1
|
Shekar Roy H, K M N, Rajput S, Sadhukhan S, Gowri V, Hassan Dar A, Monga M, Salaria N, Guha R, Chattopadhyay N, Jayamurugan G, Ghosh D. Efficient Nitric Oxide Scavenging by Urea-Functionalized Push-Pull Chromophore Modulates NO-Mediated Diseases. Chemistry 2023; 29:e202301748. [PMID: 37431238 DOI: 10.1002/chem.202301748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
The excess nitric oxide (NO) produced in the body in response to bacterial/proinflammatory stimuli is responsible for several pathological conditions. The current approaches that target the production of excess NO, either through the inhibition of nitric oxide synthase enzyme or its downstream mediators have been clinically unsuccessful. With an aim to regulate the excess NO, urea-functionalized push-pull chromophores containing 1,1,4,4-tetracyanobuta-1,3-dienes (TCBD) or expanded TCBD (eTCBD) were developed as NO scavengers. The NMR mechanistic studies revealed that upon NO binding, these molecules are converted to uncommon stable NONOates. The unique emissive property of Urea-eTCBD enables its application in vitro, as a NO-sensor. Furthermore, the cytocompatible Urea-eTCBD, rapidly inactivated the NO released from LPS-activated cells. The therapeutic efficacy of the molecule in modulating NO-mediated pathological condition was confirmed using a carrageenan-induced inflammatory paw model and a corneal injury model. While the results confirm the advantages of scavenging the excess NO to address a multitude of NO-mediated diseases, the promising sensing and bioactivity of Urea-eTCBD can motivate further exploration of such molecules in allied areas of research.
Collapse
Affiliation(s)
- Himadri Shekar Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Neethu K M
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Swati Rajput
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Sreyanko Sadhukhan
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Vijayendran Gowri
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Arif Hassan Dar
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Malika Monga
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Navita Salaria
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Govindasamy Jayamurugan
- Energy Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India
| |
Collapse
|
2
|
Molecular Dynamic Study of Mechanism Underlying Nature of Molecular Recognition and the Role of Crosslinker in the Synthesis of Salmeterol-Targeting Molecularly Imprinted Polymer for Analysis of Salmeterol Xinafoate in Biological Fluid. Molecules 2022; 27:molecules27113619. [PMID: 35684555 PMCID: PMC9182462 DOI: 10.3390/molecules27113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
The rational preparation of molecularly imprinted polymers (MIPs) in order to have selective extraction of salmeterol xinafoate (SLX) from serum was studied. SLX is an acting β-adrenergic receptor agonist used in the treatment of asthma and has an athletic performance-enhancing effect. Molecular dynamics were used for the simulation of the SLX-imprinted pre-polymerization system, to determine the stability of the system. The computational simulation showed that SLX as a template, 4-hydroxyethyl methacrylate (HEMA) as a monomer, and trimethylolpropane trimethacrylate (TRIM) as a crosslinker in mol ratio of 1:6:20 had the strongest interaction in terms of the radial distribution functional. To validate the computational result, four polymers were synthesized using the precipitation polymerization method, and MIP with composition and ratio corresponding with the system with the strongest interaction as an MD simulation result showed the best performance, with a recovery of 96.59 ± 2.24% of SLX in spiked serum and 92.25 ± 1.12% when SLX was spiked with another analogue structure. Compared with the standard solid phase extraction sorbent C-18, which had a recovery of 79.11 ± 2.96%, the MIP showed better performance. The harmony between the simulation and experimental results illustrates that the molecular dynamic simulations had a significant role in the study and development of the MIPs for analysis of SLX in biological fluid.
Collapse
|
3
|
Pan Y, Qin M, Wang P, Yang L, Zhang L, Yan C, Zhang C, Wang W. Interface and Sensitive Characteristics of the Viscoelastic Film Used in a Surface Acoustic Wave Gas Sensor. ACS Sens 2022; 7:612-621. [PMID: 35084169 DOI: 10.1021/acssensors.1c02509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The surface morphology of viscoelastic-sensitive films significantly affects sensing characteristics of surface acoustic wave (SAW) sensors. Uniformity and compactness of the film surface directly influences detectability of the SAW sensor toward target gases. Viscoelastic fluoroalcoholpolysiloxane (SXFA) was prepared in this work using spin coating technology on an SAW delay line of 200 MHz and then used as coating for detection of dimethyl methylphosphonate (DMMP). Polarizing, atomic force, and scanning electron microscopies confirmed the uniformity of the SXFA surface. The particle diameter in the cluster region was 10-15 μm. The contact angle (5.72-26.69°), surface tension (21.053-29.155 mN/m), Gibbs free energy (-160.68 to -153.45 J/m2), and spreading coefficient (0.3028-6.9453 J/m2) of different concentrations of SXFA were obtained through experiments, and their relation was analyzed using the Young T equation and Gibbs adsorption isotherm. The glass transition temperature (-19.7 °C) and elasticity of SXFA were also discussed. The consistency of sensor preparation was confirmed by detecting DMMP with five SAW sensors prepared simultaneously. Seven consecutive tests showed that the SAW sensor presents satisfactory repeatability (standard deviation, s, 1.134; coefficient of variance, v, 0.065; and population mean deviation, δ, 0.913) at a concentration of 1.71 mg/m3 and acceptable linear relationship at a concentration range of 0.058-1.92 mg/m3, with a sensitivity of around 1.21 mv/(mg/m3). The sensor exhibited outstanding sensitivity and satisfactory linearity and repeatability to DMMP. Meanwhile, the sensing mechanism in gas adsorption was also discussed in terms of LSER formulation and hydrogen bonding formation between SXFA and DMMP.
Collapse
Affiliation(s)
- Yong Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Molin Qin
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Puhong Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Liu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Cancan Yan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chao Zhang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Wang
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Butera E, Zammataro A, Pappalardo A, Trusso Sfrazzetto G. Supramolecular Sensing of Chemical Warfare Agents. Chempluschem 2021; 86:681-695. [PMID: 33881227 DOI: 10.1002/cplu.202100071] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/06/2021] [Indexed: 12/31/2022]
Abstract
Chemical warfare agents are a class of organic molecules used as chemical weapons due to their high toxicity and lethal effects. For this reason, the fast detection of these compounds in the environment is crucial. Traditional detection methods are based on instrumental techniques, such as mass spectrometry or HPLC, however the use of molecular sensors able to change a detectable property (e. g., luminescence, color, electrical resistance) can be cheaper and faster. Today, molecular sensing of chemical warfare agents is mainly based on the "covalent approach", in which the sensor reacts with the analyte, or on the "supramolecular approach", which involves the formation of non-covalent interactions between the sensor and the analyte. This Review is focused on the recent developments of supramolecular sensors of organophosphorus chemical warfare agents (from 2013). In particular, supramolecular sensors are classified by function of the sensing mechanism: i) Lewis Acids, ii) hydrogen bonds, iii) macrocyclic hosts, iv) multi-topic sensors, v) nanosensors. It is shown how the supramolecular non-covalent approach leads to a reversible sensing and higher selectivity towards the selected analyte respect to other interfering molecules.
Collapse
Affiliation(s)
- Ester Butera
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Agatino Zammataro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
5
|
Marchesi S, Guidotti M, Marchese L, Evangelisti C, Carniato F, Bisio C. Bifunctional Europium(III) and Niobium(V)-Containing Saponite Clays for the Simultaneous Optical Detection and Catalytic Oxidative Abatement of Blister Chemical Warfare Agents. Chemistry 2021; 27:4723-4730. [PMID: 33368657 DOI: 10.1002/chem.202005454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/29/2023]
Abstract
For the first time, the co-presence in the saponite structure of luminescent EuIII and catalytic NbV metal sites was exploited for the simultaneous detection and catalytic abatement of sulfur-containing blister chemical warfare agents. Metal centers were introduced in structural positions of the saponite (in the interlayer space or inside the inorganic framework) following two different synthetic methodologies. The functionalized saponites were able to reveal the presence of a sulfur mustard simulant (2-chloroethyl)ethyl sulfide (CEES) after few seconds of contact time and more than 80 % of the substrate was catalytically decomposed after 24 h in the presence of aqueous hydrogen peroxide.
Collapse
Affiliation(s)
- Stefano Marchesi
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Matteo Guidotti
- CNR-SCITEC-Istituto di Scienze e Tecnologie Chimiche "G. Natta", Via C. Golgi 19, 20133, Milano, Italy
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Claudio Evangelisti
- CNR-ICCOM Istituto di Chimica dei Composti OrganoMetallici, via G. Moruzzi 1, 56124, Pisa, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel 11, 15121, Alessandria, Italy
| | - Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel 11, 15121, Alessandria, Italy.,CNR-SCITEC-Istituto di Scienze e Tecnologie Chimiche "G. Natta", Via C. Golgi 19, 20133, Milano, Italy
| |
Collapse
|
6
|
Tuccitto N, Spitaleri L, Li Destri G, Pappalardo A, Gulino A, Trusso Sfrazzetto G. Supramolecular Sensing of a Chemical Warfare Agents Simulant by Functionalized Carbon Nanoparticles. Molecules 2020; 25:molecules25235731. [PMID: 33291853 PMCID: PMC7730470 DOI: 10.3390/molecules25235731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
Real-time sensing of chemical warfare agents by optical sensors is today a crucial target to prevent terroristic attacks by chemical weapons. Here the synthesis, characterization and detection properties of a new sensor, based on covalently functionalized carbon nanoparticles, are reported. This nanosensor exploits noncovalent interactions, in particular hydrogen bonds, to detect DMMP, a simulant of nerve agents. The nanostructure of the sensor combined with the supramolecular sensing approach leads to high binding constant affinity, high selectivity and the possibility to reuse the sensor.
Collapse
Affiliation(s)
- Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- Laboratory for Molecular Surfaces and Nanotechnology–CSGI, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: (N.T.); (G.T.S.); Tel.: +39-0957385201 (G.T.S.)
| | - Luca Spitaleri
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Li Destri
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- Laboratory for Molecular Surfaces and Nanotechnology–CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Antonino Gulino
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (L.S.); (G.L.D.); (A.P.); (A.G.)
- National Interuniversity Consortium for Materials Science and Technology (I.N.S.T.M.) Research Unit of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: (N.T.); (G.T.S.); Tel.: +39-0957385201 (G.T.S.)
| |
Collapse
|
7
|
Pappalardo A, Gangemi CM, Toscano RM, Sfrazzetto GT. A New Fluorescent Salen-uranyl Sensor for the Sub-ppm Detection of Chemical Warfare Agents. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200930150313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Real-time sensing of Chemical Warfare Agents (CWAs) is today a crucial topic to
prevent the lethal effects of a terroristic chemical attack. For this reason, the development of
efficient, selective, sensitive and reversible sensoristic devices, able to detect by optical response
ppm levels of these compounds, is strongly required. Here, the synthesis of a new fluorescent
sensor based on a salen-uranyl scaffold, functionalized with two bodipy moieties, and
its application for the detection of sub-ppm levels of CWAs is reported. Detection properties
were evaluated by fluorescence measurements and selectivity tests demonstrated the strong
affinity for CWAs.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Chiara M.A. Gangemi
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Rosa Maria Toscano
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Dipartimento di Scienze Chimiche, Universita degli Studi di Catania, Viale A. Doria 6, 95100 Catania, Italy
| |
Collapse
|
8
|
Abstract
Nerve agents (NAs) are a group of highly toxic organophosphorus compounds developed before World War II. They are related to organophosphorus pesticides, although they have much higher human acute toxicity than commonly used pesticides. After the detection of the presence of NAs, the critical step is the fast decontamination of the environment in order to avoid the lethal effect of these organophosphorus compounds on exposed humans. This review collects the catalytic degradation reactions of NAs, in particular focusing our attention on chemical hydrolysis. These reactions are catalyzed by different catalyst categories (metal-based, polymeric, heterogeneous, enzymatic and MOFs), all of them described in this review.
Collapse
|
9
|
Koller M, Thiermann H, Worek F. Screening of chiral shift reagents suitable to generically separate the enantiomers of V-agents by 31P-NMR spectroscopy. Toxicol Lett 2020; 320:28-36. [PMID: 31805340 DOI: 10.1016/j.toxlet.2019.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 11/30/2022]
Abstract
Fourteen amino acids protected at the N-terminal and at their side chains were screened for resolving the enantiomers of V-agents by NMR. While none of the shift reagents tested showed really effective separation in proton NMR, two of them (BOC-Gln(Xan)-OH, 16, and Z-Arg(Z)2-OH), 21, with 16 superior to 21) were found suitable to separate the enantiomers of all V-agent homologues involved in the test by 31P-NMR. Molar ratios investigated were 1:0.5, 1:1, 1:1.5, 1:2, and 1:3 with the V-agent set to 1 throughout the experiments. All these ratios were more or less effective, but 1:3 was found to separate the V-agents the most reliable way. It is postulated that three chiral solvating molecules are then coordinated around the organophosphate: ion pair formation with the amino nitrogen of the V agent side chain, hydrogen bonding provided by the PO unit, and extension of coordination at the phosphorus atom itself. After chiral separation of VX by semi-preparative LC-MS the enantiomers were examined with both configurations of 16 releasing four different 31P NMR peaks which correspond to four different complexes: R-S3, R-R3, S-R3, and S-S3. Comparing these results with literature data it is assumed that (+)-VX corresponds to the RP configuration and (-)-VX to the SP-configuration.
Collapse
Affiliation(s)
- Marianne Koller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| |
Collapse
|
10
|
Bringuier SA, Varady MJ, Pearl TP, Mantooth BA. Characterization of Composition-Dependent Maxwell–Stefan Diffusivities in Mixtures of Polydimethylsiloxane, Nerve Agent VX, and Methanol. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan A. Bringuier
- DCS Corporation, 100 Walter
Ward Boulevard, Suite 100, Abingdon, Maryland 21009, United States
| | - Mark J. Varady
- DCS Corporation, 100 Walter
Ward Boulevard, Suite 100, Abingdon, Maryland 21009, United States
| | - Thomas P. Pearl
- DCS Corporation, 100 Walter
Ward Boulevard, Suite 100, Abingdon, Maryland 21009, United States
| | - Brent A. Mantooth
- Edgewood
Chemical Biological Center, U.S. Army, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| |
Collapse
|
11
|
Whitaker CM, Derouin EE, O'Connor MB, Whitaker CK, Whitaker JA, Snyder JJ, Kaufmann NR, Gilliard AN, Reitmayer AK. Smart hydrogel sensor for detection of organophosphorus chemical warfare nerve agents. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2016. [DOI: 10.1080/10601325.2017.1250313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Sayago I, Matatagui D, Fernández MJ, Fontecha JL, Jurewicz I, Garriga R, Muñoz E. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants. Talanta 2016; 148:393-400. [DOI: 10.1016/j.talanta.2015.10.069] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/14/2015] [Accepted: 10/24/2015] [Indexed: 12/18/2022]
|
13
|
Hiscock JR, Sambrook MR, Wells NJ, Gale PA. Detection and remediation of organophosphorus compounds by oximate containing organogels. Chem Sci 2015; 6:5680-5684. [PMID: 28791084 PMCID: PMC5527500 DOI: 10.1039/c5sc01864a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/02/2015] [Indexed: 11/21/2022] Open
Abstract
A series of supramolecular diamide organogels containing a reactive compound for the remediation of organophosphorus (OP) species, in particular OP chemical warfare agents (CWAs), has been prepared in DMSO.
A series of supramolecular diamide organogels containing a reactive compound for the remediation of organophosphorus (OP) species, in particular OP chemical warfare agents (CWAs), has been prepared in DMSO. The organogels have been found to absorb, encapsulate and decontaminate various OP CWA simulants in situ. At high simulant concentrations the gels also undergo a gel–sol transition releasing high local concentrations of remediation agent.
Collapse
Affiliation(s)
- Jennifer R Hiscock
- Chemistry , University of Southampton , Highfield , Southampton , England SO17 1BJ , UK . ; Tel: +44 (0)23 80593332
| | - Mark R Sambrook
- CBR Division , Dstl Porton Down , Salisbury , Wiltshire SP4 0JQ , UK . ; Tel: +44 (0)1980 614301
| | - Neil J Wells
- Chemistry , University of Southampton , Highfield , Southampton , England SO17 1BJ , UK . ; Tel: +44 (0)23 80593332
| | - Philip A Gale
- Chemistry , University of Southampton , Highfield , Southampton , England SO17 1BJ , UK . ; Tel: +44 (0)23 80593332
| |
Collapse
|
14
|
Fu X, Yang Q, Zhou Q, Lin Q, Wang C. Template-Monomer Interaction in Molecular Imprinting: Is the Strongest the Best? ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojopm.2015.52007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|