1
|
Aher A, Bera P, Brandao P, Sharda S, Khatua S, Manna SK, Manhas A, Bera P. Anticancer efficacy of thiazole-naphthyl derivatives targeting DNA: Synthesis, crystal structure, density functional theory, molecular docking, and molecular dynamics studies. Int J Biol Macromol 2025; 299:140039. [PMID: 39828180 DOI: 10.1016/j.ijbiomac.2025.140039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Two newly synthesized ligands, 1-((2-(4-(4-methoxyphenyl)thiazol-2-yl)hydrazono)methyl)naphthalen-2-ol (HL1) and 1-((2-(4-(naphthalen-1-yl)thiazol-2-yl)hydrazono)methyl)naphthalen-2-ol (HL2) were characterized using spectroscopy and single X-ray crystallography. Both belong to triclinic systems with space groups P21/c (HL1) and P-1 (HL2), exhibiting planar structures. Biological assays revealed significant antitumor activity, with HL2 showing significant antitumor activity against HepG2 cells (IC50: 3.2 ± 0.1 μM) compared to HL1 (IC50: 7.3 ± 0.3 μM). Mechanistic studies revealed HL2 induces apoptosis, while HL1 triggers necroptosis, and both were non-toxic to peripheral blood mononuclear cells (PBMC). UV-Vis titration showed that HL2 binds more strongly to DNA (Kb: 1.08 ± 0.215 × 105 M-1) than HL1 (Kb: 1.02 ± 0.155 × 104 M-1), attributed to stronger naphthyl chromophore stacking with DNA base pairs. Supporting this, hypochromic effects, circular dichroism spectra, and increased DNA viscosity suggest HL2 is a moderate intercalator, while HL1 functions as a groover binder. Docking studies revealed that in HL2, an additional naphthyl group enhances DNA binding affinity, explaining its superior efficacy. Molecular dynamics simulations further confirmed the stable binding of both ligands to DNA in the biological environment. These experimental and theoretical findings highlight the superior binding affinity of HL2 and its potential as a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Abhishek Aher
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, Telangana 500 039, India
| | - Pradip Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura R.S, Midnapore (East), West Bengal 721152, India; Department of Chemistry, Kandi Raj College, Murshidabad, West Bengal 742137, India
| | - Paula Brandao
- Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Saphy Sharda
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, Telangana 500 039, India
| | - Sabyasachi Khatua
- Yogoda Satsanga Palpara Mahavidyalaya, Palpara, Purba Medinipur 721458, West Bengal 721458, India
| | - Sunil Kumar Manna
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, Telangana 500 039, India
| | - Anu Manhas
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar 382426, India.
| | - Pulakesh Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura R.S, Midnapore (East), West Bengal 721152, India.
| |
Collapse
|
2
|
Shosha MI, El-Ablack FZ, Saad EA. New thiazole derivative as a potential anticancer and topoisomerase II inhibitor. Sci Rep 2025; 15:710. [PMID: 39753588 PMCID: PMC11698983 DOI: 10.1038/s41598-024-81294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
To shed light on the significance of thiazole derivatives in the advancement of cancer medication and to contribute to therapeutic innovation, we have designed the synthesis and antiproliferative activity investigation of 5-(1,3-dioxoisoindolin-2-yl)-7-(4-nitrophenyl)-2-thioxo-3,7-dihydro-2H-pyrano[2,3-d] thiazole-6-carbonitrile, the structure of thiazole derivative was confirmed by spectroscopic techniques UV, IR and NMR. The cytotoxic activity (in vitro) of the new hybrid synthesized compound on five human cancer cell lines; human liver hepatocellular carcinoma (HepG-2), colorectal carcinoma (HCT-116), breast adenocarcinoma (MCF-7), and epithelioid carcinoma (Hela), and a normal human lung fibroblast (WI-38) was studied using MTT assay. The compound exhibited a strong cytotoxicity effect against HepG-2 and MCF-7. The interaction of the newly synthesized compound with calf-thymus DNA (CT-DNA) was investigated at pH 7.2 by using UV-Vis absorption measurements, also, molecular docking was carried out to investigate the DNA binding affinity of the proposed compound with the prospective target, DNA (PDB ID: 1d12). Finally, molecular docking was carried out to examine the binding patterns with the prospective target, DNA-Topo II complex (PDB-code: 3QX3). Results indicated that the investigated compound strongly binds to CT-DNA via intercalative mode, and correlated with those obtained from molecular docking and in agreement with that of in vitro cytotoxicity activity.
Collapse
Affiliation(s)
- Mayada I Shosha
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt
| | - Fawzia Z El-Ablack
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, New-Damietta, 34517, Egypt.
| |
Collapse
|
3
|
Elsayed SA, Elnabky IM, Aboelnga MM, El-Hendawy AM. Palladium(ii), platinum(ii), and silver(i) complexes with 3-acetylcoumarin benzoylhydrazone Schiff base: Synthesis, characterization, biomolecular interactions, cytotoxic activity, and computational studies. RSC Adv 2024; 14:19512-19527. [PMID: 38895519 PMCID: PMC11184370 DOI: 10.1039/d4ra02738h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
New Pd(ii) (C1), Pt(ii) (C2), and Ag(i) (C3) complexes derived from 3-acetylcoumarin benzoylhydrazone (HL) Schiff base were synthesized and characterized by FTIR, 1H NMR, UV-visible spectroscopies along with elemental analysis (C, H, N), magnetic, molar conductivity measurements, and DFT calculations. The obtained results suggested that the ligand had different behaviors in the complexes: mono-negative tridentate (C1) and neutral tridentate (C2) as an ONO-donor and neutral bidentate (C3) as an ON-donor. Quantum chemistry calculations were performed to validate the stability of the suggested geometries and indicated that all the complexes possess tetra-coordinated metal ions. The binding affinity of all the compounds toward calf thymus (ctDNA), yeast (tRNA), and bovine serum albumin (BSA) was evaluated by absorption/emission spectral titration studies, which revealed the intercalative binding to ctDNA and tRNA and static binding upon complex formation with BSA. Molecular insights into the binding affinity of the characterized complexes were provided through conducting molecular docking analysis. Moreover, the cytotoxic activity (in vitro) of the compounds was screened against human cancerous cell lines and a non-cancerous lung fibroblast (WI38) one using cis-platin as a reference drug. The IC50 and selective index (SI) values indicated the higher cytotoxic activity of all the metal complexes compared to their parent ligand. Among all the compounds, the complex C2 showed the highest activity. These results confirmed the improvement of the anticancer activity of the ligand by incorporating the metal ions. In addition, flow cytometry results showed that complexes C1 and C2 induced cell cycle arrest at S and G1/S, respectively.
Collapse
Affiliation(s)
- Shadia A Elsayed
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Islam M Elnabky
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Mohamed M Aboelnga
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| | - Ahmed M El-Hendawy
- Chemistry Department, Faculty of Science, Damietta University New Damietta 34517 Egypt
| |
Collapse
|
4
|
Maddikayala S, Bengi K, Pulimamidi SR. DNA interaction, molecular dynamics simulation, molecular docking, biological,
in vivo
anti‐inflammatory and thermal studies of o
‐
hydroxyacetophenone and 2‐fluoroaniline Schiff base complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Kavitha Bengi
- Department of Chemistry University College for Women, Osmania University, Koti Hyderabad Telangana State India
| | | |
Collapse
|
5
|
Spectroanalytical, computational, DNA/BSA binding and in vitro cytotoxic activity studies of new transition metal complexes of novel aryl hydrazone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Design, Synthesis, Bioanalytical, Photophysical and Chemo-phototherapeutic Studies of Heteroleptic Cu(II) Complexes. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Mrđan G, Tot A, Vraneš M, Rašeta M, Knežević P, Verbić T, Matijević B. Synthesis and Characterization of Novel 2-Pyridine Mono(thio)carbohydrazones as Promising Antioxidant and Antimicrobial Agents. Experimental and Theoretical Approach. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gorana Mrđan
- University of Novi Sad, Faculty of Science, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Aleksandar Tot
- University of Novi Sad, Faculty of Science, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Milan Vraneš
- University of Novi Sad, Faculty of Science, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Milena Rašeta
- University of Novi Sad, Faculty of Science, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Petar Knežević
- University of Novi Sad, Faculty of Science, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Tatjana Verbić
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Borko Matijević
- University of Novi Sad, Faculty of Science, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Singhal S, Khanna P, Khanna L. Synthesis, comparative in vitro antibacterial, antioxidant and UV fluorescence studies of bis indole Schiff bases and molecular docking with ct-DNA and SARS-CoV-2 M pro. LUMINESCENCE 2021; 36:1531-1543. [PMID: 34087041 DOI: 10.1002/bio.4098] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/18/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
In this study, synthesis of 15 novel bis indole-based Schiff bases (SBs) 4a-4o was conducted by condensation of 2-(1-aminobenzyl)benzimidazole with symmetrical bis-isatins linked via five alkyl chains (n = 2-6). These were subjected to ADME (absorption, distribution, metabolism and excretion), physiochemical properties, molecular docking, in vitro antibacterial and antioxidant studies. The in silico studies indicated lower toxicity with metabolic stability for nearly all the derivatives proving reliability as drug candidates. The comparative antibacterial study against Staphylococcus aureus and Escherichia coli, also showed a superior inhibition than reference drug and their mono counterparts. The increase in linker alkyl chain length and variation of substituents in indole, further predicted increased inhibition, with maximum value for compound 4o at 50 μg/ml. The in vitro calf thymus DNA (ct-DNA) binding ability of compounds 4c, 4f, 4i, 4l, 4 m, 4n, and 4o was evaluated via ultraviolet-visible and fluorescence spectroscopy techniques. A hyperchromic effect was observed with no apparent wavelength shift which predicted for the groove binding mode. A moderate binding constant for 4o, in fluorescence results, confirms groove binding. The molecular docking of 4o with ct-DNA (PDBID:1BNA) and SARS-CoV-2 Mpro (3CL protease, PDBID:6LU7) prove its efficacy as potential DNA binder and antiviral agent.
Collapse
Affiliation(s)
- Sugandha Singhal
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
9
|
Biswas N, Saha S, Biswas BK, Chowdhury M, Rahaman A, Junghare V, Mohapatra S, Hazra S, Zangrando E, Roy Choudhury R, Roy Choudhury C. The DNA- and protein-binding properties and cytotoxicity of a new copper(II) hydrazone Schiff base complex. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1913128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Niladri Biswas
- Department of Chemistry, West Bengal State University, Kolkata, West Bengal, India
| | - Sandeepta Saha
- Department of Chemistry, West Bengal State University, Kolkata, West Bengal, India
- Sripur High School, Kolkata, West Bengal, India
| | - Barun Kumar Biswas
- Department of Chemistry, West Bengal State University, Kolkata, West Bengal, India
| | - Manas Chowdhury
- Department of Chemistry, West Bengal State University, Kolkata, West Bengal, India
| | - Ashikur Rahaman
- Department of Zoology, West Bengal State University, Kolkata, West Bengal, India
| | - Vivek Junghare
- Department of Biotechnology, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand, India
| | - Swati Mohapatra
- Department of Biotechnology, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand, India
- Amity Institute of Microbial Technology, AU, Greater Noida, Uttar Pradesh, India
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee (IIT-R), Roorkee, Uttarakhand, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ruma Roy Choudhury
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata, West Bengal, India
| | | |
Collapse
|
10
|
Kumar R, Sahoo SC, Nanda PK. A
μ
4
‐Oxo Bridged Tetranuclear Zinc Complex as an Efficient Multitask Catalyst for CO
2
Conversion. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Raman Kumar
- Department of Applied Science University Institute of Engineering and Technology Panjab University Chandigarh 160014 India
- Department of Chemistry and Center of Advance Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Subash C. Sahoo
- Department of Chemistry and Center of Advance Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Prasant K. Nanda
- Department of Applied Science University Institute of Engineering and Technology Panjab University Chandigarh 160014 India
| |
Collapse
|
11
|
Synthesis, structure elucidation and dft study of a new thiazole–pyridine anchored nnn donor and it's cobalt(II) complex: In-vitro antitumor activity against U937 cancer cells, dna binding property and molecular docking study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Bera P, Aher A, Brandao P, Manna SK, Mondal G, Jana A, Santra A, Jana H, Bera P. Induced apoptosis against U937 cancer cells by Fe(II), Co(III) and Ni(II) complexes with a pyrazine-thiazole ligand: Synthesis, structure and biological evaluation. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
de Andrade Querino AL, da Silva JT, Silva JT, Alvarenga GM, da Silveira CH, de Magalhães MTQ, Chaves OA, Iglesias BA, Diniz R, Silva H. Mono and dinuclear platinum and palladium complexes containing adamantane–azole ligands: DNA and BSA interaction and cytotoxicity. J Biol Inorg Chem 2019; 24:1087-1103. [DOI: 10.1007/s00775-019-01719-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/13/2019] [Indexed: 01/01/2023]
|
14
|
Singhal S, Khanna P, Khanna L. Synthesis, DFT studies, molecular docking, antimicrobial screening and UV fluorescence studies on ct-DNA for novel Schiff bases of 2-(1-aminobenzyl) benzimidazole. Heliyon 2019; 5:e02596. [PMID: 31667415 PMCID: PMC6812229 DOI: 10.1016/j.heliyon.2019.e02596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 10/01/2019] [Indexed: 01/26/2023] Open
Abstract
Novel Schiff bases (SBs) were synthesized by condensation of 2-(1-Amino benzyl) benzimidazole with heterocyclic and aromatic carbonyl compounds. The structural characterization was done using 1H, 13C NMR, FTIR and ES-MS spectroscopic techniques. The in silico pharmacokinetics showed that nearly all compounds obeyed Lipinski rule of 5 with low toxicity and metabolic stability. The global reactivity descriptors were calculated using DFT approach. The molecular docking result of SBs with ct-DNA suggested interaction via groove binding mode. The antibacterial activity was tested against S. aureus and E. coli, indicated significant inhibition than reference drug. The compound 4d gave best results at 50 μg ml-1 concentrations. UV/Vis and Fluorescence spectroscopy tools were used to evaluate ct-DNA binding ability of compounds 4a-e through hypochromic shift. The steady state fluorescence predicted a moderate binding constant of 1.12 × 104 for 4d, indicative of non-intercalative mode.
Collapse
Affiliation(s)
- Sugandha Singhal
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| |
Collapse
|
15
|
Sangwan V, Singh DP. In-vitro
DNA binding and antimicrobial studies of trivalent transition metal ion based macrocyclic complexes. VIETNAM JOURNAL OF CHEMISTRY 2019. [DOI: 10.1002/vjch.201900058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vikas Sangwan
- Department of Chemistry; National Institute of Technology; Kurukshetra -136119 India
| | - D. P. Singh
- Department of Chemistry; National Institute of Technology; Kurukshetra -136119 India
| |
Collapse
|
16
|
Mudavath R, Ushaiah B, Kishan Prasad C, Sudeepa K, Ravindar P, Sunitha SNT, Sarala Devi C. Molecular docking, QSAR properties and DNA/BSA binding, anti-proliferative studies of 6-methoxy benzothiozole imine base and its metal complexes. J Biomol Struct Dyn 2019; 38:2849-2864. [PMID: 31340723 DOI: 10.1080/07391102.2019.1647878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The molecular and QSAR (Quantitative Structure-Activity Relationship) properties of title compound 2-((6-Methoxybenzo[d]thiazol-2-ylimino)methyl)-6-ethoxyphenol (HL) were evaluated employing HyperChem 7.5 tools. The interaction of the 1a-1e complexes of HL with calf thymus DNA (CT-DNA) was investigated by absorption titrations, Fluorescence quenching and viscosity measurements. The experimental data suggest that these complexes bind to CT-DNA through an intercalative mode, wherein DNA-binding affinity of 1e is found to be greater compared to other complexes. The tryptophan emission-quenching with bovine serum albumin (BSA) experiment revealed stronger binding of 1e than other complexes in the hydrophobic region of protein. The photocleavage of plasmid pBR322 DNA investigated in the presence of the title complexes inferred conversion of supercoiled form of DNA plasmid to circular nicked form. Free-radical scavenging activity studies of HL and its metal complexes determined by their interaction with the stable free-radical DPPH have shown promising antioxidant property. Further cytotoxicity studies with HeLa and MCF-7 cell lines indicated that the compounds can efficiently inhibit the cell proliferation in a dose dependent manner. The DAPI staining assay studies revealed the higher potency of 1e to induce apoptosis. AbbreviationsBSABovine serum albumin proteinCT-DNACalf thymus DNADMSODimethyl sulfoxideDAPI4',-6-Diamidino-2-phenylindole dihydrochlorideESI-MSElectrospray ionization mass spectrometryIC50Half-maximal inhibitory concentrationMBTYE2-((6-methoxybenzo[d]thiazol-2-ylimino) methyl)-6-ethoxyphenolMTT3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidePBSPhosphate-buffered salineTrisTris(hydroxymethyl)aminomethaneCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Mudavath
- Department of Chemistry, Osmania University, Hyderabad, India
| | - B Ushaiah
- Department of Chemistry, Osmania University, Hyderabad, India
| | | | - K Sudeepa
- Department of Chemistry, Osmania University, Hyderabad, India
| | - P Ravindar
- Department of Chemistry, Osmania University, Hyderabad, India
| | - S N T Sunitha
- Department of Chemistry, Osmania University, Hyderabad, India
| | - Ch Sarala Devi
- Department of Chemistry, Osmania University, Hyderabad, India
| |
Collapse
|
17
|
Mudavath R, Vuradi RK, Bathini U, Narsimha N, Kunche S, Sunitha S, Ch SD. Design, synthesis, in vitro anticancer, antioxidant and antibacterial activity; DNA/BSA binding, photoleavage and docking studies of Cu(II) ternary metal complexes. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:874-900. [PMID: 31148514 DOI: 10.1080/15257770.2019.1618470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three mononuclear, mixed ligand ternary Cu(II) complexes of 3-((Z)-1-(2-hydroxyphenylimino)ethyl)-4-hydroxy-6-methyl-2H-pyran-2-one (HEHMP) viz; [Cu-(Phen) (HEHMP)] (1a), [Cu-(Bpy)(HEHMP)] (1 b) and [Cu-Bpy(NCS)(HEHMP)] (1c) were synthesized and characterized by data obtained from various spectral techniques. The binding affinities of these complexes with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) protein were explored by absorption and fluorescence quenching titrations. The results indicated strong affinity of the title compounds to bind with both CT-DNA and BSA. The antioxidant properties of the synthesized compounds evaluated by free-radical scavenging method using spectrophotometric technique indicated their affirmative potential activity. Gel electrophoresis experiments revealed the efficacy of metal complexes in resulting the cleavage of pBR322 supercoiled DNA. In vitro cytotoxicity studies of these complexes evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HeLa and MCF-7 cancer cell lines indicated relatively high effectiveness of the complex 1c. Confocal microscopy signified the potential of the complexes to induce apoptosis in HeLa cell lines. In addition, the antibacterial activity of the compounds carried out by disc diffusion method revealed significantly enhanced antibacterial activity in Cu (II) ternary complexes compared to the activity of ligands in unbound form signifying the implicit role of metal ion in inducing lipophilic character.
Collapse
Affiliation(s)
- Ravi Mudavath
- Department of Chemistry, Osmania University , Hyderabad , Telangana , India
| | - Ravi Kumar Vuradi
- Department of Chemistry, Osmania University , Hyderabad , Telangana , India
| | - Ushaiah Bathini
- Department of Chemistry, Osmania University , Hyderabad , Telangana , India
| | - Nagula Narsimha
- Department of Chemistry, Osmania University , Hyderabad , Telangana , India
| | - Sudeepa Kunche
- Department of Chemistry, Osmania University , Hyderabad , Telangana , India
| | - Snt Sunitha
- Department of Chemistry, Osmania University , Hyderabad , Telangana , India
| | - Sarala Devi Ch
- Department of Chemistry, Osmania University , Hyderabad , Telangana , India
| |
Collapse
|
18
|
Biswas N, Chaudhuri A, Chakraborty S, Choudhury CR. Example of square planar copper(II) biuret complex: crystal structure, DNA and protein binding activity and molecular docking study. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1572623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Niladri Biswas
- Department of Chemistry, West Bengal State University, Kolkata, India
| | - Ankur Chaudhuri
- Department of Microbiology, West Bengal State University, Kolkata, India
| | - Sibani Chakraborty
- Department of Microbiology, West Bengal State University, Kolkata, India
| | | |
Collapse
|
19
|
Gałczyńska K, Kurdziel K, Ciepluch K, Rachuna J, Kowalska M, Madej Ł, Węgierek-Ciuk A, Lankoff A, Arabski M. Synthesis, physicochemical and biological characterization of Ni(II) complex with imidazole-4-acetate anion as new antifungal agent. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1574-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|