HSPA5), aliases GRP78 or BiP, is a protein encoded with 654 amino acids by the HSPA5 gene located on human chromosome 9q33.3. When the endoplasmic reticulum (ER) was stressed, HSPA5 translocated to the cell surface, the mitochondria, and the nucleus complexed with other proteins to execute its functions. On the cell surface, HSPA5/BiP/GRP78 can play diverse functional roles in cell viability, proliferation, apoptosis, attachments, and innate and adaptive immunity regulations, which lead to various diseases, including cancers and coronavirus disease 2019 (COVID-19). COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which caused the pandemic since the first outbreak in late December 2019. HSPA5, highly expressed in the malignant tumors, likely plays a critical role in SARS-CoV-2 invasion/attack in cancer patients via tumor tissues. In the current study, we review the newest research progresses on cell surface protein HSPA5 expressions, functions, and mechanisms for cancers and SARS-CoV-2 invasion. The therapeutic and prognostic significances and prospects in cancers and COVID-19 disease by targeting HSPA5 are also discussed. Targeting HSPA5 expression by natural products may imply the significance in clinical for both anti-COVID-19 and anti-cancers in the future.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Abdo A. Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Prodromou R, Moore B, Chu W, Deal H, Miguel AS, Brown AC, Daniele MA, Pozdin V, Menegatti S. Molecular engineering of cyclic azobenzene-peptide hybrid ligands for the purification of human blood Factor VIII via photo-affinity chromatography. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2213881. [PMID: 37576949 PMCID: PMC10421628 DOI: 10.1002/adfm.202213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 08/15/2023]
Abstract
The use of benign stimuli to control the binding and release of labile biologics for their isolation from complex feedstocks is a key goal of modern biopharmaceutical technology. This study introduces cyclic azobenzene-peptide (CAP) hybrid ligands for the rapid and discrete photo-responsive capture and release of blood coagulation Factor VIII (FVIII). A predictive method - based on amino acid sequence and molecular architecture of CAPs - was developed to correlate the conformation of cis/trans CAP photo-isomers to FVIII binding and release. The combined in silico and in vitro analysis of FVIII:peptide interactions guided the design of a rational approach to optimize isomerization kinetics and biorecognition of CAPs. A photoaffinity adsorbent, prepared by conjugating selected CAP G-cycloAZOB[Lys-YYKHLYN-Lys]-G on translucent chromatographic beads, featured high binding capacity (> 6 mg of FVIII per mL of resin) and rapid photo-isomerization kinetics (τ < 30s) when exposed to 420-450 nm light at the intensity of 0.1 W·cm-2. The adsorbent purified FVIII from a recombinant harvest using a single mobile phase, affording high product yield (>90%), purity (>95%), and blood clotting activity. The CAPs introduced in this report demonstrate a novel route integrating gentle operational conditions in a rapid and efficient bioprocess for the purification of life-saving biotherapeutics.
Collapse
Affiliation(s)
- Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Brandyn Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Halston Deal
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Adriana San Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, NC 27695, USA
| | - Vladimir Pozdin
- Department of Electrical and Computer Engineering, Florida International University, 10555 West Flagler St., Miami, FL 33174, USA
- Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler St., Miami, FL 33174, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
- Biomanufacturing Training and Education Center (BTEC), 850 Oval Drive, Raleigh, NC 27606, USA
| |
Collapse
|
9
|
Sekar V, Ramasamy G, Ravikumar C, Muthurajan R, Uthandi S, Kandasamy R, Ganapati PS. Targeting bone cancer with 4-Allylbenzene-1,2-diol purified from Piper betle L.: an in silico and cytotoxicity scrutiny. J Biomol Struct Dyn 2023; 41:15446-15459. [PMID: 36905677 DOI: 10.1080/07391102.2023.2188952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Piper betle L., a well-known medicinal plant with rich source of bioactive compounds, is widely used in several therapeutics. The present study was performed to scrutinize the anti-cancer potential of compounds P. betle petiole by means of in silico studies, purification of 4-Allylbenzene-1,2-diol from petioles and assessing its cytotoxicity on bone cancer metastasis. Subsequent to SwissADME screening, 4-Allylbenzene-1,2-diol and Alpha terpineol were chosen for molecular docking together with eighteen approved drugs against fifteen important bone cancer targets accompanied with molecular dynamics simulation studies. 4-Allylbenzene-1,2-diol was found to be multi-targeting, interacted effectively with all targets, particularly exhibited good stability with MMP9 and MMP2 during molecular dynamics simulations and Molecular Mechanics- Generalized Born and Surface Area (MM-GBSA) analysis using Schrodinger. Later, the compound was isolated, purified and the cytotoxicity studies on MG63 bone cancer cell lines confirmed the cytotoxicity nature (75.98% at 100 µg/ml concentration). The results demonstrated the compound as a matrix metalloproteinase inhibitor, and therefore 4-Allylbenzene-1,2-diol may possibly be prescribed in targeted therapy for alleviating the bone cancer metastasis upon further wet lab experimental validations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vinusri Sekar
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, TN, India
| | - Gnanam Ramasamy
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, TN, India
| | - Caroline Ravikumar
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, TN, India
| | - Raveendran Muthurajan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, TN, India
| | - Sivakumar Uthandi
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, TN, India
| | - Rajamani Kandasamy
- Department of Medicinal and Aromatic crops, Tamil Nadu Agricultural University, Coimbatore, TN, India
| | - Patil Santosh Ganapati
- Department of Physical Sciences and Information Technology, Tamil Nadu Agricultural University, Coimbatore, TN, India
| |
Collapse
|
10
|
Sharma A, Krishna S, Sowdhamini R. Bioinformatics Analysis of Mutations Sheds Light on the Evolution of Dengue NS1 Protein With Implications in the Identification of Potential Functional and Druggable Sites. Mol Biol Evol 2023; 40:7043264. [PMID: 36795614 PMCID: PMC9989740 DOI: 10.1093/molbev/msad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/26/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Non-structural protein (NS1) is a 350 amino acid long conserved protein in the dengue virus. Conservation of NS1 is expected due to its importance in dengue pathogenesis. The protein is known to exist in dimeric and hexameric states. The dimeric state is involved in its interaction with host proteins and viral replication, and the hexameric state is involved in viral invasion. In this work, we performed extensive structure and sequence analysis of NS1 protein, and uncovered the role of NS1 quaternary states in its evolution. A three-dimensional modeling of unresolved loop regions in NS1 structure is performed. "Conserved" and "Variable" regions within NS1 protein were identified from sequences obtained from patient samples and the role of compensatory mutations in selecting destabilizing mutations were identified. Molecular dynamics (MD) simulations were performed to extensively study the effect of a few mutations on NS1 structure stability and compensatory mutations. Virtual saturation mutagenesis, predicting the effect of every individual amino acid substitution on NS1 stability sequentially, revealed virtual-conserved and variable sites. The increase in number of observed and virtual-conserved regions across NS1 quaternary states suggest the role of higher order structure formation in its evolutionary conservation. Our sequence and structure analysis could enable in identifying possible protein-protein interfaces and druggable sites. Virtual screening of nearly 10,000 small molecules, including FDA-approved drugs, permitted us to recognize six drug-like molecules targeting the dimeric sites. These molecules could be promising due to their stable interactions with NS1 throughout the simulation.
Collapse
Affiliation(s)
- Abhishek Sharma
- National Centre for Biological Science, TIFR, Bangalore, India
| | - Sudhir Krishna
- National Centre for Biological Science, TIFR, Bangalore, India.,Department of School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Farmagudi, Pond-403401, Goa, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Science, TIFR, Bangalore, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.,Computational Biology, Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
| |
Collapse
|
11
|
Conformational ensemble of the NSP1 CTD in SARS-CoV-2: Perspectives from the free energy landscape. Biophys J 2023:S0006-3495(23)00102-9. [PMID: 36793215 PMCID: PMC9928668 DOI: 10.1016/j.bpj.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The nonstructural protein-1 (NSP1) of the severe acute respiratory syndrome-associated coronavirus 2 plays a crucial role in the translational shutdown and immune evasion inside host cells. Despite its known intrinsic disorder, the C-terminal domain (CTD) of NSP1 has been reported to form a double α-helical structure and block the 40S-ribosomal channel for mRNA translation. Experimental studies indicate that NSP1 CTD functions independently from the globular N-terminal region separated with a long linker domain, underscoring the necessity of exploring the standalone conformational ensemble. In this contribution, we utilize exascale computing resources to yield unbiased molecular dynamics simulation of NSP1 CTD in all-atom resolution starting from multiple initial seed structures. A data-driven approach elicits collective variables (CVs) that are significantly superior to conventional descriptors in capturing the conformational heterogeneity. The free energy landscape as a function of the CV space is estimated using the modified expectation maximized molecular dynamics. Originally developed by us for small peptides, here, we establish the efficacy of expectation maximized molecular dynamics in conjunction with data-driven CV space for a more complex and relevant biomolecular system. The results reveal the existence of two disordered metastable populations in the free energy landscape that are separated from the conformation resembling ribosomal subunit bound state by high kinetic barriers. Chemical shift correlation and secondary structure analysis capture significant differences among key structures of the ensemble. Altogether, these insights can underpin drug development studies and mutational experiments that help induce population shifts to alter translational blocking and understand its molecular basis in further detail.
Collapse
|
12
|
Kilgore R, Chu W, Bhandari D, Fischler D, Carbonell RG, Crapanzano M, Menegatti S. Development of peptide affinity ligands for the purification of polyclonal and monoclonal Fabs from recombinant fluids. J Chromatogr A 2023; 1687:463701. [PMID: 36502645 DOI: 10.1016/j.chroma.2022.463701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Engineered multi-specific monoclonal antibodies (msAbs) and antibody fragments offer valuable therapeutic options against metabolic disorders, aggressive cancers, and viral infections. The advancement in molecular design and recombinant expression of these next-generation drugs, however, is not equaled by the progress in downstream bioprocess technology. The purification of msAbs and fragments requires affinity adsorbents with orthogonal biorecognition of different portions of the antibody structure, namely its Fc (fragment crystallizable) and Fab (fragment antigen-binding) regions or the CH1-3 and CL chains. Current adsorbents rely on protein ligands that, while featuring high binding capacity and selectivity, need harsh elution conditions and suffer from high cost, limited biochemical stability, and potential release of immunogenic fragments. Responding to these challenges, we undertook the de novo discovery of peptide ligands that target different regions of human Fab and enable product release under mild conditions. The ligands were discovered by screening a focused library of 12-mer peptides against a feedstock comprising human Fab and Chinese hamster ovary host cell proteins (CHO HCPs). The identified ligands were evaluated via binding studies as well as molecular docking simulations, returning excellent values of binding capacity (Qmax ∼ 20 mg of Fab per mL of resin) and dissociation constant (KD = 2.16·10-6 M). Selected ligand FRWNFHRNTFFP and commercial Protein L ligands were further characterized by measuring the dynamic binding capacity (DBC10%) at different residence times (RT) and performing the purification of polyclonal and monoclonal Fabs from CHO-K1 cell culture fluids. The peptide ligand featured DBC10% ∼ 6-16 mg/mL (RT of 2 min) and afforded values of yield (93-96%) and purity (89-96%) comparable to those provided by Protein L resins.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Dipendra Bhandari
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - David Fischler
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Michael Crapanzano
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
13
|
Ghaleh SS, Rahimian K, Mahmanzar M, Mahdavi B, Tokhanbigli S, Sisakht MM, Farhadi A, Bakhtiari MM, Kuehu DL, Deng Y. SARS-CoV-2 Non-structural protein 1(NSP1) mutation virulence and natural selection: Evolutionary trends in the six continents. Virus Res 2023; 323:199016. [PMID: 36473671 PMCID: PMC9721189 DOI: 10.1016/j.virusres.2022.199016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Rapid transmission and reproduction of RNA viruses prepare conducive conditions to have a high rate of mutations in their genetic sequence. The viral mutations make adapt the severe acute respiratory syndrome coronavirus 2 in the host environment and help the evolution of the virus then also caused a high mortality rate by the virus that threatens worldwide health. Mutations and adaptation help the virus to escape confrontations that are done against it. METHODS In the present study, we analyzed 6,510,947 sequences of non-structural protein 1 as one of the conserved regions of the virus to find out frequent mutations and substitute amino acids in comparison with the wild type. NSP1 mutations rate divided into continents were different. RESULTS Based on this continental categorization, E87D in global vision and also in Europe notably increased. The E87D mutation has signed up to January 2022 as the first frequent mutation observed. The remarkable mutations, H110Y and R24C have the second and third frequencies, respectively. CONCLUSION According to the important role of non-structural protein 1 on the host mRNA translation, developing drug design against the protein could be so hopeful to find more effective ways the control and then treatment of the global pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
| | - Karim Rahimian
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics. Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammadamin Mahmanzar
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Bahar Mahdavi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Tokhanbigli
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (IAUPS)
| | - Mahsa Mollapour Sisakht
- Department of Biochemistry, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Amin Farhadi
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Mahsa Mousakhan Bakhtiari
- Pediatric Cell Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA.
| |
Collapse
|
14
|
Budipramana K, Sangande F. Molecular docking-based virtual screening: Challenges in hits identification for Anti-SARS-Cov-2 activity. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e89812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) requires finding new drugs or repurposing drugs for clinical use. Molecular docking belongs to structure-based drug design providing a fast method for identifying the hit compounds with antiviral activity against SARS-Cov-2. However, the weakness of the docking method is compounded by the limited crystallographic information and comparison drugs due to the novelty of this virus can present challenges in identifying hits of anti-SARS-Cov-2. In the current review, we highlighted several aspects, especially those related to the target structure, docking validation, and virtual hit selection, that need to be considered to obtain reliable docking results. Here, we discussed several cases pertaining to the issue highlighted and approaches that could be used to solve them.
Collapse
|
15
|
Chu W, Prodromou R, Moore B, Elhanafi D, Kilgore R, Shastry S, Menegatti S. Development of Peptide Ligands for the Purification of α-1 Antitrypsin from Cell Culture Fluids. J Chromatogr A 2022; 1679:463363. [DOI: 10.1016/j.chroma.2022.463363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
|
16
|
Üstün E, Düşünceli SD, Coşkun F, Özdemir İ. Molybdenum Carbonyl Complexes with Benzimidazole Derivatives Against SARS-CoV-2 by Molecular Docking and DFT/TDDFT Methods. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Benzimidazole derivative molecules attract attention of scientists due to their bioactivities. The dramatic changes in recorded activities according to the type and position of the substituents motivate synthesis and analysis of new molecules. Commercial benzimidazole-based molecules have been used in therapeutic procedures. It is known that the activities of metal complexes with benzimidazole derivative ligands have different activities when compared to the benzimidazole main structure. Nowadays, one of the most important health problems is COVID-19, which caused the pandemic that we are still experiencing. Although vaccine studies are important to overcome acute problems, regarding the possible post-vaccination adverse effects, the need for new drugs against the virus is obvious. Considering the urgency and the limited facilities during the pandemic, preliminary in silico studies of candidate molecules are essential. In this study, {[bis-(N-benzylbenzimidazole)] tetracarbonylmolybdenum}, {[bis-(N-4-chlorobenzylbenzimidazole)] tetracarbonylmolybdenum} and {[bis-(N-4-methoxybenzylbenzimidazole)] tetracarbonylmolybdenum} were synthesized and characterized. The optimization and the structural analysis of these molecules were performed by DFT/TDDFT methods. The molecules were docked into SARS coronavirus main peptidase (PDB ID: 2gtb), COVID-19 main protease in complex with Z219104216 (PDB ID: 5r82), COVID-19 main protease in complex with an inhibitor N3 (PDB ID: 6lu7) and Papain-like protease of SARS-CoV-2 (PDB ID: 6w9c) crystal structures for evaluation of their anti-viral activity.
Collapse
Affiliation(s)
- Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, Ordu University, 52200 Ordu, Turkey
| | - Serpil Demir Düşünceli
- Department of Chemistry Faculty of Art and Science, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey
| | - Feyzullah Coşkun
- Department of Chemistry Faculty of Art and Science, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey
| | - İsmail Özdemir
- Department of Chemistry Faculty of Art and Science, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey
| |
Collapse
|
17
|
Kwofie SK, Broni E, Yunus FU, Nsoh J, Adoboe D, Miller WA, Wilson MD. Molecular Docking Simulation Studies Identifies Potential Natural Product Derived-Antiwolbachial Compounds as Filaricides against Onchocerciasis. Biomedicines 2021; 9:biomedicines9111682. [PMID: 34829911 PMCID: PMC8615632 DOI: 10.3390/biomedicines9111682] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Onchocerciasis is the leading cause of blindness and severe skin lesions which remain a major public health problem, especially in tropical areas. The widespread use of antibiotics and the long duration required for effective treatment continues to add to the increasing global menace of multi-resistant pathogens. Onchocerca volvulus harbors the endosymbiont bacteria Wolbachia, essential for the normal development of embryos, larvae and long-term survival of the adult worm, O. volvulus. We report here results of using structure-based drug design (SBDD) approach aimed at identifying potential novel Wolbachia inhibitors from natural products against the Wolbachia surface protein (WSP). The protein sequence of the WSP with UniProtKB identifier Q0RAI4 was used to model the three-dimensional (3D) structure via homology modelling techniques using three different structure-building algorithms implemented in Modeller, I-TASSER and Robetta. Out of the 15 generated models of WSP, one was selected as the most reasonable quality model which had 82, 15.5, 1.9 and 0.5% of the amino acid residues in the most favored regions, additionally allowed regions, generously allowed regions and disallowed regions, respectively, based on the Ramachandran plot. High throughput virtual screening was performed via Autodock Vina with a library comprising 42,883 natural products from African and Chinese databases, including 23 identified anti-Onchocerca inhibitors. The top six compounds comprising ZINC000095913861, ZINC000095486235, ZINC000035941652, NANPDB4566, acetylaleuritolic acid and rhemannic acid had binding energies of −12.7, −11.1, −11.0, −11, −10.3 and −9.5 kcal/mol, respectively. Molecular dynamics simulations including molecular mechanics Poisson-Boltzmann (MMPBSA) calculations reinforced the stability of the ligand-WSP complexes and plausible binding mechanisms. The residues Arg45, Tyr135, Tyr148 and Phe195 were predicted as potential novel critical residues required for ligand binding in pocket 1. Acetylaleuritolic acid and rhemannic acid (lantedene A) have previously been shown to possess anti-onchocercal activity. This warrants the need to evaluate the anti-WSP activity of the identified molecules. The study suggests the exploitation of compounds which target both pockets 1 and 2, by investigating their potential for effective depletion of Wolbachia. These compounds were predicted to possess reasonably good pharmacological profiles with insignificant toxicity and as drug-like. The compounds were computed to possess biological activity including antibacterial, antiparasitic, anthelmintic and anti-rickettsials. The six natural products are potential novel antiwolbachial agents with insignificant toxicities which can be explored further as filaricides for onchocerciasis.
Collapse
Affiliation(s)
- Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Correspondence: ; Tel.: +233-203-797922
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra LG 581, Ghana;
| | - Faruk U. Yunus
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - John Nsoh
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - Dela Adoboe
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra LG 77, Ghana; (E.B.); (F.U.Y.); (J.N.); (D.A.)
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153, USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, IL 19104, USA
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra LG 581, Ghana;
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA;
| |
Collapse
|
18
|
Zanchi FB, Mariúba LA, Nascimento V, Souza V, Corado A, Nascimento F, Costa ÁK, Duarte D, Silva G, Mejía M, Pessoa K, Gonçalves L, Brandão MJ, Jesus M, Glória J, Silva M, Mattos T, da Costa C, Naveca FG. Structural analysis of SARS-Cov-2 nonstructural protein 1 polymorphisms found in the Brazilian Amazon. Exp Biol Med (Maywood) 2021; 246:2332-2337. [PMID: 34749522 DOI: 10.1177/15353702211021348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The coronavirus disease COVID-19 has been the cause of millions of deaths worldwide. Among the SARS-CoV-2 proteins, the non-structural protein 1 (NSP1) has great importance during the virus infection process and is present in both alpha and beta-CoVs. Therefore, monitoring of NSP1 polymorphisms is crucial in order to understand their role during infection and virus-induced pathogenicity. Herein, we analyzed how mutations detected in the circulating SARS-CoV-2 in the population of the city of Manaus, Amazonas state, Brazil could modify the tertiary structure of the NSP1 protein. Three mutations were detected in the SARS-CoV-2 NSP1 gene: deletion of the amino acids KSF from positions 141 to 143 (delKSF), SARS-CoV-2, lineage B.1.195; and two substitutions, R29H and R43C, SARS-CoV-2 lineage B.1.1.28 and B.1.1.33, respectively. The delKSF was found in 47 samples, whereas R29H and R43C were found in two samples, one for each mutation. The NSP1 structures carrying the mutations R43C and R29H on the N-terminal portion (e.g. residues 10 to 127) showed minor backbone divergence compared to the Wuhan model. However, the NSP1 C-terminal region (residues 145 to 180) was severely affected in the delKSF and R29H mutants. The intermediate variable region (residues 144 to 148) leads to changes in the C-terminal region, particularly in the delKSF structure. New investigations must be carried out to analyze how these changes affect NSP1 activity during the infection. Our results reinforce the need for continuous genomic surveillance of SARS-CoV-2 to better understand virus evolution and assess the potential impact of the viral mutations on the approved vaccines and future therapies.
Collapse
Affiliation(s)
- Fernando Berton Zanchi
- Laboratório de Bioinformática e Química Medicinal, Fundação Oswaldo Cruz, FIOCRUZ, Unidade Rondônia, Porto Velho, RO 76812-245, Brazil.,Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia (UNIR), Porto Velho, RO 76801-059, Brazil.,Instituto Nacional de Epidemiologia na Amazônia Ocidental - EPIAMO, Porto Velho, RO 76812-245, Brazil
| | - Luis André Mariúba
- Programa Multi-institucional de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas (PPGBIOTEC-UFAM), Manaus, AM 69067-005, Brazil.,Programa de Pós-graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (PPGIBA-UFAM), Manaus, AM 69067-005, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação em Biologia Celular e Molecular, Rio de Janeiro, RJ 21040-360, Brazil
| | - Valdinete Nascimento
- Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação em Biologia Celular e Molecular, Rio de Janeiro, RJ 21040-360, Brazil.,Rede Genômica de Vigilância em Saúde do Estado do Amazonas, Manaus, AM 69057-070, Brazil
| | - Victor Souza
- Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação em Biologia Celular e Molecular, Rio de Janeiro, RJ 21040-360, Brazil.,Rede Genômica de Vigilância em Saúde do Estado do Amazonas, Manaus, AM 69057-070, Brazil
| | - André Corado
- Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação em Biologia Celular e Molecular, Rio de Janeiro, RJ 21040-360, Brazil
| | - Fernanda Nascimento
- Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Manaus, AM 69057-070, Brazil
| | - Ágatha Kelly Costa
- Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Débora Duarte
- Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - George Silva
- Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Matilde Mejía
- Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Karina Pessoa
- Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Manaus, AM 69057-070, Brazil
| | - Luciana Gonçalves
- Fundação de Vigilância em Saúde do Amazonas, Manaus, AM 69093-018, Brazil
| | - Maria Júlia Brandão
- Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Michele Jesus
- Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Juliane Glória
- Programa Multi-institucional de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas (PPGBIOTEC-UFAM), Manaus, AM 69067-005, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Marineide Silva
- Fundação de Vigilância em Saúde do Amazonas, Manaus, AM 69093-018, Brazil
| | - Tirza Mattos
- Fundação de Vigilância em Saúde do Amazonas, Manaus, AM 69093-018, Brazil
| | - Cristiano da Costa
- Fundação de Vigilância em Saúde do Amazonas, Manaus, AM 69093-018, Brazil
| | - Felipe Gomes Naveca
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (PPGIBA-UFAM), Manaus, AM 69067-005, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM 69057-070, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Programa de Pós-Graduação em Biologia Celular e Molecular, Rio de Janeiro, RJ 21040-360, Brazil.,Rede Genômica de Vigilância em Saúde do Estado do Amazonas, Manaus, AM 69057-070, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane, Programa de Pós-Graduação em Biologia da Interação Patógeno-Hospedeiro, Manaus, AM 69057-070, Brazil
| |
Collapse
|
19
|
Sharma PP, Bansal M, Sethi A, Poonam, Pena L, Goel VK, Grishina M, Chaturvedi S, Kumar D, Rathi B. Computational methods directed towards drug repurposing for COVID-19: advantages and limitations. RSC Adv 2021; 11:36181-36198. [PMID: 35492747 PMCID: PMC9043418 DOI: 10.1039/d1ra05320e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) has significantly altered the socio-economic status of countries. Although vaccines are now available against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent for COVID-19, it continues to transmit and newer variants of concern have been consistently emerging world-wide. Computational strategies involving drug repurposing offer a viable opportunity to choose a medication from a rundown of affirmed drugs against distinct diseases including COVID-19. While pandemics impede the healthcare systems, drug repurposing or repositioning represents a hopeful approach in which existing drugs can be remodeled and employed to treat newer diseases. In this review, we summarize the diverse computational approaches attempted for developing drugs through drug repurposing or repositioning against COVID-19 and discuss their advantages and limitations. To this end, we have outlined studies that utilized computational techniques such as molecular docking, molecular dynamic simulation, disease-disease association, drug-drug interaction, integrated biological network, artificial intelligence, machine learning and network medicine to accelerate creation of smart and safe drugs against COVID-19.
Collapse
Affiliation(s)
- Prem Prakash Sharma
- Laboratory For Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi Delhi 110007 India
| | - Meenakshi Bansal
- Laboratory For Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi Delhi 110007 India
| | - Aaftaab Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi Delhi 110007 India
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhaes, Institute (IAM), Oswaldo Cruz Foundation (Fiocruz) Recife 50670-420 Pernambuco Brazil
| | - Vijay Kumar Goel
- School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Maria Grishina
- South Ural State University, Laboratory of Computational Modelling of Drugs Pr. Lenina 76 454080 Russia
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences New Delhi 110054 India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh Noida 201313 India
| | - Brijesh Rathi
- Laboratory For Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi Delhi 110007 India
| |
Collapse
|
20
|
Junaid M, Akter Y, Siddika A, Nayeem SMA, Nahrin A, Afrose SS, Ezaj MMA, Alam MS. Nature-derived hit, lead, and drug-like small molecules: Current status and future aspects against key target proteins of Coronaviruses. Mini Rev Med Chem 2021; 22:498-549. [PMID: 34353257 DOI: 10.2174/1389557521666210805113231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 pandemic, the most unprecedented event of the year 2020, has brought millions of scientists worldwide in a single platform to fight against it. Though several drugs are now in the clinical trial, few vaccines available on the market already but the lack of an effect of those is making the situation worse. AIM OF THE STUDY In this review, we demonstrated comprehensive data of natural antiviral products showing activities against different proteins of Human Coronaviruses (HCoV) that are responsible for its pathogenesis. Furthermore, we categorized the compounds into the hit, lead, and drug based on the IC50/EC50 value, drug-likeness, and lead-likeness test to portray their potentiality to be a drug. We also demonstrated the present status of our screened antiviral compounds with respect to clinical trials and reported the lead compounds that can be promoted to clinical trial against COVID-19. METHODS A systematic search strategy was employed focusing on Natural Products (NPs) with proven activity (in vitro, in vivo, or in silico) against human coronaviruses, in general, and data were gathered from databases like PubMed, Web of Science, Google Scholar, SciVerse, and Scopus. Information regarding clinical trials retrieved from the Clinical Trial database. RESULTS Total "245" natural compounds were identified initially from the literature study. Among them, Glycyrrhizin, Caffeic acid, Curcumin is in phase 3, and Tetrandrine, Cyclosporine, Tacrolimus, Everolimus are in phase 4 clinical trial. Except for Glycyrrhizin, all compounds showed activity against COVID-19. CONCLUSIONS In summary, our demonstrated specific small molecules with lead and drug-like capabilities clarified their position in the drug discovery pipeline and proposed their future research against COVID-19.
Collapse
Affiliation(s)
- Md Junaid
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Yeasmin Akter
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Aysha Siddika
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - S M Abdul Nayeem
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Afsana Nahrin
- Department of Pharmacy, University of Science and Technology Chittagong. Bangladesh
| | - Syeda Samira Afrose
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Md Muzahid Ahmed Ezaj
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | | |
Collapse
|
21
|
Abstract
Thus far, in 2021, 219 countries with over 175 million people have been infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a positive sense, single-stranded RNA virus, and is the causal agent for coronavirus disease (COVID-19). Due to the urgency of the situation, virtual screening as a computational modeling method offers a fast and effective modality of identifying drugs that may be effective against SARS-CoV-2. There has been an overwhelming abundance of molecular docking against SARS-CoV-2 in the last year. Due to the massive volume of computational studies, this systematic review has been created to evaluate and summarize the findings of existing studies. Herein, we report on computational articles of drugs which target, (1) viral protease, (2) Spike protein-ACE 2 interaction, (3) RNA-dependent RNA polymerase, and (4) other proteins and nonstructural proteins of SARS-CoV-2. Based on the studies presented, there are 55 identified natural or drug compounds with potential anti-viral activity. The next step is to show anti-viral activity in vitro and translation to determine effectiveness into human clinical trials.
Collapse
|
22
|
Singh R, Bhardwaj VK, Das P, Purohit R. A computational approach for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2. Comput Biol Med 2021; 135:104555. [PMID: 34144270 PMCID: PMC8184359 DOI: 10.1016/j.compbiomed.2021.104555] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Background Non-structural protein 1 (Nsp1), a virulence agent of SARS-CoV-2, has emerged as an important target for drug discovery. Nsp1 shuts down the host gene function by associating with the 40S ribosomal subunit. Methods Molecular interactions, drug-likeness, physiochemical property predictions, and robust molecular dynamics (MD) simulations were employed to discover novel Nsp1 inhibitors. In this study, we evaluated a series of molecules based on the plant (Cedrus deodara) derived α,β,γ-Himachalenes scaffolds. Results The results obtained from estimated affinity and ligand efficiency suggested that BCH10, BCH15, BCH16, and BCH17 could act as potential inhibitors of Nsp1. Moreover, MD simulations comprising various MD driven time-dependent analyses and thermodynamic free energy calculations also suggested stable protein-ligand complexes and strong interactions with the binding site. Furthermore, the selected molecules passed drug likeliness parameters and the physiochemical property analysis showed acceptable bioactivity scores. Conclusion The structural parameters of dynamic simulations revealed that the reported molecules could act as lead compounds against SARS-CoV-2 Nsp1 protein.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pralay Das
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India; Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palam-pur, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
23
|
Ismail MI, Ragab HM, Bekhit AA, Ibrahim TM. Targeting multiple conformations of SARS-CoV2 Papain-Like Protease for drug repositioning: An in-silico study. Comput Biol Med 2021; 131:104295. [PMID: 33662683 PMCID: PMC7902231 DOI: 10.1016/j.compbiomed.2021.104295] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022]
Abstract
Papain-Like Protease (PLpro) is a key protein for SARS-CoV-2 viral replication which is the cause of the emerging COVID-19 pandemic. Targeting PLpro can suppress viral replication and provide treatment options for COVID-19. Due to the dynamic nature of its binding site loop, PLpro multiple conformations were generated through a long-range 1 micro-second molecular dynamics (MD) simulation. Clustering the MD trajectory enabled us to extract representative structures for the conformational space generated. Adding to the MD representative structures, X-ray structures were involved in an ensemble docking approach to screen the FDA approved drugs for a drug repositioning endeavor. Guided by our recent benchmarking study of SARS-CoV-2 PLpro, FRED docking software was selected for such a virtual screening task. The results highlighted potential consensus binders to many of the MD clusters as well as the newly introduced X-ray structure of PLpro complexed with a small molecule. For instance, three drugs Benserazide, Dobutamine and Masoprocol showed a superior consensus enrichment against the PLpro conformations. Further MD simulations for these drugs complexed with PLpro suggested the superior stability and binding of dobutamine and masoprocol inside the binding site compared to Benserazide. Generally, this approach can facilitate identifying drugs for repositioning via targeting multiple conformations of a crucial target for the rapidly emerging COVID-19 pandemic.
Collapse
Affiliation(s)
- Muhammad I Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, Al-Sherouk City, Cairo-Suez Desert Road, 11837, Cairo, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, P.O. Box 32038, Bahrain
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
24
|
Jha N, Jeyaraman M, Rachamalla M, Ojha S, Dua K, Chellappan D, Muthu S, Sharma A, Jha S, Jain R, Jeyaraman N, GS P, Satyam R, Khan F, Pandey P, Verma N, Singh S, Roychoudhury S, Dholpuria S, Ruokolainen J, Kesari K. Current Understanding of Novel Coronavirus: Molecular Pathogenesis, Diagnosis, and Treatment Approaches. IMMUNO 2021; 1:30-66. [DOI: 10.3390/immuno1010004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
An outbreak of “Pneumonia of Unknown Etiology” occurred in Wuhan, China, in late December 2019. Later, the agent factor was identified and coined as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the disease was named coronavirus disease 2019 (COVID-19). In a shorter period, this newly emergent infection brought the world to a standstill. On 11 March 2020, the WHO declared COVID-19 as a pandemic. Researchers across the globe have joined their hands to investigate SARS-CoV-2 in terms of pathogenicity, transmissibility, and deduce therapeutics to subjugate this infection. The researchers and scholars practicing different arts of medicine are on an extensive quest to come up with safer ways to curb the pathological implications of this viral infection. A huge number of clinical trials are underway from the branch of allopathy and naturopathy. Besides, a paradigm shift on cellular therapy and nano-medicine protocols has to be optimized for better clinical and functional outcomes of COVID-19-affected individuals. This article unveils a comprehensive review of the pathogenesis mode of spread, and various treatment modalities to combat COVID-19 disease.
Collapse
Affiliation(s)
- Niraj Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Madhan Jeyaraman
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
- Department of Orthopedics, School of Medical Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Dinesh Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Ankur Sharma
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida 201310, India
| | - Saurabh Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Rashmi Jain
- School of Medical Sciences and Research, Sharda University, Greater Noida 201310, India
| | - Naveen Jeyaraman
- Department of Orthopedics, Kasturba Medical College, Manipal 575001, Karnataka, India
| | - Prajwal GS
- Department of Orthopedics, JJM Medical College, Davangere 577004, Karnataka, India
| | - Rohit Satyam
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Nitin Verma
- School of Pharmacy, Chitkara University, Punjab 140401, Himachal Pradesh, India
| | - Sandeep Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | | | - Sunny Dholpuria
- Department of Life Science, School of Basic Science & Research (SBSR), Sharda University, Greater Noida 201310, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Kavindra Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| |
Collapse
|
25
|
Computationally approached inhibition potential of Tinospora cordifolia towards COVID-19 targets. Virusdisease 2021; 32:65-77. [PMID: 33778129 PMCID: PMC7980128 DOI: 10.1007/s13337-021-00666-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/02/2021] [Indexed: 12/23/2022] Open
Abstract
The recent emergence of novel coronavirus (SARS-CoV-2) has been a major threat to human society, as the challenge of finding suitable drug or vaccine is not met till date. With increasing morbidity and mortality, the need for novel drug candidates is under great demand. The investigations are progressing towards COVID-19 therapeutics. Among the various strategies employed, the use of repurposed drugs is competing along with novel drug inventions. Based on the therapeutic significance, the chemical constituents from the extract of Tinospora cordifolia belonging to various classes like alkaloids, lignans, steroids and terpenoids are investigated as potential drug candidates for COVID-19. The inhibition potential of the proposed compounds against viral spike protein and human receptor ACE2 were evaluated by computational molecular modeling (Auto dock), along with their ADME/T properties. Prior to docking, the initial geometry of the compounds were optimized by Density functional theory (DFT) method employing B3LYP hybrid functional and 6-311 + + G (d,p) basis set. The results of molecular docking and ADME/T studies have revealed 6 constituents as potential drug candidates that can inhibit the binding of SARS-CoV-2 spike protein with the human receptor ACE2 protein. The narrowed down list of constituents from Tinospora cordifolia paved way for further tuning their ability to inhibit COVID-19 by modifying the chemical structures and by employing computational geometry optimization and docking methods. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00666-7.
Collapse
|
26
|
Afshar Z, Babazadeh A, Javanian M, Barary M, Rekha V, Ebrahimpour S. A comprehensive review of COVID-19 treatment. ACTA FACULTATIS MEDICAE NAISSENSIS 2021. [DOI: 10.5937/afmnai38-26326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus strain that caused coronavirus disease 2019 (COVID-19). This novel coronavirus is an emerging global health threat. It caused approximately 140 million confirmed cases, with about 3 million deaths worldwide until April 18, 2021. Although there are two approved medications for this disease, remdesivir and dexamethasone, numerous studies are underway to investigate more therapeutic options. However, so far, most treatments have been supportive, and the clinical efficacy of the suggested drugs is still under consideration. The purpose of this review is to summarize the ongoing treatments, such as several antivirals, convalescent plasma transfusion, and adjunctive medications, with the intent of serving as a clinical guide for the physician and a resource for further evaluations in various clinical trials.
Collapse
|
27
|
Vankadari N, Jeyasankar NN, Lopes WJ. Structure of the SARS-CoV-2 Nsp1/5'-Untranslated Region Complex and Implications for Potential Therapeutic Targets, a Vaccine, and Virulence. J Phys Chem Lett 2020; 11:9659-9668. [PMID: 33135884 PMCID: PMC7641045 DOI: 10.1021/acs.jpclett.0c02818] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 05/02/2023]
Abstract
SARS-CoV-2 is the cause of the ongoing Coronavirus disease 19 (COVID-19) pandemic around the world causing pneumonia and lower respiratory tract infections. In understanding the SARS-CoV-2 pathogenicity and mechanism of action, it is essential to depict the full repertoire of expressed viral proteins. The recent biological studies have highlighted the leader protein Nsp1 of SARS-CoV-2 importance in shutting down the host protein production. Besides, it still enigmatic how Nsp1 regulates for translation. Here we report the novel structure of Nsp1 from SARS-CoV-2 in complex with the SL1 region of 5'UTR of SARS-CoV-2, and its factual interaction is corroborated with enzyme kinetics and experimental binding affinity studies. The studies also address how leader protein Nsp1 of SARS-CoV-2 recognizes its self RNA toward translational regulation by further recruitment of the 40S ribosome. With the aid of molecular dynamics and simulations, we also demonstrated the real-time stability and functional dynamics of the Nsp1/SL1 complex. The studies also report the potential inhibitors and their mode of action to block viral protein/RNA complex formation. This enhance our understanding of the mechanism of the first viral protein Nsp1 synthesized in the human cell to regulate the translation of self and host. Understanding the structure and mechanism of SARS-CoV-2 Nsp1 and its interplay with the viral RNA and ribosome will open the arena for exploring the development of live attenuated vaccines and effective therapeutic targets for this disease.
Collapse
Affiliation(s)
- Naveen Vankadari
- Monash Biomedicine Discovery Institute and
Department of Biochemistry and Molecular Biology and
Faculty of Medicine, Nursing and Health
Science, Monash University, Clayton
Victoria 3800, Australia
| | - Nandhini Nisha Jeyasankar
- Monash Biomedicine Discovery Institute and
Department of Biochemistry and Molecular Biology and
Faculty of Medicine, Nursing and Health
Science, Monash University, Clayton
Victoria 3800, Australia
| | - Wilma Jerom Lopes
- Monash Biomedicine Discovery Institute and
Department of Biochemistry and Molecular Biology and
Faculty of Medicine, Nursing and Health
Science, Monash University, Clayton
Victoria 3800, Australia
| |
Collapse
|