1
|
Li L, Wei C, Xie Y, Su Y, Liu C, Qiu G, Liu W, Liang Y, Zhao X, Huang D, Wu D. Expanded insights into the mechanisms of RNA-binding protein regulation of circRNA generation and function in cancer biology and therapy. Genes Dis 2025; 12:101383. [PMID: 40290118 PMCID: PMC12022641 DOI: 10.1016/j.gendis.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 04/30/2025] Open
Abstract
RNA-binding proteins (RBPs) regulate the generation of circular RNAs (circRNAs) by participating in the reverse splicing of circRNA and thereby influencing circRNA function in cells and diseases, including cancer. Increasing evidence has demonstrated that the circRNA-RBP network plays a complex and multifaceted role in tumor progression. Thus, a better understanding of this network may provide new insights for the discovery of cancer drugs. In this review, we discuss the characteristics of RBPs and circRNAs and how the circRNA-RBP network regulates tumor cell phenotypes such as proliferation, metastasis, apoptosis, metabolism, immunity, drug resistance, and the tumor environment. Moreover, we investigate the factors that influence circRNA-RBP interactions and the regulation of downstream pathways related to tumor development, such as the tumor microenvironment and N6-methyladenosine modification. Furthermore, we discuss new ideas for targeting circRNA-RBP interactions using various RNA technologies.
Collapse
Affiliation(s)
- Lixia Li
- Cancer Hospital, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Chunhui Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yu Xie
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yanyu Su
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Caixia Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Guiqiang Qiu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Weiliang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Yanmei Liang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xuanna Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Dan Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| |
Collapse
|
2
|
Feng X, Guang S. Functions and applications of RNA interference and small regulatory RNAs. Acta Biochim Biophys Sin (Shanghai) 2024; 57:119-130. [PMID: 39578714 PMCID: PMC11802346 DOI: 10.3724/abbs.2024196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/03/2024] [Indexed: 11/24/2024] Open
Abstract
Small regulatory RNAs play a variety of crucial roles in eukaryotes, influencing gene regulation, developmental timing, antiviral defense, and genome integrity via a process termed RNA interference (RNAi). This process involves Argonaute/small RNA (AGO/sRNA) complexes that target transcripts via sequence complementarity and modulate gene expression and epigenetic modifications. RNAi is a highly conserved gene regulatory phenomenon that recognizes self- and non-self nucleic acids, thereby defending against invasive sequences. Since its discovery, RNAi has been widely applied in functional genomic studies and a range of practical applications. In this review, we focus on the current understanding of the biological roles of the RNAi pathway in transposon silencing, fertility, developmental regulation, immunity, stress responses, and acquired transgenerational inheritance. Additionally, we provide an overview of the applications of RNAi technology in biomedical research, agriculture, and therapeutics.
Collapse
Affiliation(s)
- Xuezhu Feng
- School of Basic Medical SciencesAnhui Medical UniversityHefei230032China
| | - Shouhong Guang
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of USTCThe USTC RNA InstituteMinistry of Education Key Laboratory for Membraneless Organelles & Cellular DynamicsHefei National Research Center for Physical Sciences at the MicroscaleCenter for Advanced Interdisciplinary Science and Biomedicine of IHMSchool of Life SciencesDivision of Life Sciences and MedicineBiomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefei230027China
| |
Collapse
|
3
|
Sang S, Liu Y, Li X, Ma J, Liu X, Yang Y. A novel gene silencing strategy based on tobacco rattle virus in Hibiscus mutabilis. PeerJ 2024; 12:e18211. [PMID: 39391825 PMCID: PMC11466215 DOI: 10.7717/peerj.18211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Background Hibiscus mutabilis L. is a popular regional characteristic plant in China, cultivated for its attractive flower colors, extended bloom time, and medicinal properties. To enhance molecular breeding and gene function studies, we conducted transcriptome analysis and identified valuable genes in previous research. Nonetheless, the current inefficient and labor-intensive transformation techniques have hindered their applications. Virus-induced gene silencing (VIGS) provides a precise and effective strategy for post-transcriptional down-regulation of endogenous gene expression. Methods We investigated the performance of tobacco rattle virus (TRV) as a tool for targeting and silencing the gene encoding the protein involved in chloroplast development, cloroplastos alterados 1 (altered chloroplast; CLA1), of H. mutabilis through Agrobacterium tumefaciens-mediated infiltration. Results By effectively suppressing the CLA1 gene associated with chloroplast development in H. mutabilis via the TRV-VIGS system, we have illustrated the inaugural implementation of VIGS in this species. Quantitative RT-PCR proved that HmCLA1 expression in agro-infiltrated plants was lower than in the mock-infiltrated (mock) and the control (CK) plants. Phenotypic observations corroborated the albino phenotype in leaves following successful HmCLA1 silencing. Conclusions Our study showcases TRV-VIGS as a potential gene silencing tool for H. mutabilis, facilitating functional genomics studies and molecular breeding efforts in this species.
Collapse
Affiliation(s)
- Shiye Sang
- Chengdu Botanical Garden, Chengdu, Sichuan, China
| | - Yiqiong Liu
- Chengdu Botanical Garden, Chengdu, Sichuan, China
| | - Xiu Li
- Chengdu Botanical Garden, Chengdu, Sichuan, China
| | - Jiao Ma
- Chengdu Botanical Garden, Chengdu, Sichuan, China
| | - Xiaoli Liu
- Chengdu Botanical Garden, Chengdu, Sichuan, China
| | | |
Collapse
|
4
|
Zhu S, Chen L, Zhang Z, Chen G, Hu N. BnVP1, a novel vacuolar H+ pyrophosphatase gene from Boehmeria nivea confers cadmium tolerance in transgenic Arabidopsis. PLoS One 2024; 19:e0308541. [PMID: 39159160 PMCID: PMC11332915 DOI: 10.1371/journal.pone.0308541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Plants have developed precise defense mechanisms against cadmium (Cd) stress, with vacuolar compartmentalization of Cd2+ being a crucial process in Cd detoxification. The transport of Cd into vacuoles by these cation / H+ antiporters is powered by the pH gradient created by proton pumps. In this study, the full-length cDNA of a vacuolar H+-pyrophosphatase (V-PPase) gene from Boehmeria nivea (ramie), BnVP1, was isolated using the rapid amplification of cDNA ends (RACE) method. The open reading frame (ORF) of BnVP1 is 2292 bp, encoding a 763 amino acid V-PPase protein with 15 predicted transmembrane domains. Sequence alignment and phylogenetic analysis revealed that BnVP1 belongs to the Type I V-PPase family. Quantitative RT-PCR assays demonstrated that BnVP1 expression was significantly higher in ramie roots than in shoots. Cd treatments markedly induced BnVP1 expression in both roots and leaves of ramie seedlings, with a more pronounced effect in roots. Additionally, BnVP1 expression was significantly upregulated by the plant hormone methyl jasmonate (MeJA). Heterologous expression of BnVP1 in transgenic Arabidopsis significantly enhanced V-PPase activity in the roots. The growth performance, root elongation, and total chlorophyll content of transgenic plants with high tonoplast H+-PPase (V-PPase) activity were superior to those of wild-type plants. Overexpression of BnVP1 reduced membrane lipid peroxidation and ion leakage, and significantly increased Cd accumulation in the roots of transgenic Arabidopsis seedlings. This study provides new genetic resources for the phytoremediation of Cd-contaminated farmland.
Collapse
Affiliation(s)
- Shoujing Zhu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Lei Chen
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | | | - Gang Chen
- Yichun University, Yichun, Jiangxi, China
| | - Nengbing Hu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| |
Collapse
|
5
|
Bártová E. Epigenetic and gene therapy in human and veterinary medicine. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae006. [PMID: 38751572 PMCID: PMC11095531 DOI: 10.1093/eep/dvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Gene therapy is a focus of interest in both human and veterinary medicine, especially in recent years due to the potential applications of CRISPR/Cas9 technology. Another relatively new approach is that of epigenetic therapy, which involves an intervention based on epigenetic marks, including DNA methylation, histone post-translational modifications, and post-transcription modifications of distinct RNAs. The epigenome results from enzymatic reactions, which regulate gene expression without altering DNA sequences. In contrast to conventional CRISP/Cas9 techniques, the recently established methodology of epigenetic editing mediated by the CRISPR/dCas9 system is designed to target specific genes without causing DNA breaks. Both natural epigenetic processes and epigenetic editing regulate gene expression and thereby contribute to maintaining the balance between physiological functions and pathophysiological states. From this perspective, knowledge of specific epigenetic marks has immense potential in both human and veterinary medicine. For instance, the use of epigenetic drugs (chemical compounds with therapeutic potential affecting the epigenome) seems to be promising for the treatment of cancer, metabolic, and infectious diseases. Also, there is evidence that an epigenetic diet (nutrition-like factors affecting epigenome) should be considered as part of a healthy lifestyle and could contribute to the prevention of pathophysiological processes. In summary, epigenetic-based approaches in human and veterinary medicine have increasing significance in targeting aberrant gene expression associated with various diseases. In this case, CRISPR/dCas9, epigenetic targeting, and some epigenetic nutrition factors could contribute to reversing an abnormal epigenetic landscape to a healthy physiological state.
Collapse
Affiliation(s)
- Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 612 00, the Czech Republic
| |
Collapse
|
6
|
Septiani P, Pramesti Y, Ningsih DU, Pancaningtyas S, Meitha K. Identification of self- and pathogen-targeted miRNAs from resistant and susceptible Theobroma cacao variety to black pod disease. Sci Rep 2024; 14:3272. [PMID: 38332251 PMCID: PMC10853554 DOI: 10.1038/s41598-024-53685-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Cacao (Theobroma cacao) is a highly valuable crop with growing demand in the global market. However, cacao farmers often face challenges posed by black pod disease caused by Phytophthora spp., with P. palmivora being the most dominant. Regulations of various gene expressions influence plant resistance to pathogens. One mechanism involves targeting the mRNA of virulence genes in the invading pathogens, suppressing their infection. However, resistance also could be suppressed by plant-derived miRNAs that target their own defence genes. The objective of this study is to identify differentially expressed miRNAs in black pod-resistant and susceptible cacao varieties and to predict their targets in T. cacao and P. palmivora transcripts. Extracted miRNA from resistant and susceptible varieties of T. Cacao was sequenced, identified, and matched to host and pathogen mRNA. In total, 54 known miRNAs from 40 miRNA families and 67 novel miRNAs were identified. Seventeen miRNAs were differentially expressed in susceptible variety compared to resistant one, with 9 miRNAs upregulated and 8 miRNAs downregulated. In T. cacao transcripts, the upregulated miRNAs were predicted to target several genes, including defence genes. The suppression of these defense genes can lead to a reduction in plant resistance against pathogen infection. In P. palmivora transcripts, the upregulated miRNAs were predicted to target several genes, including P. palmivora effector genes. In the future, limiting expression of miRNAs that target T. cacao's defence genes and applying miRNAs that target P. palmivora effector genes hold promise for enhancing cacao plant resistance against P. palmivora infection.
Collapse
Affiliation(s)
- Popi Septiani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Yonadita Pramesti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Devi Ulfa Ningsih
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia
| | - Sulistyani Pancaningtyas
- Indonesian Coffee and Cocoa Research Institute (ICCRI), Jl. PB. Sudirman 90, Jember, 68118, Indonesia
| | - Karlia Meitha
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, Indonesia.
| |
Collapse
|
7
|
Capece M, Tessari A, Mills J, Vinciguerra GLR, Louke D, Lin C, McElwain BK, Miles WO, Coppola V, Davies AE, Palmieri D, Croce CM. A novel auxin-inducible degron system for rapid, cell cycle-specific targeted proteolysis. Cell Death Differ 2023; 30:2078-2091. [PMID: 37537305 PMCID: PMC10482871 DOI: 10.1038/s41418-023-01191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
The discrimination of protein biological functions in different phases of the cell cycle is limited by the lack of experimental approaches that do not require pre-treatment with compounds affecting the cell cycle progression. Therefore, potential cycle-specific biological functions of a protein of interest could be biased by the effects of cell treatments. The OsTIR1/auxin-inducible degron (AID) system allows "on demand" selective and reversible protein degradation upon exposure to the phytohormone auxin. In the current format, this technology does not allow to study the effect of acute protein depletion selectively in one phase of the cell cycle, as auxin similarly affects all the treated cells irrespectively of their proliferation status. Therefore, the AID system requires coupling with cell synchronization techniques, which can alter the basal biological status of the studied cell population, as with previously available approaches. Here, we introduce a new AID system to Regulate OsTIR1 Levels based on the Cell Cycle Status (ROLECCS system), which induces proteolysis of both exogenously transfected and endogenous gene-edited targets in specific phases of the cell cycle. We validated the ROLECCS technology by down regulating the protein levels of TP53, one of the most studied tumor suppressor genes, with a widely known role in cell cycle progression. By using our novel tool, we observed that TP53 degradation is associated with increased number of micronuclei, and this phenotype is specifically achieved when TP53 is lost in S/G2/M phases of the cell cycle, but not in G1. Therefore, we propose the use of the ROLECCS system as a new improved way of studying the differential roles that target proteins may have in specific phases of the cell cycle.
Collapse
Affiliation(s)
- Marina Capece
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Joseph Mills
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Gian Luca Rampioni Vinciguerra
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Darian Louke
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 43210, Columbus, OH, USA
| | - Chenyu Lin
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Bryan K McElwain
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
| | - Alexander E Davies
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, 43210, Columbus, OH, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA.
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.
- Gene Editing Shared Resource, The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, 43210, Columbus, OH, USA.
- The Ohio State University Wexner Medical Center and Comprehensive Cancer Center, 43210, Columbus, OH, USA.
| |
Collapse
|
8
|
Zhang Y, Niu N, Li S, Liu Y, Xue C, Wang H, Liu M, Zhao J. Virus-Induced Gene Silencing (VIGS) in Chinese Jujube. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112115. [PMID: 37299093 DOI: 10.3390/plants12112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Virus-induced gene silencing (VIGS) is a fast and efficient method for assaying gene function in plants. At present, the VIGS system mediated by Tobacco rattle virus (TRV) has been successfully practiced in some species such as cotton and tomato. However, little research of VIGS systems has been reported in woody plants, nor in Chinese jujube. In this study, the TRV-VIGS system of jujube was firstly investigated. The jujube seedlings were grown in a greenhouse with a 16 h light/8 h dark cycle at 23 °C. After the cotyledon was fully unfolded, Agrobacterium mixture containing pTRV1 and pTRV2-ZjCLA with OD600 = 1.5 was injected into cotyledon. After 15 days, the new leaves of jujube seedlings showed obvious photo-bleaching symptoms and significantly decreased expression of ZjCLA, indicating that the TRV-VIGS system had successfully functioned on jujube. Moreover, it found that two injections on jujube cotyledon could induce higher silencing efficiency than once injection. A similar silencing effect was then also verified in another gene, ZjPDS. These results indicate that the TRV-VIGS system in Chinese jujube has been successfully established and can be applied to evaluate gene function, providing a breakthrough in gene function verification methods.
Collapse
Affiliation(s)
- Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Nazi Niu
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Shijia Li
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Yin Liu
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Huibin Wang
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
9
|
Liu Q, Cheng L, Nian H, Jin J, Lian T. Linking plant functional genes to rhizosphere microbes: a review. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:902-917. [PMID: 36271765 PMCID: PMC10106864 DOI: 10.1111/pbi.13950] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 05/04/2023]
Abstract
The importance of rhizomicrobiome in plant development, nutrition acquisition and stress tolerance is unquestionable. Relevant plant genes corresponding to the above functions also regulate rhizomicrobiome construction. Deciphering the molecular regulatory network of plant-microbe interactions could substantially contribute to improving crop yield and quality. Here, the plant gene-related nutrient uptake, biotic and abiotic stress resistance, which may influence the composition and function of microbial communities, are discussed in this review. In turn, the influence of microbes on the expression of functional plant genes, and thereby plant growth and immunity, is also reviewed. Moreover, we have specifically paid attention to techniques and methods used to link plant functional genes and rhizomicrobiome. Finally, we propose to further explore the molecular mechanisms and signalling pathways of microbe-host gene interactions, which could potentially be used for managing plant health in agricultural systems.
Collapse
Affiliation(s)
- Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jian Jin
- Northeast Institute of Geography and AgroecologyChinese Academy of SciencesHarbinChina
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
10
|
Jeynes-Cupper K, Catoni M. Long distance signalling and epigenetic changes in crop grafting. FRONTIERS IN PLANT SCIENCE 2023; 14:1121704. [PMID: 37021313 PMCID: PMC10067726 DOI: 10.3389/fpls.2023.1121704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Humans have used grafting for more than 4000 years to improve plant production, through physically joining two different plants, which can continue to grow as a single organism. Today, grafting is becoming increasingly more popular as a technique to increase the production of herbaceous horticultural crops, where rootstocks can introduce traits such as resistance to several pathogens and/or improving the plant vigour. Research in model plants have documented how long-distance signalling mechanisms across the graft junction, together with epigenetic regulation, can produce molecular and phenotypic changes in grafted plants. Yet, most of the studied examples rely on proof-of-concept experiments or on limited specific cases. This review explores the link between research findings in model plants and crop species. We analyse studies investigating the movement of signalling molecules across the graft junction and their implications on epigenetic regulation. The improvement of genomics analyses and the increased availability of genetic resources has allowed to collect more information on potential benefits of grafting in horticultural crop models. Ultimately, further research into this topic will enhance our ability to use the grafting technique to exploit genetic and epigenetic variation in crops, as an alternative to traditional breeding.
Collapse
Affiliation(s)
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Institute for Sustainable Plant Protection, National Research Council of Italy, Torino, Italy
| |
Collapse
|
11
|
Lucena-Leandro VS, Abreu EFA, Vidal LA, Torres CR, Junqueira CICVF, Dantas J, Albuquerque ÉVS. Current Scenario of Exogenously Induced RNAi for Lepidopteran Agricultural Pest Control: From dsRNA Design to Topical Application. Int J Mol Sci 2022; 23:ijms232415836. [PMID: 36555476 PMCID: PMC9785151 DOI: 10.3390/ijms232415836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Invasive insects cost the global economy around USD 70 billion per year. Moreover, increasing agricultural insect pests raise concerns about global food security constraining and infestation rising after climate changes. Current agricultural pest management largely relies on plant breeding-with or without transgenes-and chemical pesticides. Both approaches face serious technological obsolescence in the field due to plant resistance breakdown or development of insecticide resistance. The need for new modes of action (MoA) for managing crop health is growing each year, driven by market demands to reduce economic losses and by consumer demand for phytosanitary measures. The disabling of pest genes through sequence-specific expression silencing is a promising tool in the development of environmentally-friendly and safe biopesticides. The specificity conferred by long dsRNA-base solutions helps minimize effects on off-target genes in the insect pest genome and the target gene in non-target organisms (NTOs). In this review, we summarize the status of gene silencing by RNA interference (RNAi) for agricultural control. More specifically, we focus on the engineering, development and application of gene silencing to control Lepidoptera through non-transforming dsRNA technologies. Despite some delivery and stability drawbacks of topical applications, we reviewed works showing convincing proof-of-concept results that point to innovative solutions. Considerations about the regulation of the ongoing research on dsRNA-based pesticides to produce commercialized products for exogenous application are discussed. Academic and industry initiatives have revealed a worthy effort to control Lepidoptera pests with this new mode of action, which provides more sustainable and reliable technologies for field management. New data on the genomics of this taxon may contribute to a future customized target gene portfolio. As a case study, we illustrate how dsRNA and associated methodologies could be applied to control an important lepidopteran coffee pest.
Collapse
Affiliation(s)
| | | | - Leonardo A. Vidal
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Cellular Biology, Institute of Biological Sciences, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Caroline R. Torres
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Camila I. C. V. F. Junqueira
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
- Department of Agronomy and Veterinary Medicine, Campus Darcy Ribeiro, Universidade de Brasília—UnB, Brasília 70910-9002, DF, Brazil
| | - Juliana Dantas
- Embrapa Recursos Genéticos e Biotecnologia, Brasília 70770-917, DF, Brazil
| | | |
Collapse
|