1
|
Altun T, Acar MK, Gubbuk IH. Preparation and Characterization of the MMT@Fe 3O 4@Ag Nanocomposite for Catalytic Degradation of Methyl Yellow: Reaction Parameters and Mechanism Based on the Artificial Neuron Network. ACS OMEGA 2025; 10:134-146. [PMID: 39829581 PMCID: PMC11740151 DOI: 10.1021/acsomega.4c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 01/22/2025]
Abstract
The montmorillonite@iron oxide@silver (MMT@Fe3O4@Ag) nanocomposite, which is recyclable and exhibits high catalytic activity, was evaluated for the degradation of methyl yellow (MY), a carcinogenic azo dye. For this purpose, MMT@Fe3O4 was first synthesized via the coprecipitation method and then Ag was doped to MMT@Fe3O4 via the chemical reduction method. MMT, MMT@Fe3O4, and MMT@Fe3O4@Ag were characterized by various techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and thermal gravimetric analysis. The results illustrated that MMT@Fe3O4@Ag exhibited a higher catalytic ability than MMT@Fe3O4 toward decolorization of MY with a degradation efficiency of 100% in 10 min at pH 7.1 in the presence of sodium borohydride (NaBH4). Further, some parameters like the amount of NaBH4, initial dye concentration, and pH were also studied to determine optimum reaction conditions. MMT@Fe3O4@Ag could be easily separated and recycled from the reaction medium using an external magnet. Thus, the Ag-doped MMT@Fe3O4 nanocomposite proved to have good catalytic activity, high MY degradation rate and reusability, and easy separation and simple synthesis method. These properties make it a promising catalyst for the treatment of wastewater containing organic pollutants. In addition, artificial neural network (ANN) simulation, which is a mathematical model with an artificial intelligence algorithm, was used for the degradation process. This model was evaluated with the parameters used in the experiment as the input and output layers. Last, the degradation of MY with the synthesized catalyst into different products was demonstrated by high-performance liquid chromatography (HPLC) analysis.
Collapse
Affiliation(s)
- Türkan Altun
- Department
of Chemical Engineering, Konya Technical
University, Konya 42150, Turkey
| | - Musa Kazım Acar
- Department
of Chemical Engineering, Konya Technical
University, Konya 42150, Turkey
| | | |
Collapse
|
2
|
Benhadria EH, Bahsis L, Ablouh EH, Hanani Z, Bakhouch M, Labjar N, El Hajjaji S. Copper oxide nanoparticles-decorated cellulose acetate: Eco-friendly catalysts for reduction of toxic organic dyes in aqueous media. Int J Biol Macromol 2025; 284:137982. [PMID: 39592044 DOI: 10.1016/j.ijbiomac.2024.137982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
In this study, we aimed to gain insight into the potential of catalytic reduction using copper oxide nanoparticles decorated cellulose acetate as a biosupport (CuxO@CA) for the removal of specific pollutants. The prepared catalyst was submitted to a series of spectroscopy techniques for characterization purposes. The results of the catalytic tests on methylene orange (MO) and methylene blue (MB) solutions suggest that the elimination efficiency may be influenced by several factors, including the catalyst dose and the concentration of the pollutant. Kinetic studies were also carried out, and the value of the rate constant Kapp derived from the pseudo-first-order kinetics was found to be highest for the prepared catalyst in a very short reaction time. The CuxO@CA catalyst was tested on a combination of MO/MB dyes, and the results indicated that it exhibited the highest catalytic activity in reducing and degrading these organic dyes in aqueous solutions, which is an encouraging outcome. Furthermore, the prepared catalyst demonstrated promising catalytic performance and exhibited the potential for recycling multiple times without significant loss of activity, which could be advantageous for large-scale production and practical use in water treatment.
Collapse
Affiliation(s)
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Poly disciplinaire de Safi, Université Cadi Ayyad, 4162 Safi, Morocco.
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Zouhair Hanani
- Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Mohammed Bakhouch
- Bioorganic Chemistry Team, Department of Chemistry, Faculty of Sciences, Chouaïb Doukkali University, P.O. Box 24, El Jadida 24000, Morocco
| | - Najoua Labjar
- LS3MN2E, CERNE2D, ENSAM, Mohammed V University in Rabat, Morocco.
| | - Souad El Hajjaji
- LS3MN2E, CERNE2D, Faculty of Science, Mohammed V University in Rabat, Morocco
| |
Collapse
|
3
|
Arikpo TO, Odey MO, Agurokpon DC, Malu DG, Gulack AO, Gber TE. Catalytic engineering of transition metal (TM: Ni, Pd, Pt)-coordinated Ge-doped graphitic carbon nitride (Ge@g-c3n4) nanostructures for petroleum hydrocarbon separation: An outlook from theoretical calculations. Heliyon 2024; 10:e38483. [PMID: 39430491 PMCID: PMC11490779 DOI: 10.1016/j.heliyon.2024.e38483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
The extraction, processing, and utilization of petroleum often results in the release of diverse hydrocarbon pollutants into the environment, leading to severe ecological and health implications. Herein, the adsorption and separation of ethane (EAN), ethene (EEN), ethyne (EYN), and benzene (BZN) fractions of paraffin, olefin, acetylene, and aromatic petroleum hydrocarbons were investigated via the catalytically engineered nickel group transition metals; nickel (Ni), palladium (Pd), and platinum (Pt). These transition metals were coordinated on Germanium-doped graphitic carbon nitride (Ge@g-C3N4) nanostructures, and the behavior of the systems was studied through Kohn-Sham density functional theory (KS-DFT) with the B3LYP-D3(BJ)/Def2-SVP computational method. The adsorption of petroleum hydrocarbons decreased in the order Ge_Ni@C3N4 > Ge_Pd@C3N4 > Ge_Pt@C3N4>Ge_Pt@C3N4. These results showed that the coordination of Ni, Pd, and Pt within Ge@C3N4 improved the separation of petroleum hydrocarbons.
Collapse
Affiliation(s)
| | - Michael O. Odey
- Department of Biochemistry, University of Calabar, Calabar, Nigeria
| | - Daniel C. Agurokpon
- Department of Microbiology, Cross River University of Technology, Calabar, Nigeria
| | - Daniel G. Malu
- Department of Genetics and Biotechnology University of Calabar, Calabar, Nigeria
| | - Alpha O. Gulack
- Department of Science Laboratory Technology, University of Calabar, Nigeria
| | - Terkumbur E. Gber
- Department of Research Analytics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Naseem K, Wakeel Manj Q, Akram S, Shabbir S, Noor A, Farooqi ZH, Urooge Khan S, Ali M, Faizan Nazar M, Haider S, Alam K. Spectroscopic monitoring of polyurethane-based nanocomposite as a potential catalyst for the reduction of dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124450. [PMID: 38759392 DOI: 10.1016/j.saa.2024.124450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
In this study, AgNPs-loaded polyurethane-sodium alginate (PU-S/Alg) composite polymers were prepared by precipitation polymerization and in-situ reduction method. Their catalytic potential was evaluated for the reduction of methyl orange (MO), brilliant blue (BB), Rhodamine B (RhB), 4-nitroaniline (4-NA), and 4-nitrophenol (4-NP). Successful preparation of samples was confirmed by UV-Visible spectrophotometry (UV-Visible), Fourier transform infrared (FTIR), and Scanning electron microscopy (SEM) analysis. During the catalytic study, the value of kapp for the reduction of MO in the presence of NaBH4 and catalyst was found 0.488 min-1 while, in the presence of NaBH4 and catalyst alone, were found as 0.9 × 10-4 and 0.8 × 10-5 min-1, respectively which indicates the role of catalyst in making the reaction speedy. The value of kapp for the reduction of BB, RhB, 4-NA, and 4-NP was found as 0.764, 0.475, 0.212 and 0.757 min-1, respectively. Simultaneous reduction of dyes induced a decreased reaction completion time under the same reaction conditions. A slight increase in the value of kapp for the catalytic reduction of MO was also observed when reactions were performed in the presence of ionic media of different salts such as NaCl, KCl, CaCl2, and MnCl2. The rate of reduction of MO was increased with the increase in ionic strength of the medium. However, the presence of SDS (surfactant) in the reaction mixture induced the decreased activity of the catalyst and increased reaction completion time. The same value of kapp for the reduction of MO was observed in the case of freshly prepared and several days old nanocomposite catalyst. These results illustrate the stability and maintained catalytic potential of metal NPs for a prolonged time. Our reported catalyst also showed good potential for the treatment of dyes-polluted textile industry wastewater.
Collapse
Affiliation(s)
- Khalida Naseem
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 54000 Lahore, Pakistan.
| | - Qirrat Wakeel Manj
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 54000 Lahore, Pakistan
| | - Saba Akram
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 54000 Lahore, Pakistan
| | - Samreen Shabbir
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 54000 Lahore, Pakistan
| | - Ayesha Noor
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, 54000 Lahore, Pakistan
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Saba Urooge Khan
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore 54590, Pakistan
| | - Majid Ali
- Department of Chemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Faizan Nazar
- Department of Chemistry, University of Education Lahore, Multan Campus, 60700 Multan, Pakistan
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O.Box 800, Riyadh 11421, Saudi Arabia
| | - Kamran Alam
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Italy
| |
Collapse
|
5
|
Ecer U, Yilmaz S, Ulas B, Koc S. Optimization of methyl orange decolorization by bismuth(0)-doped hydroxyapatite/reduced graphene oxide composite using RSM-CCD. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33371-33384. [PMID: 38676869 PMCID: PMC11136733 DOI: 10.1007/s11356-024-33425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
In the current study, the catalyst for the decolorization of methyl orange (MO) was developed HAp-rGO by the aqueous precipitation approach. Then, bismuth(0) nanoparticles (Bi NPs), which expect to show high activity, were reduced on the surface of the support material (HAp-rGO). The obtained catalyst was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. The parameters that remarkably affect the decolorization process (such as time, initial dye concentration, NaBH4 amount, and catalyst amount) have been examined by response surface methodology (RSM), an optimization method that has acquired increasing significance in recent years. In the decolorization of MO, the optimum conditions were identified as 2.91 min, Co: 18.85 mg/L, NaBH4 amount: 18.35 mM, and Bi/HAp-rGO dosage: 2.12 mg/mL with MO decolorization efficiency of 99.60%. The decolorization process of MO with Bi/HAp-rGO was examined in detail kinetically and thermodynamically. Additionally, the possible decolorization mechanism was clarified. The present work provides a new insight into the use of the optimization process for both the effective usage of Bi/HAp-rGO and the catalytic reduction of dyes.
Collapse
Affiliation(s)
- Umit Ecer
- Department of Chemical Engineering, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - Sakir Yilmaz
- Department of Chemical Engineering, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, 65080, Van, Turkey
- Department of Mining Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van, 65000, Turkey
| | - Berdan Ulas
- Department of Chemical Engineering, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, 65080, Van, Turkey
- Department of Mining Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van, 65000, Turkey
| | - Serap Koc
- Department of Mechanical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van, 65000, Turkey
| |
Collapse
|
6
|
Maize MS, Alnassar H, Zeid AMA, Eisa WH, Ali ZI. Solid-State Synthesis of Liquorice-Stabilized Copper-Based Nanoparticles: Structural and Catalytic Studies. Chem Biodivers 2024; 21:e202301794. [PMID: 38356385 DOI: 10.1002/cbdv.202301794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
A large-scale quantity of copper oxalate nanoparticles were successfully obtained via a facile and green solid-state chemical reaction. Copper oxalate nanoparticles were obtained by ball-milling between copper chloride, Liquorice (Glycyrrhiza glabra), and ascorbic acid at ambient conditions. The size and morphology of copper oxalate nanoparticles powder were studied by transmission and scanning electron microscopy. The prepared nanoparticles were semi-spherical in shape and ranged from 5 to 15 nm in size. UV/Vis spectroscopy, Fourier transforms infrared spectroscopy, and X-ray photoelectron spectroscopy measurements were carried out to characterize the prepared samples. Copper oxalate nanoparticles were evaluated as a catalyst in the catalytic degradation of 4-nitrophenol, bromophenol blue, reactive yellow, and a mixture of the three pollutants. The present study combined solid-state reaction and green requirements for the mass production of nanomaterials. The proposed reaction is performed in simple steps, inexpensive, low energy consuming, solvent-free, and minimizes the emission of secondary wastes.
Collapse
Affiliation(s)
- Mai S Maize
- Chemistry Department, Faculty of Science, Menoufia University, Egypt
| | - H Alnassar
- Department of laboratories technology, College of technological studies., Public authority of applied education and training., Shuwaikh, Kuwait
| | - A M Abou Zeid
- Chemistry Department, Faculty of Science, Jazan University, Saudi Arabia
| | - W H Eisa
- Spectroscopy Department, Physics Research Institute, National Research Centre (NRC), Dokki, Cairo, Egypt
| | - Z I Ali
- Radiation Chemistry Department, National Center for Radiation Research and Technology, NCRRT), Egyptian Atomic Energy Authority, ( EAEA), 3 Ahmad El-zoned St., Madinat Nasr, Cairo, Egypt
| |
Collapse
|
7
|
Jara YS, Mekiso TT, Washe AP. Highly efficient catalytic degradation of organic dyes using iron nanoparticles synthesized with Vernonia Amygdalina leaf extract. Sci Rep 2024; 14:6997. [PMID: 38523139 PMCID: PMC10961328 DOI: 10.1038/s41598-024-57554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/19/2024] [Indexed: 03/26/2024] Open
Abstract
Today, nanoscience explores the potential of nanoparticles due to their extraordinary properties compared to bulk materials. The synthesis of metal nanoparticles using plant extracts is a very promising method for environmental remediation, which gets global attention due to pollution-led global warming. In the present study, iron nanoparticles (FeNPs) were successfully synthesized by the green method using Vernonia amygdalina plant leaf extract as a natural reducing and capping agent. Biosynthesized FeNPs were characterized with different analytical techniques such as UV-visible, FT-IR, XRD, and SEM. The analysis revealed the formation of amorphous FeNPs with an irregular morphology and non-uniform distribution in size and shape. The average particle size was approximately 2.31 µm. According to the catalytic degradation investigation, the FeNPs produced via the green approach are highly effective in breaking down both CV and MB into non-toxic products, with a maximum degradation efficiency of 97.47% and 94.22%, respectively, when the right conditions are met. The kinetics study exhibited a high correlation coefficient close to unity (0.999) and (0.995) for the degradation of MB and CV, respectively, for the zero-order pseudo-kinetics model, which describes the model as highly suitable for the degradation of both dyes by FeNPs compared to other models. The reusability and stability of biosynthesized nano-catalysts were studied and successfully used as efficient catalysts with a slight decrease in the degradation rate more than four times. The results from this study illustrate that green synthesized FeNPs offer a cost-effective, environmentally friendly, and efficient means for the catalytic degradation of organic dyes.
Collapse
Affiliation(s)
- Yohannes Shuka Jara
- Department of Chemistry, Natural and Computational Sciences, Madda Walabu University, P. Box 247, Bale Robe, Ethiopia.
| | - Tilahun Tumiso Mekiso
- Department of Chemistry, Natural and Computational Sciences, Hawassa University, P. Box 05, Hawassa, Ethiopia
| | - Alemayhu Pawulos Washe
- Department of Chemistry, Natural and Computational Sciences, Hawassa University, P. Box 05, Hawassa, Ethiopia
| |
Collapse
|
8
|
Thara CR, Mathew B. Microwave synthesized N-doped carbon dots for dual mode detection of Hg(II) ion and degradation of malachite green dye. Talanta 2024; 268:125278. [PMID: 37839323 DOI: 10.1016/j.talanta.2023.125278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
One of the most intriguing materials today is carbon dots, which offer a variety of possible uses owing to their distinct photophysical and chemical characteristics. The current study examines the electrochemical and photochemical aspects of carbon dots produced in a single pot for environmental sustainability. Domestic microwave-assisted pyrolysis of urea and glucose yielded chemically synthesized nitrogen-doped carbon dots (microwave synthesized N-doped carbon dots (M-NCDs)) with blue fluorescence and a quantum yield of 14.9 %. High water dispersibility, stability, and biocompatibility were the significant attributes of synthesized M-NCDs. Customarily fluorescent carbon dots were initially used for sensing studies. Fluorescent and electrochemical studies manifest the excellent stability, sensitivity, and selectivity of M-NCDs for mercuric ions. Both methods' Hg (II) procure detection limits of 3.5 nM and 6.1 nM. In addition to sensing traits, the subsequent section deals with the potential of M-NDCs to bring about the exhaustive degradation of malachite green (MG) dye. Within 60 min, 98 % of the dye was catalytically degraded by M-NCD by first-order kinetics based on the Langmuir-Hinshelwood model. This is the first time reporting the catalytic degradation of malachite green dye utilizing carbon dot in its natural form rather than being doped with any metal atom or converted to any composite form.
Collapse
Affiliation(s)
- Chinnu R Thara
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Beena Mathew
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India.
| |
Collapse
|
9
|
Latif MJ, Ali S, Jamil S, Bibi S, Jafar T, Rasheed A, Noreen S, Bashir A, Rauf Khan S. Comparative catalytic reduction and degradation with biodegradable sodium alginate based nanocomposite: Zinc oxide/N-doped carbon nitride/sodium alginate. Int J Biol Macromol 2024; 254:127954. [PMID: 37951425 DOI: 10.1016/j.ijbiomac.2023.127954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Sodium alginate (SA) is a biodegradable macromolecule which is used to synthesize nanocomposites and their further use as catalysis. Zinc oxide (ZnO) and nitrogen doped carbon nitride (ND-C3N4) nanoparticles are prepared using solvothermal and hydrothermal methods, respectively. ZnO/ND-C3N4/SA nanocomposites are successfully synthesized by employing in-situ polymerization. The presence of essential functional groups is confirmed by Fourier transform infrared (FTIR) spectroscopic analysis. Controlled spherical morphology for ZnO nanoparticles, with an average diameter of ∼52 nm, is shown by Scanning electron microscopic (SEM) analysis, while rice-like grain structure with an average grain size ∼62 nm is exhibited by ND-C3N4 nanoparticles. The presence of required elements is confirmed by Energy dispersive X-ray spectroscopic (EDX) analysis. The crystalline nature of nanocomposites is verified by X-ray diffraction spectroscopic (XRD) analysis. The investigation of the catalytic efficiency for degradation and reduction of various organic dyes is carried out on nanoparticles and nanocomposites. Thorough examination and comparison of parameters, such as apparent rate constant (kapp), reduction time, percentage reduction, reduced concentration and half-life, are conducted for all substrates. The nanocomposites show greater efficiency than nanoparticles in both reactions: catalytic reduction and catalytic degradation.
Collapse
Affiliation(s)
| | - Sarmed Ali
- Faculty of Engineering, Østfold University College, Halden, Norway
| | - Saba Jamil
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shamsa Bibi
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Touseef Jafar
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammara Rasheed
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Noreen
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Arslan Bashir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
10
|
Alkayal NS, Ibrahim M, Tashkandi N, Alotaibi MM. Efficient Reduction in Methylene Blue Using Palladium Nanoparticles Supported by Melamine-Based Polymer. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5887. [PMID: 37687576 PMCID: PMC10488429 DOI: 10.3390/ma16175887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
In this work, palladium nanoparticles, supported by polyaminals (Pd@PAN-NA), were synthesized via a reverse double solvent approach and used as a nano catalyst. The thermogravimetric and the elemental analysis revealed that the catalyst had good dispersity and improved thermal stability. The catalytic activity of the prepared Pd@PAN-NA catalyst was studied for a methylene blue chemical reaction in the presence of NaBH4 as a reducing agent. The effect of the catalyst dose, pH, and dye initial concentration were examined to optimize the chemical reduction conditions. The prepared catalyst Pd@PAN-NA removed 99.8% of methylene blue organic dye, indicating its potential effect for treating waste and contaminated water.
Collapse
Affiliation(s)
- Nazeeha S. Alkayal
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (M.I.); (N.T.); (M.M.A.)
| | | | | | | |
Collapse
|
11
|
Xie T, Lv X, Tian S, Zhang X, Lv Z, Sun S. Tailored chitosan-based entrapped catalyst for dyes removal by highly active, stable, and recyclable nanoparticles toughened hydrogel. Int J Biol Macromol 2023:125634. [PMID: 37399876 DOI: 10.1016/j.ijbiomac.2023.125634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Functional catalytic hydrogels were a promising catalyst carrier with the advantages of low cost, high efficiency and environmental friendliness. However, conventional hydrogels suffered from mechanical defects and brittleness. Acrylamide (AM) and lauryl methacrylate (LMA) were used as raw materials, SiO2-NH2 spheres as toughening agents, and chitosan (CS) as stabilizers to form hydrophobic binding networks. p(AM/LMA)/SiO2-NH2/CS hydrogels exhibited superior stretchability and withstood strains up to 14,000 %. In addition, these hydrogels exhibited exceptional mechanical properties, including a tensile strength of 213 kPa and a toughness of 13.1 MJ/m3. Surprisingly, the introduction of chitosan into hydrogels showed excellent antibacterial activity against S. aureus and E. coli. At the same time, the hydrogel served as a template for the formation of Au nanoparticles. This resulted in high catalytic activity for methylene blue (MB) and Congo red (CR) on p(AM/LMA)/SiO2-NH2/CS-8 %-Au hydrogels with Kapp of 1.038 and 0.76 min-1, respectively. The catalyst was also found to be reusable for 10 cycles while maintaining an efficiency of over 90 %. Therefore, innovative design strategies can be used to develop durable and scalable hydrogel materials for catalysis in the wastewater treatment industry.
Collapse
Affiliation(s)
- Ting Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Xue Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| | - Song Tian
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Xikun Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziwei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
12
|
Bala A, Rani G. Green synthesis of AgNPs using Delonix regia bark for potential catalytic and antioxidant applications. Microsc Res Tech 2023. [PMID: 36869861 DOI: 10.1002/jemt.24310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Nanoparticle synthesis from plant resources has recently gained significant impact due to its low cost, simple equipment requirements, and ease of availability. In this work, DR-AgNPs were synthesized using bark extract of Delonix regia (D. regia) plant under microwave irradiation. The formation of DR-AgNPs has been confirmed with UV-Vis, XRD, FTIR, FESEM, HRTEM, EDS, DLS, and zeta potential analysis. Catalytic and antioxidant activities were tested on synthesized spherical nanoparticles with a size range of 10-48 nm. The effects of pH and catalyst dosage on the methylene blue (MB) dye degradation were carried out. It was observed from the treatment results that 95% MB dye degradation efficiency was achieved within 4 min with a degradation rate constant of 0.772 min-1 . The synthesized nanoparticles showed a strong antioxidant property when analyzed by a 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The calculated IC50 value for DR-AgNPs was 37.1 ± 0.12 μg mL-1 . Therefore, DR-AgNPs are excellent in both catalytic and antioxidant activities when compared to previously reported works. HIGHLIGHTS: Green synthesis of silver nanoparticles (DR-AgNPs) using Delonix regia bark extract. The catalytic activity of DR-AgNPs is remarkable against Methylene Blue. DR-AgNPs also have a strong DPPH radical antioxidant effect. Short degradation time, high degradation rate constant, and a good scavenging activity are key features of this study compared to previously reported works.
Collapse
Affiliation(s)
- Anu Bala
- Department of Chemistry, Chaudhary Devi Lal University, Sirsa, India
| | - Gita Rani
- Department of Chemistry, Chaudhary Devi Lal University, Sirsa, India
| |
Collapse
|
13
|
Jayapandi S, Soundarrajan P, Kumar SS, Lakshmi D, Albaqami MD, Ouladsmane M, Mani G. Efficient Z-scheme LaCoO3/In2O3 heterostructure photocatalyst for fast dye degradation under visible light irradiation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Guleria A, Sachdeva H, Saini K, Gupta K, Mathur J. Recent trends and advancements in synthesis and applications of plant‐based green metal nanoparticles: A critical review. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anjali Guleria
- Department of Chemistry University of Rajasthan Jaipur India
| | | | - Kirti Saini
- Department of Chemistry University of Rajasthan Jaipur India
| | - Komal Gupta
- Department of Chemistry University of Rajasthan Jaipur India
| | - Jaya Mathur
- Department of Chemistry University of Rajasthan Jaipur India
| |
Collapse
|
15
|
Albalwi HA, El Fadl FIA, Taleb MFA, Ibrahim MM. Alginate/ZnO beads doped with radiation induced silver nanoparticles for catalytic degradation of binary mixture of basic and acid dye. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hanan A. Albalwi
- Department of Chemistry College of Science and Humanities in Al‐Kharj, Prince Sattam Bin Abdulaziz University Al‐kharj Saudi Arabia
| | - Faten Ismail Abou El Fadl
- Department of Chemistry, College of Science and Humanities in Hawtat Bani Tamim Prince Sattam Bin Abdulaziz University Saudi Arabia
- Polymer chemistry department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority
| | - Manal Fawzy Abou Taleb
- Department of Chemistry College of Science and Humanities in Al‐Kharj, Prince Sattam Bin Abdulaziz University Al‐kharj Saudi Arabia
- Polymer chemistry department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority
| | - Mohamed M. Ibrahim
- Department of Chemistry College of Science, Taif University Taif Saudi Arabia
| |
Collapse
|
16
|
Fang Y, Hou Y, Fu X, Wang X. Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chem Rev 2022; 122:4204-4256. [PMID: 35025505 DOI: 10.1021/acs.chemrev.1c00686] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sunlight-driven water splitting to produce hydrogen fuel has stimulated intensive scientific interest, as this technology has the potential to revolutionize fossil fuel-based energy systems in modern society. The oxygen evolution reaction (OER) determines the performance of overall water splitting owing to its sluggish kinetics with multielectron transfer processing. Polymeric photocatalysts have recently been developed for the OER, and substantial progress has been realized in this emerging research field. In this Review, the focus is on the photocatalytic technologies and materials of polymeric photocatalysts for the OER. Two practical systems, namely, particle suspension systems and film-based photoelectrochemical systems, form two main sections. The concept is reviewed in terms of thermodynamics and kinetics, and polymeric photocatalysts are discussed based on three key characteristics, namely, light absorption, charge separation and transfer, and surface oxidation reactions. A satisfactory OER performance by polymeric photocatalysts will eventually offer a platform to achieve overall water splitting and other advanced applications in a cost-effective, sustainable, and renewable manner using solar energy.
Collapse
Affiliation(s)
- Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
17
|
Albalwi H, Abou El Fadl FI, Ibrahim MM, Abou Taleb MF. Catalytic activity of silver nanocomposite alginate beads for degradation of basic dye: Kinetic and isothermal study. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hanan Albalwi
- Department of Chemistry, College of Science and Humanities in Al‐Kharj Prince Sattam Bin Abdulaziz University Al‐Kharj Saudi Arabia
| | - Faten Ismail Abou El Fadl
- Polymer Chemistry Department National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Cairo Egypt
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science Taif University Taif Saudi Arabia
| | - Manal F. Abou Taleb
- Department of Chemistry, College of Science and Humanities in Al‐Kharj Prince Sattam Bin Abdulaziz University Al‐Kharj Saudi Arabia
- Polymer Chemistry Department National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Cairo Egypt
| |
Collapse
|
18
|
Abou El Fadl FI, El-Sherif HM, Deghiedy NM. Environmentally benign hybrid nanocomposite beads for azo dye remediation via synchronized dual degradation mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48706-48717. [PMID: 33914247 DOI: 10.1007/s11356-021-14061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Practically, 12% of used dyes are excluded as waste in the mobile aqueous environment. Methyl orange (MO), an industrial azo dye, is known to be carcinogenic. Accordingly, this work was engaged to fabrication of a high-efficiency visible light photocatalysts based on Ag-Alginate/Chitosan-coated MgO nanocomposite beads. MgO and Ag were prepared via precipitation and γ-radiation reduction technique as a green physical one, respectively. The degradation mechanisms depended on catalytic reduction by means of sodium borohydride/Ag and photooxidative degradation. XRD proved the periclase crystalline form of MgO of size 20 nm and the formation of face-centered cubic silver crystals of size 15 nm. The degradation yield varied directly with time, MgO, and dye concentration until certain limit. Five and twenty minutes were enough to get clear solution of MO (30 and 15 ppm, respectively) while 60 min was required to achieve the same target for 60 ppm MO solution. The catalysts showed high efficiency for MO of high concentration. The incorporation of Ag into catalytic beads could support both mechanisms as it could elevate the degradation efficiency up to 50% and save the time to a great extent. Thus, this carrier fruitfully converted wastewater into an effluent that can be repaid to the water cycle with minimal strike on the ecosystem.
Collapse
Affiliation(s)
- Faten I Abou El Fadl
- Polymers Chemistry Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hazem M El-Sherif
- Polymers and Pigments Department, National Research Centre, Cairo, Egypt
| | - Noha M Deghiedy
- Polymers Chemistry Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt.
| |
Collapse
|
19
|
Hachemaoui M, Boukoussa B, Ismail I, Mokhtar A, Taha I, Iqbal J, Hacini S, Bengueddach A, Hamacha R. CuNPs-loaded amines-functionalized-SBA-15 as effective catalysts for catalytic reduction of cationic and anionic dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Abdeta AB, Sun H, Guo Y, Wu Q, Zhang J, Yuan Z, Lin J, Chen X. A novel AgMoOS bimetallic oxysulfide catalyst for highly efficiency catalytic reduction of organic dyes and Chromium (VI). ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Beta vulgaris peel extract mediated synthesis of Ag/TiO2 nanocomposite: Characterization, evaluation of antibacterial and catalytic degradation of textile dyes-an electron relay effect. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Soliman NK, Moustafa AF, El-Mageed HRA, Abdel-Gawad OF, Elkady ET, Ahmed SA, Mohamed HS. Experimentally and theoretically approaches for disperse red 60 dye adsorption on novel quaternary nanocomposites. Sci Rep 2021; 11:10000. [PMID: 33976331 PMCID: PMC8113254 DOI: 10.1038/s41598-021-89351-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/23/2021] [Indexed: 11/09/2022] Open
Abstract
A comprehensive study that combined both experimental and computational experiments was performed to evaluate the usage of organo-metal oxide nanocomposite for the elimination of disperse red 60 dye (DR) from aqueous solutions. Chitosan was modified by Schiff base to form nanoneedles chitosan-4-chloroacetophenone derivative. The derivatives were then impregnated with CeO2–CuO–Fe2O3 or CeO2–CuO–Al2O3 metal oxides to prepare a novel quarternary organo-metal oxide nanocomposite. The novel nanocomposite, chitosan-4-chloroacetophenone/CeO2–CuO–Fe2O3 (CF) and chitosan-4-chloroacetophenone/CeO2–CuO–Al2O3 (CA) are cheap and effective nano adsorbents that can be used for the uptake of DR from aqueous solution. The CF and CA nano-composites were characterized using different techniques. Moreover, the effect of adsorption parameters (initial DR concentration, time of contact, pH, temperature, and adsorbent mass) as well as CA and CF reusability tests were performed. Langmuir adsorption isotherm and pseudo-second-order kinetics models were best fitted with the adsorption process. The maximum amount of DR adsorbed was 100 mg/g on CF and CA at pH 2 and 4, respectively with a physical spontaneous, and exothermic adsorption process. Monte Carlo (MC) simulation studies indicated the adsorption of DR molecule on the CF and CA surfaces following a parallel mode in most of all studied configurations, confirming the strong interactions between the DR and surfaces atoms of CF and CA. The molecular structure analysis of DR dye adsorbed on the surface of CF and CA indicated that the adsorption process related to Van der Waals dispersion force. Consequently, this helps to trap DR dye molecules on the surface of CF and CA (i.e., physical adsorption), which supports our experimental results.
Collapse
Affiliation(s)
- N K Soliman
- Basic Science Department, Nahda University, Beni-Suef, Egypt.
| | - A F Moustafa
- Ministry of Health and Population, Central Administration of Environmental Affairs, Beni-Suef Branch, Beni-Suef, Beni-Suef Governorate, Egypt
| | - H R Abd El-Mageed
- Faculty of Science, Micro-Analysis and Environmental Research and Community Services Center, Beni-Suef University, Beni-Suef City, Egypt
| | - Omima F Abdel-Gawad
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Esraa T Elkady
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Sayed A Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt
| | - Hussein S Mohamed
- Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef City, Egypt
| |
Collapse
|
23
|
Orooji Y, Akbari R, Nezafat Z, Nasrollahzadeh M, Kamali TA. Recent signs of progress in polymer-supported silver complexes/nanoparticles for remediation of environmental pollutants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Ali Khan S, Bakhsh EM, Asiri AM, Bahadar Khan S. Synthesis of zero-valent Au nanoparticles on chitosan coated NiAl layered double hydroxide microspheres for the discoloration of dyes in aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119370. [PMID: 33412468 DOI: 10.1016/j.saa.2020.119370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The catalyst activity of the nano Au was largely dependent on the particle size and the structure of the supported matrix to avoid particle agglomeration. Chitosan (CS) and CS coated layered double hydroxide of NiAl (LDH) microsphere were designed through a simple and an economic casting method. The CS and LDH microsphere were used for the impregnation and support of Au NPs and represented as Au/CS and Au/LDH and used for the sole and concurrent discoloration of methylene blue (MB) and rhodamine B (RB) dyes. The aim of the incorporation of NiAl-LDH to the CS host polymer is to increase the binding capacity of CS with Au NPs to make it more stable. The Au/LDH displaying stronger catalyst activity for both dyes discoloration, while found highly selective for MB dye. The high catalyst activity of Au/LDH is due to their small crystallite size which is 1.02 nm compared to 6.75 nm in Au/CS derived from Scherer's equation. The kapp value based on zero-order kinetics was higher with Au/LDH against MB and RB dyes which are 3.5 × 10-1 and 1.4 × 10-1 min-1 respectively.
Collapse
Affiliation(s)
- Shahid Ali Khan
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | - Esraa M Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia 21589
| | - Abdullah M Asiri
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia 21589; Center of Excellence for Advanced Materials, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia 21589, Saudi Arabia.
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah, Saudi Arabia 21589.
| |
Collapse
|
25
|
Goswami T, Bheemaraju A, Sharma AK, Bhandari S. Perylenetetracarboxylic acid–incorporated silver nanocluster for cost-effective visible-light-driven photocatalysis and catalytic reduction. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04813-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
|
27
|
Catalytic Reduction of Toxic Dyes Using Highly Responsive and Stable Ag Nanocomposite. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01790-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Altaf S, Haider A, Naz S, Ul-Hamid A, Haider J, Imran M, Shahzadi A, Naz M, Ajaz H, Ikram M. Comparative Study of Selenides and Tellurides of Transition Metals (Nb and Ta) with Respect to its Catalytic, Antimicrobial, and Molecular Docking Performance. NANOSCALE RESEARCH LETTERS 2020; 15:144. [PMID: 32643064 PMCID: PMC7343698 DOI: 10.1186/s11671-020-03375-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/23/2020] [Indexed: 05/13/2023]
Abstract
The present research is a comparative study that reports an economical and accessible method to synthesize niobium (Nb) and Tantalum (Ta) selenides and tellurides with useful application in the removal of pollutants in textile, paper, and dyeing industries as well as in medical field. In this study, solid-state process was used to generate nanocomposites and various characterization techniques were employed to compare two groups of materials under investigation. Structure, morphology, elemental constitution, and functional groups of synthesized materials were analyzed with XRD, FESEM coupled with EDS, FTIR, and Raman spectroscopy, respectively. HR-TEM images displayed nanoscale particles with tetragonal and monoclinic crystal structures. The optical properties were evaluated in terms of cut-off wavelength and optical band gap using UV-visible spectroscopy. A comparative behavior of both groups of compounds was assessed with regards to their catalytic and microcidal properties. Extracted nanocomposites when used as catalysts, though isomorphs of each other, showed markedly different behavior in catalytic degradation of MB dye in the presence of NaBH4 that was employed as a reducing agent. This peculiar deviation might be attributed to slight structural differences between them. Escherichia coli and Staphylococcus aureus (G -ve and + ve bacteria, respectively) were designated as model strains for in vitro antibacterial tests of both clusters by employing disk diffusion method. Superior antibacterial efficacy was observed for telluride system (significant inhibition zones of 26-35 mm) compared with selenide system (diameter of inhibition zone ranged from 0.8 mm to 1.9 mm). In addition, molecular docking study was undertaken to ascertain the binding interaction pattern between NPs and active sites in targeted cell protein. The findings were in agreement with antimicrobial test results suggesting NbTe4 to be the best inhibitor against FabH and FabI enzymes.
Collapse
Affiliation(s)
- S Altaf
- Department of Chemistry, University of Engineering and Technology, Lahore, 54000, Pakistan
| | - A Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, Punjab, 54000, Pakistan
| | - S Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - A Ul-Hamid
- Center for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - J Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - M Imran
- State key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Beijing, 100029, China
| | - A Shahzadi
- University College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - M Naz
- Biochemistry Lab, Department of Chemistry, Government College University, Lahore, Punjab, 54000, Pakistan
| | - H Ajaz
- Department of Chemistry, University of Engineering and Technology, Lahore, 54000, Pakistan
| | - M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University, Lahore, Punjab, 54000, Pakistan.
| |
Collapse
|
29
|
Yu QJ, Mao J, Wang S, Guo ZY. A simple multifunctional PNIPAM-GO/PANI hydrogel preparation strategy and its application in dye adsorption and infrared switching. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1772672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Qi Jian Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Jie Mao
- Department of Basic, Zhejiang Pharmaceutical College, Ningbo, People’s Republic of China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, People’s Republic of China
| | - Zhi Yong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, People’s Republic of China
| |
Collapse
|
30
|
Garg N, Bera S, Rastogi L, Ballal A, Balaramakrishna MV. Synthesis and characterization of L-asparagine stabilised gold nanoparticles: Catalyst for degradation of organic dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118126. [PMID: 32062492 DOI: 10.1016/j.saa.2020.118126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
L-asparagine functionalized gold nanoparticles (Asp-AuNPs), have been synthesized by reducing HAuCl4 in presence of L-asparagine at 70 °C for 8 h. Asp-AuNPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS); the nanoparticles formed were spherical in shape with average size of 13.5 ± 3.7 nm. Synthesized Asp-AuNPs were found to exhibit excellent catalytic properties for the degradation of different organic dyes viz. Rhodamine B (RB), methyl orange (MO), acid red 27 (amaranth) and xylenol orange (XO) in the presence of sodium borohydride (NaBH4). Asp-AuNPs acts as electron relay system and serve as effective catalyst for complete degradation of all the tested dyes. Rate kinetic investigations suggested that catalysed degradation reactions follow pseudo-first order reaction kinetics with rate constant of 0.904 min-1, 0.314 min-1, 0.228 min-1 and 0.1 min-1 for RB, MO, amaranth and XO respectively.
Collapse
Affiliation(s)
- Nidhi Garg
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL-Post, Hyderabad 500062, India.
| | - Santanu Bera
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam 603102, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Lori Rastogi
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL-Post, Hyderabad 500062, India
| | - Anand Ballal
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - M V Balaramakrishna
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL-Post, Hyderabad 500062, India
| |
Collapse
|
31
|
Dark catalytic degradation of industrial dye effluents using orthorhombic Tin monosulphide nanocatalyst. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr Polym 2020; 230:115597. [DOI: 10.1016/j.carbpol.2019.115597] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/09/2019] [Indexed: 11/19/2022]
|
33
|
Novel green synthesis of silver nanoparticles using clammy cherry (Cordia obliqua Willd) fruit extract and investigation on its catalytic and antimicrobial properties. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1302-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Sreekanth TVM, Nagajyothi PC, Reddy GR, Shim J, Yoo K. Urea assisted ceria nanocubes for efficient removal of malachite green organic dye from aqueous system. Sci Rep 2019; 9:14477. [PMID: 31597923 PMCID: PMC6785541 DOI: 10.1038/s41598-019-50984-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/18/2019] [Indexed: 11/25/2022] Open
Abstract
This study describes a simple, high-yield, rapid, and inexpensive route for the synthesis of cubic shape-like cerium oxide nanocubes (CeO2 NCs) using different urea concentrations (0.5, 1.0, and 2.0 g) by the hydrothermal method. The synthesized nanocubes (NCs) are labeled as CeO2 NCs-0.5, CeO2 NCs-1.0, and CeO2 NCs-2.0, corresponding to 0.5, 1.0, and 2.0 g of urea, respectively. The synthesized NCs were characterized by FT-IR, UV-visible, XRD, XPS, SEM and HR-TEM analysis. The synthesized NCs were cubic in shape with average sizes of 12, 12, and 13 nm for the CeO2 NCs-0.5, CeO2 NCs-1.0, and CeO2 NCs-2.0, respectively, obtained by the XRD analysis. The catalytic activity of the CeO2 NCs was studied for the purpose of obtaining the reduction of malachite green (MG) in the presence of sodium borohydride (NaBH4) at room temperature.
Collapse
Affiliation(s)
| | | | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kisoo Yoo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
35
|
Vanadium supported on spinel cobalt ferrite nanoparticles as an efficient and magnetically recoverable catalyst for oxidative degradation of methylene blue. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Singhal A, Gupta A. Sustainable synthesis of silver nanoparticles using exposed X-ray sheets and forest-industrial waste biomass: Assessment of kinetic and catalytic properties for degradation of toxic dyes mixture. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:698-711. [PMID: 31279147 DOI: 10.1016/j.jenvman.2019.06.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Silver being the precious metal, its recovery from the waste and utilization is a worthy attempt. The present study represents a very promising sustainable approach for the synthesis of silver nanoparticles (AgNPs), where prime raw materials are waste products (silver metal extracted from waste X-ray sheets and Sal deoiled seed cake (DOC), a plant-based waste as reducing-capping agent). Upon reaction of silver nitrate extracted from waste X-ray sheets and Sal DOC extract at room temperature, the characteristic yellowish-brown color appeared within 30 min. Peak at 485-495 in UV-visible spectrophotometer confirmed the synthesis of AgNPs. X-ray waste synthesized (XRWS) AgNPs were polycrystalline in nature and have face centered cubic (fcc) lattice. Majority of them were polygonal in shape (size range 30-150 nm) with some flower like aggregates as revealed by Transmission Electron Microscope. The XRWS-AgNPs were stabilized by organic groups adhered to their surface and had good stability with a zeta potential of -27.60 mV. These XRWS-AgNPs could work as an efficient catalyst for the reduction of five selected azo dyes individually as well as mixture of these dyes. The degraded products of the individual dyes were identified using Gas Chromatography Mass Spectroscopy. Experimental values obtained for dye degradation study were fitted with first and second order linear kinetic model to know about rate of the reaction.
Collapse
Affiliation(s)
- Anjum Singhal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector - 16C, Dwarka, Delhi, 110078, India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector - 16C, Dwarka, Delhi, 110078, India.
| |
Collapse
|
37
|
Shahid M, Farooqi ZH, Begum R, Arif M, Wu W, Irfan A. Hybrid Microgels for Catalytic and Photocatalytic Removal of Nitroarenes and Organic Dyes From Aqueous Medium: A Review. Crit Rev Anal Chem 2019; 50:513-537. [PMID: 31559830 DOI: 10.1080/10408347.2019.1663148] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Polymer microgels loaded with inorganic nanoparticles have gained much attention as catalytic systems for reduction of toxic chemicals. Enhanced catalytic properties of hybrid microgels are related to the stimuli responsive nature of microgels and extraordinary stability of nanoparticles within network of polymer microgels. Catalytic properties of hybrid microgels can be tuned very easily by slight variation in environmental conditions. Herein we have reviewed catalytic reduction of toxic chemicals such as nitroarenes and organic dyes in the presence of appropriate hybrid microgel catalytic systems under different operating conditions of reaction. Recent advancements in catalytic behavior of hybrid microgels with special emphasis on their ability to catalytically degrade various toxic chemicals has been presented in this review.
Collapse
Affiliation(s)
- Muhammad Shahid
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Zahoor H Farooqi
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Robina Begum
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Muhammad Arif
- Institute of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan.,Department of Chemistry, School of Science, University of Management and Technology, C-II Johar Town, Lahore, Pakistan
| | - Weitai Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ahmad Irfan
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
38
|
Mahnaz F, Mostafa-Al-Momin M, Rubel M, Ferdous M, Azam MS. Mussel-inspired immobilization of Au on bare and graphene-wrapped Ni nanoparticles toward highly efficient and easily recyclable catalysts. RSC Adv 2019; 9:30358-30369. [PMID: 35530224 PMCID: PMC9072119 DOI: 10.1039/c9ra05736f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
Bimetallic nanocatalysts have been gaining huge research attention in the heterogeneous catalysis community recently owing to their tunable properties and multifunctional characteristics. In this work, we fabricated a bimetallic core-shell nanocomposite catalyst by employing a mussel-inspired strategy for immobilizing gold nanoparticles (AuNP) on the surface of nickel nanoparticles (NiNP). NiNPs obtained from the reduction of Ni(ii) were first coated with polydopamine to provide the anchoring sites towards the robust immobilization of AuNPs. The as-synthesized nanocomposite (Ni-PD-Au) exhibited outstanding catalytic activity while reducing methylene blue (MB) and 4-nitrophenol (4-NP) yielding rate constants 13.11 min-1 and 4.21 min-1, respectively, outperforming the catalytic efficiency of its monometallic counterparts and other similar reported catalysts by large margins. The superior catalytic efficiency of the Ni-PD-Au was attributed to the well-known synergistic effect, which was experimentally investigated and compared with prior reports. Similar bio-inspired immobilization of AuNPs was also applied on graphene-wrapped NiNPs (Ni-G) instead of bare NiNPs to synthesize another composite catalyst (Ni-G-PD-Au), which yet again exhibited synergistic catalytic activity. A comparative study between the two nanocomposites suggested that Ni-PD-Au excelled in catalytic activity but Ni-G-PD-Au provided noteworthy stability showing ∼100% efficiency over 17 repeated cycles. However, along with excellent synergistic performance, both nanocomposites demonstrated high magnetization and thermal stability up to 350 °C ascertaining their easy separation and sustainability for high-temperature applications, respectively.
Collapse
Affiliation(s)
- Fatima Mahnaz
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Mohammad Mostafa-Al-Momin
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Md Rubel
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Md Ferdous
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| | - Md Shafiul Azam
- Department of Chemistry, Bangladesh University of Engineering and Technology (BUET) Dhaka 1000 Bangladesh
| |
Collapse
|
39
|
Barman K, Chowdhury D, Baruah PK. Bio-synthesized silver nanoparticles using Zingiber officinale rhizome extract as efficient catalyst for the degradation of environmental pollutants. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1661468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kailash Barman
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Pranjal K. Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
40
|
Nagarajan D, Venkatanarasimhan S. Copper(II) oxide nanoparticles coated cellulose sponge-an effective heterogeneous catalyst for the reduction of toxic organic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22958-22970. [PMID: 31183759 DOI: 10.1007/s11356-019-05419-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Discharge of unprocessed coloured waste water from industries gives rise to water contamination. In the current work, we propose the application of CuO nanoparticles supported on cellulose kitchen wipe sponge as a heterogeneous catalyst for the reductive decolourization of various toxic cationic and anionic dye molecules. The catalytic activity of the CuO nanoparticles under normal light for reduction has been examined in which sunlight irradiation is not necessitated. The CuO nanoparticles were synthesized by a simple wet chemical method and characterized using High Resolution Transmission Electron Microscope (HRTEM), SEM, EDX, XRD, XPS and TGA analyses. In the presence of CuO@CS catalyst and sodium borohydride, decolourization reaction of dyes such as acid red, acid green, methylene blue, rhodamine B and solochrome black-T was carried out. The catalytic reduction behaves as a pseudo-first-order reaction and is found to be superior in comparison with other reported catalysts in terms of reaction velocity. The reduction reaction can be further accelerated by increasing the reaction temperature. The developed catalyst drives the reduction faster on exposing the reaction mixture to sunlight confirming the usage of the catalyst at normal light and sunlight conditions. The catalyst retains 100% efficiency even after 5 cycles and remains suitable even for further use. Thus, a low-cost heterogeneous catalyst has been successfully developed and employed to decolourize various dye molecules in short duration with good recyclability and therefore can be used as the potential candidate in environmental remediation.
Collapse
Affiliation(s)
- Durgadevi Nagarajan
- Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | | |
Collapse
|
41
|
Sarmast N, Ghorbani‐Vaghei R, Merati Z. Enhancement of azo dyes removal efficiency by using LDH/Tris/Pd catalyst: Kinetic studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Narges Sarmast
- Department of Organic ChemistryFaculty of Chemistry, Bu‐Ali Sina University Hamedan 6517838683 Iran
| | - Ramin Ghorbani‐Vaghei
- Department of Organic ChemistryFaculty of Chemistry, Bu‐Ali Sina University Hamedan 6517838683 Iran
| | - Zohreh Merati
- Department of Applied ChemistryFaculty of Chemistry, Bu‐Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
42
|
Heidari H, Karbalaee M. Ultrasonic assisted synthesis of nanocrystalline cellulose as support and reducing agent for Ag nanoparticles: green synthesis and novel effective nanocatalyst for degradation of organic dyes. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hannaneh Heidari
- Department of Chemistry, Faculty of Physics and Chemsitry; Alzahra University; P.O. Box 1993891176 Tehran Iran
| | - Melika Karbalaee
- Department of Chemistry, Faculty of Physics and Chemsitry; Alzahra University; P.O. Box 1993891176 Tehran Iran
| |
Collapse
|
43
|
Blanckenberg A, Malgas-Enus R. Raspberry-like gold-decorated silica (SSx–AMPS–Au) nanoparticles for the reductive discoloration of dyes. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0821-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
44
|
Synthesis and Characterization of Mg–Zn Bimetallic Nanoparticles: Selective Hydrogenation of p-Nitrophenol, Degradation of Reactive Carbon Black 5 and Fuel Additive. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01202-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Rostami‐Vartooni A, Moradi‐Saadatmand A. Green synthesis of magnetically recoverable Fe
3
O
4
/HZSM‐5 and its Ag nanocomposite using
Juglans regia
L. leaf extract and their evaluation as catalysts for reduction of organic pollutants. IET Nanobiotechnol 2019; 13:407-415. [DOI: 10.1049/iet-nbt.2018.5089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Roy M, Mondal A, Mondal A, Das A, Mukherjee D. Polyaniline Supported Palladium Catalyzed Reductive Degradation of Dyes Under Mild Condition. CURRENT GREEN CHEMISTRY 2019. [DOI: 10.2174/2213346106666190130101109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polyaniline supported palladium catalyst was applied in the reductive degradation of organic
dyes such as Methylene Blue, Rhodamine B, and Methyl Orange in presence of sodium borohydride
as an environmental-friendly approach. Role of pH, catalyst amount, and catalyst support were investigated
thoroughly to achieve complete and efficient degradation within few minutes under ambient
condition. Heterogeneous nature of the catalyst allowed easy recovery by centrifugation and the catalyst
was recycled for five cycles with slightly reduced activity. Recovered catalyst was characterized
by ICP-AES and TEM and a slight decrease in the activity of the catalyst was attributed to the agglomeration
of the palladium nanoparticles.
Collapse
Affiliation(s)
- Moumita Roy
- Department of Chemistry, Ramsaday College, Amta, Howrah 711 401, India
| | - Asish Mondal
- Department of Chemistry, Ramsaday College, Amta, Howrah 711 401, India
| | - Arijit Mondal
- Department of Chemistry, Ramsaday College, Amta, Howrah 711 401, India
| | - Amit Das
- Department of Chemistry, Ramsaday College, Amta, Howrah 711 401, India
| | | |
Collapse
|
47
|
A green and cost-effective approach for the production of gold nanoparticles using corn silk extract: A recoverable catalyst for Suzuki–Miyaura reaction and adsorbent for removing of dye pollutants. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Narkhede N, Uttam B, Rao CP. Calixarene-Assisted Pd Nanoparticles in Organic Transformations: Synthesis, Characterization, and Catalytic Applications in Water for C-C Coupling and for the Reduction of Nitroaromatics and Organic Dyes. ACS OMEGA 2019; 4:4908-4917. [PMID: 31459675 PMCID: PMC6648409 DOI: 10.1021/acsomega.9b00095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 05/02/2023]
Abstract
A new type of ternary hybrid, Pd@MCM-Calixox, based on mesoporous silica, calixarene conjugate, and Pd(0) nanoparticles (NPs) was synthesized by sacrificial oxidation of allylic calixarene conjugate eventually functionalized with mesoporous silica without using any external reducing agent. The role of the calix conjugate in the formation of Pd@MCM-Calixox has been established. The hybrid, Pd@MCM-Calixox, was characterized by different techniques to support the formation of well-dispersed Pd(0) NPs of 12 ± 2 nm size. The catalyst, Pd@MCM-Calixox, has been proven to be a resourceful one in water in three different types of reactions, namely, Suzuki C-C cross coupling, reduction of both hydrophilic and hydrophobic nitroaromatic compounds, and reduction and degradation of cationic, anionic, and neutral organic dyes. The catalyst exhibited higher turnover frequencies for all these transformations even when a very low concentration of Pd-based catalyst was used. The Pd@MCM-Calixox hybrid catalyst can be recycled several times without experiencing any significant loss in the activity. Also, the regenerated catalyst showed retention of well-spread Pd(0) species even after several catalytic cycles. The tetraallyl calixarene, allylCalix, conjugate acts as a reducing agent, also controls the size, and yields the well-dispersed Pd(0) NPs. The calix conjugate further provides a hydrophobic core in assisting the diffusion of hydrophobic substrates toward catalytic sites.
Collapse
|
49
|
Xia Y, Liu Y, Shi N, Zhang X. Highly efficient reduction of 4-nitrophenolate to 4-aminophenolate by Au/γ-Fe 2O 3@HAP magnetic composites. RSC Adv 2019; 9:10272-10281. [PMID: 35520938 PMCID: PMC9062375 DOI: 10.1039/c9ra00345b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/24/2019] [Indexed: 01/20/2023] Open
Abstract
In this article, the catalyst Au/γ-Fe2O3@hydroxyapatite (Au/γ-Fe2O3@HAP) consisting of Au nanoparticles supported on the core-shell structure γ-Fe2O3@HAP was prepared through a deposition-precipitation method. The catalyst was characterized by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, N2 adsorption-desorption and atomic absorption spectrometry. The as-prepared Au/γ-Fe2O3@HAP exhibited excellent performance for the reduction of 4-nitrophenolate (4-NP) to 4-aminophenolate (4-AP) in the presence of NaBH4 at room temperature. Thermodynamic and kinetic data on the reduction of 4-NP to 4-AP catalyzed by the as-prepared catalyst were studied. The as-prepared catalyst could be easily separated by a magnet and recycled 6 times with over 92% conversion of 4-NP to 4-AP. In addition, the as-prepared catalyst showed excellent catalytic performance on other nitrophenolates. The TOF value of this work on the reduction of 4-NP to 4-AP was 241.3 h-1. Au/γ-Fe2O3@HAP might have a promising potential application on the production of 4-AP and its derivatives.
Collapse
Affiliation(s)
- Yide Xia
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei China
| | - Ying Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei China
| | - Nannan Shi
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei China
| | - Xungao Zhang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 Hubei China
| |
Collapse
|
50
|
Majumder D, Chakraborty I, Mandal K, Roy S. Facet-Dependent Photodegradation of Methylene Blue Using Pristine CeO 2 Nanostructures. ACS OMEGA 2019; 4:4243-4251. [PMID: 31459631 PMCID: PMC6648310 DOI: 10.1021/acsomega.8b03298] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/12/2019] [Indexed: 05/22/2023]
Abstract
This work comprises the shape- and facet-dependent catalytic efficacies of different morphologies of CeO2, namely, hexagonal, rectangular, and square. The formation of different shapes of CeO2 is controlled using polyvinyl pyrrolidone as a surfactant. The surface reactivity of formation of differently exposed CeO2 facets is thoroughly investigated using UV-visible, photoluminescence, Raman, and X-ray photoelectron spectroscopies. A correlation between the growth of a surface-reactive facet and the corresponding oxygen vacancies is also established. Considering the tremendous contamination, caused by the textile effluents, the present study articulates the facet-dependent photocatalytic activities of pristine CeO2 for complete degradation of methylene blue within 175 min. The observed degradation time deploying pristine CeO2 as a catalyst is the shortest to be reported in the literature to our best knowledge.
Collapse
Affiliation(s)
- Deblina Majumder
- CSIR-Central Glass
and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700032, West
Bengal, India
| | - Indranil Chakraborty
- S. N. Bose National Centre
for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Kalyan Mandal
- S. N. Bose National Centre
for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Somenath Roy
- CSIR-Central Glass
and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700032, West
Bengal, India
- E-mail: . Phone: +91 33 23223427
| |
Collapse
|