1
|
Kaniganti S, Palakolanu SR, Thiombiano B, Damarasingh J, Bommineni PR, Che P, Sharma KK, Jones T, Bouwmeester H, Bhatnagar-Mathur P. Developing Striga resistance in sorghum by modulating host cues through CRISPR/Cas9 gene editing. PLANT CELL REPORTS 2025; 44:90. [PMID: 40146284 DOI: 10.1007/s00299-025-03474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
KEY MESSAGE High transformation and gene editing efficiencies in sorghum-produced, transgene-free SDN1-edited plants exhibit precise mutations, reduced germination stimulants, and enhanced resistance to Striga infection. Sorghum (Sorghum bicolor L.) is a primary food staple grain for millions in Sub-Saharan Africa (SSA). It is mainly constrained by the parasitic weed Striga, which causes up to 100% yield losses and affects over 60% of cultivable farmlands and livelihoods. In this study, CRISPR/Cas9 technology is utilized to induce mutations in core strigolactone (SL) biosynthetic genes, i.e., CCD7, CCD8, MAX1, in addition to an uncharacterized gene (DUF) in the fine-mapped 400 kb lgs1 region in sorghum to develop durable Striga resistance. Two sorghum cultivars were delivered with the expression cassettes through immature embryo-based Agrobacterium-mediated transformation. Our study demonstrated transformation and gene editing efficiencies of ~ 70 and up to 17.5% (calculated based on the numuber of established plants), respectively, in two sorghum genotypes. Subsequent analysis of homozygous E0 lines in the E1 generation confirmed stable integration of mutations for all targeted genes. Loss-of-function mutations in the CCD7, CCD8, MAX1, and DUF genes led to a significant downregulation of the expression of associated genes in the SL biosynthetic pathway. The phenotypic analysis of edited lines revealed changes in phenotypic patterns compared to wild-type plants. Analysis of root exudates showed significant reductions in SL production in edited lines compared to wild-type plants. Striga infection experiments demonstrated delayed or reduced emergence rates of Striga in edited lines with lower SL production, highlighting the potential for genetically altering SL production to control Striga infestations. This study provides insights into the functional roles of CCD7, CCD8, MAX1, and DUF genes in sorghum towards reduced and/or altered SL production and improved resistance to Striga infestations.
Collapse
Affiliation(s)
- Sirisha Kaniganti
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Benjamin Thiombiano
- Swammerdam Institute for Life Sciences, University of Amsterdam, 100 BE, Amsterdam, The Netherlands
| | - Jagadeesh Damarasingh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Pradeep Reddy Bommineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Ping Che
- Department of Applied Science and Technology, Corteva Agriscience, Johnston, IA, USA
| | - Kiran Kumar Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Todd Jones
- Department of Applied Science and Technology, Corteva Agriscience, Johnston, IA, USA
| | - Harro Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, 100 BE, Amsterdam, The Netherlands
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
- Plant Breeding & Genetics Laboratory, Joint FAO/ IAEA Centre, International Atomic Energy Agency, 1400, Vienna, Austria.
| |
Collapse
|
2
|
Kumar A, Priyanka, K. J, Kaushik M, Mulani E, S. M, Roy J, Phogat S, Sareen B, Madhavan J, Sevanthi AM, Solanke AU, Kumar P, Mandal PK. Low titre of agroinoculum with prolonged incubation period and low auxin concentration in the regeneration media are the key to high frequency of transformation in climate-resilient Aus-type rice genotype Nagina 22. 3 Biotech 2025; 15:53. [PMID: 39898234 PMCID: PMC11785844 DOI: 10.1007/s13205-025-04210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Developing an efficient and reproducible regeneration protocol holds paramount significance for advancing genetic transformation technologies in rice, facilitating their utilisation in crop improvement. Nagina 22 (N22), a climate-resilient Aus-type rice genotype known for its tolerance against multiple stresses, lacks a standardised transformation protocol, limiting its utilisation as a background for genetic transformation. This study reports, for the first time, a highly efficient transformation and regeneration protocol for N22 using a CRISPR/Cas9 vector. Mature seeds were used to induce embryogenic calli on CHU(N6)-based callus induction media (CIM) with varying concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). The highest callus induction efficiency (~ 94%) was achieved using 3 mgL-1 2,4-D. For regeneration, calli were transferred to different regeneration media-I (RM-Ia to RM-Ie), where a combination of 5 mgL-1 6-benzylaminopurine (BAP) and 0.02 mgL-1 naphthalene acetic acid (NAA) resulted in ~ 44% regeneration frequency. Subsequent optimisation of regeneration media-II (RM-II) with low NAA concentration enhanced shoot elongation and root development. Furthermore, reducing basal salt concentration in the resuspension media significantly enhanced transformation efficiency to 44%, achieved, by only using sterile distilled water (SDW) with 150 mM acetosyringone for calli infection. The optimised protocol was successfully validated using CRISPR/Cas9 vector, facilitating targeted gene knockouts for functional genomic studies. This approach addresses a critical gap in N22 genetic transformation, providing a reliable protocol for advancing rice improvement through gene editing. It offers valuable insights for future research and practical applications in genetic transformation of this elite rice genotype for various agronomic and scientific purposes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04210-y.
Collapse
Affiliation(s)
- Amit Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, UP 201313 India
| | - Priyanka
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jeevanandhan K.
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Megha Kaushik
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Ekta Mulani
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Meena S.
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jeet Roy
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Sachin Phogat
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Bhuvnesh Sareen
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jayanthi Madhavan
- Division of Genetics, ICAR-Indian Agriculture Research Institute, Pusa Campus, New Delhi, 110012 India
| | | | | | - Prabhanshu Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, UP 201313 India
| | | |
Collapse
|
3
|
Dai H, Ai H, Wang Y, Shi J, Ren L, Li J, Tao Y, Xu Z, Zheng J. Molecular Characteristics and Expression Patterns of Carotenoid Cleavage Oxygenase Family Genes in Rice ( Oryza sativa L.). Int J Mol Sci 2024; 25:10264. [PMID: 39408594 PMCID: PMC11477027 DOI: 10.3390/ijms251910264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Carotenoid cleavage oxygenases (CCOs) cleave carotenoid molecules to produce bioactive products that influence the synthesis of hormones such as abscisic acid (ABA) and strigolactones (SL), which regulate plant growth, development, and stress adaptation. Here, to explore the molecular characteristics of all members of the OsCCO family in rice, fourteen OsCCO family genes were identified in the genome-wide study. The results revealed that the OsCCO family included one OsNCED and four OsCCD subfamilies. The OsCCO family was phylogenetically close to members of the maize ZmCCO family and the Sorghum SbCCO family. A collinearity relationship was observed between OsNCED3 and OsNCED5 in rice, as well as OsCCD7 and OsNCED5 between rice and Arabidopsis, Sorghum, and maize. OsCCD4a and OsCCD7 were the key members in the protein interaction network of the OsCCO family, which was involved in the catabolic processes of carotenoids and terpenoid compounds. miRNAs targeting OsCCO family members were mostly involved in the abiotic stress response, and RNA-seq data further confirmed the molecular properties of OsCCO family genes in response to abiotic stress and hormone induction. qRT-PCR analysis showed the differential expression patterns of OsCCO members across various rice organs. Notably, OsCCD1 showed relatively high expression levels in all organs except for ripening seeds and endosperm. OsNCED2a, OsNCED3, OsCCD1, OsCCD4a, OsCCD7, OsCCD8a, and OsCCD8e were potentially involved in plant growth and differentiation. Meanwhile, OsNCED2a, OsNCED2b, OsNCED5, OsCCD8b, and OsCCD8d were associated with reproductive organ development, flowering, and seed formation. OsNCED3, OsCCD4b, OsCCD4c, OsCCD8b, and OsCCD8c were related to assimilate transport and seed maturation. These findings provide a theoretical basis for further functional analysis of the OsCCO family.
Collapse
Affiliation(s)
- Hanjing Dai
- College of Agronomy, Anhui Science and Technology University, Chuzhou 233100, China; (H.D.)
| | - Hao Ai
- College of Agronomy, Anhui Science and Technology University, Chuzhou 233100, China; (H.D.)
| | - Yingrun Wang
- College of Agronomy, Anhui Science and Technology University, Chuzhou 233100, China; (H.D.)
| | - Jia Shi
- College of Agronomy, Anhui Science and Technology University, Chuzhou 233100, China; (H.D.)
| | - Lantian Ren
- College of Agronomy, Anhui Science and Technology University, Chuzhou 233100, China; (H.D.)
| | - Jieqin Li
- College of Agronomy, Anhui Science and Technology University, Chuzhou 233100, China; (H.D.)
| | - Yulu Tao
- College of Agronomy, Anhui Science and Technology University, Chuzhou 233100, China; (H.D.)
| | - Zhaoshi Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jiacheng Zheng
- College of Agronomy, Anhui Science and Technology University, Chuzhou 233100, China; (H.D.)
| |
Collapse
|
4
|
Tong N, Zhang C, Xu X, Zhang Z, Li J, Liu Z, Chen Y, Zhang Z, Huang Y, Lin Y, Lai Z. Genome-Wide Identification and Expression Analysis of DWARF53 Gene in Response to GA and SL Related to Plant Height in Banana. PLANTS (BASEL, SWITZERLAND) 2024; 13:458. [PMID: 38337990 PMCID: PMC10857657 DOI: 10.3390/plants13030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Dwarfing is one of the common phenotypic variations in asexually reproduced progeny of banana, and dwarfed banana is not only windproof and anti-fallout but also effective in increasing acreage yield. As a key gene in the strigolactone signalling pathway, DWARF53 (D53) plays an important role in the regulation of the height of plants. In order to gain insight into the function of the banana D53 gene, this study conducted genome-wide identification of banana D53 gene based on the M. acuminata, M. balbisiana and M. itinerans genome database. Analysis of MaD53 gene expression under high temperature, low temperature and osmotic stress based on transcriptome data and RT-qPCR was used to analyse MaD53 gene expression in different tissues as well as in different concentrations of GA and SL treatments. In this study, we identified three MaD53, three MbD53 and two MiD53 genes in banana. Phylogenetic tree analysis showed that D53 Musa are equally related to D53 Asparagales and Poales. Both high and low-temperature stresses substantially reduced the expression of the MaD53 gene, but osmotic stress treatments had less effect on the expression of the MaD53 gene. GR24 treatment did not significantly promote the height of the banana, but the expression of the MaD53 gene was significantly reduced in roots and leaves. GA treatment at 100 mg/L significantly promoted the expression of the MaD53 gene in roots, but the expression of this gene was significantly reduced in leaves. In this study, we concluded that MaD53 responds to GA and SL treatments, but "Yinniaijiao" dwarf banana may not be sensitive to GA and SL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (N.T.); (C.Z.); (X.X.); (Z.Z.); (J.L.); (Z.L.); (Y.C.); (Z.Z.); (Y.H.); (Y.L.)
| |
Collapse
|
5
|
Genome-Wide Identification of CCD Gene Family in Six Cucurbitaceae Species and Its Expression Profiles in Melon. Genes (Basel) 2022; 13:genes13020262. [PMID: 35205307 PMCID: PMC8872574 DOI: 10.3390/genes13020262] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
The carotenoid cleavage dioxygenase (CCD) gene family in plants comprises two subfamilies: CCD and 9-cis-epoxycarotenoid dioxygenase (NCED). Genes in the NCED subfamily are mainly involved in plant responses to abiotic stresses such as salt, low temperature, and drought. Members of the NCED subfamily are the most important rate-limiting enzymes in the biosynthesis of abscisic acid (ABA). In the present study, genome-wide analysis was performed to identify CCD gene members in six Cucurbitaceae species, including watermelon (Citrullus lanatus), melon (Cucumis melo), cucumber (C.sativus), pumpkin (Cucurbita moschata), bottle gourd (Lagenaria siceraria), and wax gourd (Benincasa hispida). A total of 10, 9, 9, 13, 8, 8 CCD genes were identified in the six species, respectively, and these genes were unevenly distributed in different chromosomes. Phylogenetic analysis showed that CCD genes of the six species clustered into two subfamilies: CCD and NCED, with five and three independent clades, respectively. The number of exons ranged from 1 to 15, and the number of motifs were set to 15 at most. The cis-acting elements analysis showed that a lot of the cis-acting elements were implicated in stress and hormone response. Melon seedlings were treated with salt, low temperature, drought, and ABA, and then tissue-specific analysis of CCDs expression were performed on the root, stem, upper leaf, middle leaf, female flower, male flower, and tendril of melon. The results showed that genes in CCD family exhibited various expression patterns. Different CCD genes of melon showed different degrees of response to abiotic stress. This study presents a comprehensive analysis of CCD gene family in six species of Cucurbitaceae, providing a strong foundation for future studies on specific genes in this family.
Collapse
|
6
|
Comprehensive Analysis of Carotenoid Cleavage Dioxygenases Gene Family and Its Expression in Response to Abiotic Stress in Poplar. Int J Mol Sci 2022; 23:ijms23031418. [PMID: 35163346 PMCID: PMC8836127 DOI: 10.3390/ijms23031418] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Carotenoid cleavage dioxygenases (CCDs) catalyzes the cleavage of various carotenoids into smaller apocarotenoids which are essential for plant growth and development and response to abiotic stresses. CCD family is divided into two subfamilies: 9-cis epoxycarotenoid dioxygenases (NCED) family and CCD family. A better knowledge of carotenoid biosynthesis and degradation could be useful for regulating carotenoid contents. Here, 23 CCD genes were identified from the Populus trichocarpa genome, and their characterizations and expression profiling were validated. The PtCCD members were divided into PtCCD and PtNCED subfamilies. The PtCCD family contained the PtCCD1, 4, 7, and 8 classes. The PtCCDs clustered in the same clade shared similar intron/exon structures and motif compositions and distributions. In addition, the tandem and segmental duplications resulted in the PtCCD gene expansion based on the collinearity analysis. An additional integrated collinearity analysis among poplar, Arabidopsis, rice, and willow revealed the gene pairs between poplar and willow more than that between poplar and rice. Identifying tissue-special expression patterns indicated that PtCCD genes display different expression patterns in leaves, stems, and roots. Abscisic acid (ABA) treatment and abiotic stress suggested that many PtCCD genes are responsive to osmotic stress regarding the comprehensive regulation networks. The genome-wide identification of PtCCD genes may provide the foundation for further exploring the putative regulation mechanism on osmotic stress and benefit poplar molecular breeding.
Collapse
|
7
|
Kwon YH, Kabange NR, Lee JY, Lee SM, Cha JK, Shin DJ, Cho JH, Kang JW, Ko JM, Lee JH. Novel QTL Associated with Shoot Branching Identified in Doubled Haploid Rice ( Oryza sativa L.) under Low Nitrogen Cultivation. Genes (Basel) 2021; 12:745. [PMID: 34069231 PMCID: PMC8157147 DOI: 10.3390/genes12050745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Shoot branching is considered as an important trait for the architecture of plants and contributes to their growth and productivity. In cereal crops, such as rice, shoot branching is controlled by many factors, including phytohormones signaling networks, operating either in synergy or antagonizing each other. In rice, shoot branching indicates the ability to produce more tillers that are essential for achieving high productivity and yield potential. In the present study, we evaluated the growth and development, and yield components of a doubled haploid population derived from a cross between 93-11 (P1, indica) and Milyang352 (P2, japonica), grown under normal nitrogen and low nitrogen cultivation open field conditions. The results of the phenotypic evaluation indicated that parental lines 93-11 (P1, a high tillering indica cultivar) and Milyang352 (P2, a low tillering japonica cultivar) showed distinctive phenotypic responses, also reflected in their derived population. In addition, the linkage mapping and quantitative trait locus (QTL) analysis detected three QTLs associated with tiller number on chromosome 2 (qTNN2-1, 130 cM, logarithm of the odds (LOD) 4.14, PVE 14.5%; and qTNL2-1, 134 cM, LOD: 6.05, PVE: 20.5%) and chromosome 4 (qTN4-1, 134 cM, LOD 3.92, PVE 14.5%), with qTNL2-1 having the highest phenotypic variation explained, and the only QTL associated with tiller number under low nitrogen cultivation conditions, using Kompetitive Allele-Specific PCR (KASP) and Fluidigm markers. The additive effect (1.81) of qTNL2-1 indicates that the allele from 93-11 (P1) contributed to the observed phenotypic variation for tiller number under low nitrogen cultivation. The breakthrough is that the majority of the candidate genes harbored by the QTLs qTNL2-1 and qTNN4-1 (here associated with the control of shoot branching under low and normal nitrogen cultivation, respectively), were also proposed to be involved in plant stress signaling or response mechanisms, with regard to their annotations and previous reports. Therefore, put together, these results would suggest that a possible crosstalk exists between the control of plant growth and development and the stress response in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (Y.-H.K.); (N.-R.K.); (J.-Y.L.); (S.-M.L.); (J.-K.C.); (D.-J.S.); (J.-H.C.); (J.-W.K.); (J.-M.K.)
| |
Collapse
|
8
|
Hu L, Wang J, Yang C, Islam F, Bouwmeester HJ, Muños S, Zhou W. The Effect of Virulence and Resistance Mechanisms on the Interactions between Parasitic Plants and Their Hosts. Int J Mol Sci 2020; 21:E9013. [PMID: 33260931 PMCID: PMC7730841 DOI: 10.3390/ijms21239013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 01/06/2023] Open
Abstract
Parasitic plants have a unique heterotrophic lifestyle based on the extraction of water and nutrients from host plants. Some parasitic plant species, particularly those of the family Orobanchaceae, attack crops and cause substantial yield losses. The breeding of resistant crop varieties is an inexpensive way to control parasitic weeds, but often does not provide a long-lasting solution because the parasites rapidly evolve to overcome resistance. Understanding mechanisms underlying naturally occurring parasitic plant resistance is of great interest and could help to develop methods to control parasitic plants. In this review, we describe the virulence mechanisms of parasitic plants and resistance mechanisms in their hosts, focusing on obligate root parasites of the genera Orobanche and Striga. We noticed that the resistance (R) genes in the host genome often encode proteins with nucleotide-binding and leucine-rich repeat domains (NLR proteins), hence we proposed a mechanism by which host plants use NLR proteins to activate downstream resistance gene expression. We speculated how parasitic plants and their hosts co-evolved and discussed what drives the evolution of virulence effectors in parasitic plants by considering concepts from similar studies of plant-microbe interaction. Most previous studies have focused on the host rather than the parasite, so we also provided an updated summary of genomic resources for parasitic plants and parasitic genes for further research to test our hypotheses. Finally, we discussed new approaches such as CRISPR/Cas9-mediated genome editing and RNAi silencing that can provide deeper insight into the intriguing life cycle of parasitic plants and could potentially contribute to the development of novel strategies for controlling parasitic weeds, thereby enhancing crop productivity and food security globally.
Collapse
Affiliation(s)
- Luyang Hu
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| | - Jiansu Wang
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| | - Chong Yang
- Bioengineering Research Laboratory, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| | - Harro J. Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1000 BE Amsterdam, The Netherlands;
| | - Stéphane Muños
- LIPM, Université de Toulouse, INRAE, CNRS, 31326 Castanet-Tolosan, France;
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou 310058, China; (L.H.); (J.W.); (F.I.)
| |
Collapse
|
9
|
Identification and Characterization of a Novel Strigolactone-Insensitive Mutant, Dwarfism with High Tillering Ability 34 (dhta-34) in Rice (Oryza sativa L.). Biochem Genet 2019; 57:403-420. [PMID: 30600409 DOI: 10.1007/s10528-018-9896-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Rice tillering ability and plant height are two of the important traits determining the grain yield. A novel rice (Oryza sativa L.) mutant dhta-34 from an Indica cultivar Zhenong 34 treated by ethyl methy1 sulfonate (EMS) was investigated in this study. The dhta-34 mutant significantly revealed thrifty tillers with reduced plant height, smaller panicles and lighter grains. It also exhibited late-maturing (19.80 days later than the wild type) and withered leaf tip during the mature stage. The length of each internode was reduced compared to the wild type, belonging to the dn type (each internode of the plant stem decreased in the same ratio). The longitudinal section of dhta-34 internodes showed that the length of cells was reduced leading to the dwarfism of the mutant. The F2 population derived from a cross between dhta-34 and an Japonica cultivar Zhenongda 104 were used for gene mapping by using the map-based cloning strategy. The gene DHTA-34 was fine mapped in 183.8kb region flanked by markers 3R-7 and 3R-10. The cloning and sequencing of the target region from the mutant revealed that there was a substitution of G to A in the second exon of LOC_Os03g10620, which resulted in an amino acid substitution arginine to histidine. DHTA-34 encoded a protein of the α/β-fold hydrolase superfamily, which could suppress the tillering ability of rice. DHTA-34 was a strong loss-of-function allele of the Arabidopsis thaliana D14 gene, which was involved in part of strigolactones (SLs) perception and signaling. Moreover, the relative expression of DHTA-34 gene in leaf was higher than that in bud, internode, root or sheath. This study revealed that DHTA-34 played an important role in inhabiting tiller development in rice and further identifying the function of D14.
Collapse
|
10
|
Yugandhar P, Sun Y, Liu L, Negi M, Nallamothu V, Sun S, Neelamraju S, Rai V, Jain A. Characterization of the loss-of-function mutant NH101 for yield under phosphate deficiency from EMS-induced mutants of rice variety Nagina22. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:1-13. [PMID: 29957570 DOI: 10.1016/j.plaphy.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 06/14/2018] [Indexed: 05/09/2023]
Abstract
In earlier studies at IIRR, Hyderabad, screening of ∼2000 EMS mutants of the rice variety Nagina22 (N22) resulted in the identification of 11 loss-of-function mutants with zero grain yield in Pi-deprived soil under field condition. Among these mutants, NH101 was selected for comparative analyses with N22 for various morphophysiological and/or molecular traits during growth in a hydroponic system (7 d) and in a pot soil (50% flowering) under different Pi regime. The total length of the seminal and adventitious roots, agronomic traits (panicle length and unfilled spikelet/panicle), activities of the antioxidant enzymes (SOD, POD, and APX), and the relative expression levels of the genes involved in the maintenance of Pi homeostasis (MPH) i.e., OsPHR2, SPX1/2 OsPT4, 6, and 8 showed significant increase in the Pi-deprived mutant compared with N22. Whereas, some of the traits showed significant reduction in NH101 than N22 such as number of tillers and filled spikelets/panicle, yield, contents of Pi and externally secreted APase, activity of CAT, and the relative expression levels of MPH genes i.e., OsmiR399a, OsPHO1;2, OsIPS1, OsPAP10a, OsPT2, 9, and 10. The study highlighted wide spectrum differential effects of the mutation in NH101 on various traits that play important roles governing the maintenance of Pi homeostasis. This mutant thus provides a rich repository of genetic material amenable for the identification of the genes that are pivotal for Pi use efficiency.
Collapse
Affiliation(s)
- Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Manisha Negi
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012, India
| | | | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sarla Neelamraju
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
11
|
Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC PLANT BIOLOGY 2018; 18:174. [PMID: 30157762 PMCID: PMC6116466 DOI: 10.1186/s12870-018-1387-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 08/07/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Precision plant genome engineering holds much promise for targeted improvement of crop traits via unprecedented single-base level control over the genetic material. Strigolactones (SLs) are a key determinant of plant architecture, known for their role in inhibiting shoot branching (tillering). RESULTS We used CRISPR/Cas9 in rice (Oryza sativa) for targeted disruption of CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), which controls a key step in SL biosynthesis. The ccd7 mutants exhibited a striking increase in tillering, combined with a reduced height, which could be rescued by application of the synthetic SL analog GR24. Striga germination assays and liquid chromatography-mass spectrometry analysis showed that root exudates of ccd7 mutants were also SL deficient. CONCLUSIONS Taken together, our results show the potential and feasibility of the use of the CRISPR/Cas9 system for targeted engineering of plant architecture and for elucidating the molecular underpinnings of architecture-related traits.
Collapse
Affiliation(s)
- Haroon Butt
- Laboratory for Genome Engineering, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| | - Muhammad Jamil
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| | - Jian You Wang
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| | - Salim Al-Babili
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
| |
Collapse
|
12
|
An EMS-induced new sequence variant, TEMS5032, in the coding region of SRS3 gene leads to shorter grain length in rice (Oryza sativa L.). J Appl Genet 2018; 59:377-389. [PMID: 30014258 DOI: 10.1007/s13353-018-0455-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/02/2018] [Accepted: 06/27/2018] [Indexed: 01/29/2023]
Abstract
Grain shape and size influence yield and consumer preferences in rice. In the present study, we characterized and mapped a short and bold grained mutant and named it as TEMS5032, as the mutant is a result of EMS-induced transition from C to T at the 5032nd bp of SRS3 gene, which is known to affect grain size in rice. The substitution led to creation of a stop codon in the motor domain of SRS3, a kinesin 13 family gene, translating into a truncated protein product. However, transcription of this gene remained unaffected in TEMS5032 compared to the wild type, N22. Further, the mutation was found to affect 13 of the 25 cell cycle-related genes as they showed differential expression with respect to N22. Based on rate of grain filling, dry matter accumulation in the endosperm and histological studies, the effect of mutation in TEMS5032 was found to be similar to a known variant, TCM758, but less severe than sar1 mutant. Sequencing of 88 rice germplasm lines in the kinesin motor domain region did not reveal the presence of this mutation, establishing it as a new variant of SRS3 gene.
Collapse
|
13
|
Wang H, Chen W, Eggert K, Charnikhova T, Bouwmeester H, Schweizer P, Hajirezaei MR, Seiler C, Sreenivasulu N, von Wirén N, Kuhlmann M. Abscisic acid influences tillering by modulation of strigolactones in barley. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3883-3898. [PMID: 29982677 PMCID: PMC6054196 DOI: 10.1093/jxb/ery200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/15/2018] [Indexed: 05/05/2023]
Abstract
Strigolactones (SLs) represent a class of plant hormones that are involved in inhibiting shoot branching and in promoting abiotic stress responses. There is evidence that the biosynthetic pathways of SLs and abscisic acid (ABA) are functionally connected. However, little is known about the mechanisms underlying the interaction of SLs and ABA, and the relevance of this interaction for shoot architecture. Based on sequence homology, four genes (HvD27, HvMAX1, HvCCD7, and HvCCD8) involved in SL biosynthesis were identified in barley and functionally verified by complementation of Arabidopsis mutants or by virus-induced gene silencing. To investigate the influence of ABA on SLs, two transgenic lines accumulating ABA as a result of RNAi-mediated down-regulation of HvABA 8'-hydroxylase 1 and 3 were employed. LC-MS/MS analysis confirmed higher ABA levels in root and stem base tissues in these transgenic lines. Both lines showed enhanced tiller formation and lower concentrations of 5-deoxystrigol in root exudates, which was detected for the first time as a naturally occurring SL in barley. Lower expression levels of HvD27, HvMAX1, HvCCD7, and HvCCD8 indicated that ABA suppresses SL biosynthesis, leading to enhanced tiller formation in barley.
Collapse
Affiliation(s)
- Hongwen Wang
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Wanxin Chen
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Kai Eggert
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Tatsiana Charnikhova
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, XH Amsterdam, The Netherlands
| | - Patrick Schweizer
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Mohammad R Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Christiane Seiler
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
| | - Nese Sreenivasulu
- International Rice Research Institute (IRRI), Grain Quality and Nutrition Center, Metro Manila, Philippines
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
- Correspondence: or
| | - Markus Kuhlmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Stadt Seeland, Germany
- Correspondence: or
| |
Collapse
|
14
|
Li F, Xie J, Zhu X, Wang X, Zhao Y, Ma X, Zhang Z, Rashid MAR, Zhang Z, Zhi L, Zhang S, Li J, Li Z, Zhang H. Genetic Basis Underlying Correlations Among Growth Duration and Yield Traits Revealed by GWAS in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2018; 9:650. [PMID: 29872443 PMCID: PMC5972282 DOI: 10.3389/fpls.2018.00650] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/27/2018] [Indexed: 05/21/2023]
Abstract
Avoidance of disadvantageous genetic correlations among growth duration and yield traits is critical in developing crop varieties that efficiently use light and energy resources and produce high yields. To understand the genetic basis underlying the correlations among heading date and three major yield traits in rice, we investigated the four traits in a diverse and representative core collection of 266 cultivated rice accessions in both long-day and short-day environments, and conducted the genome-wide association study using 4.6 million single nucleotide polymorphisms (SNPs). There were clear positive correlation between heading date and grain number per panicle, and negative correlation between grain number per panicle and panicle number, as well as different degrees of correlations among other traits in different subspecies and environments. We detected 47 pleiotropic genes in 15 pleiotropic quantitative trait loci (pQTLs), 18 pleiotropic genes containing 37 pleiotropic SNPs in 8 pQTLs, 27 pQTLs with r2 of linkage disequilibrium higher than 0.2, and 39 pairs of interactive genes from 8 metabolic pathways that may contribute to the above phenotypic correlations, but these genetic bases were different for correlations among different traits. Distributions of haplotypes revealed that selection for pleiotropic genes or interactive genes controlling different traits focused on genotypes with weak effect or on those balancing two traits that maximized production but sometimes their utilization strategies depend on the traits and environment. Detection of pQTLs and interactive genes and associated molecular markers will provide an ability to overcome disadvantageous correlations and to utilize the advantageous correlations among traits through marker-assisted selection in breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Hongliang Zhang
- Key Lab of Crop Heterosis and Utilization of Ministry of Education and Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Wang J, Lu K, Nie H, Zeng Q, Wu B, Qian J, Fang Z. Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield. RICE (NEW YORK, N.Y.) 2018; 11:12. [PMID: 29484500 PMCID: PMC5826914 DOI: 10.1186/s12284-018-0205-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/21/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rice tiller number is one of the most important factors that determine grain yield, while nitrogen is essential for the crop growth and development, especially for tiller formation. Genes involved in nitrogen use efficiency processes have been identified in the previous studies, however, only a small number of these genes have been found to improve grain yield by promoting tillering. RESULTS We constructed over-expression (OX) lines and RNA-interference (Ri) lines, and selected a mutant of OsNPF7.2, a low-affinity nitrate transporter. Our analyses showed that rice tiller number and grain yield were significantly increased in OX lines, whereas Ri lines and mutant osnpf7.2 had fewer tiller number and lower grain yield. Under different nitrate concentrations, tiller buds grew faster in OX lines than in WT, but they grew slower in Ri lines and mutant osnpf7.2. These results indicated that altered expression of OsNPF7.2 plays a significant role in the control of tiller bud growth and regulation of tillering. Elevated expression of OsNPF7.2 also improved root length, root number, fresh weight, and dry weight. However, reduced expression of OsNPF7.2 had the opposite result on these characters. OsNPF7.2 OX lines showed more significantly enhanced influx of nitrate and had a higher nitrate concentration than WT. The levels of gene transcripts related to cytokinin pathway and cell cycle in tiller bud, and cytokinins concentration in tiller basal portion were higher in OX lines than that in WT, suggesting that altered expression of OsNPF7.2 controlled tiller bud growth and root development by regulating cytokinins content and cell cycle in plant cells. Altered expression of OsNPF7.2 also was responsible for the change in expression of the genes involved in strigolactone pathway, such as D27, D17, D10, Os900, Os1400, D14, D3, and OsFC1. CONCLUSION Our results suggested that OsNPF7.2 is a positive regulator of nitrate influx and concentration, and that it also regulates cell division in tiller bud and alters expression of genes involved in cytokinin and strigolactone pathways, resulting in the control over rice tiller number. Since elevated expression of OsNPF7.2 is capable of improving rice grain yield, this gene might be applied to high-yield rice breeding.
Collapse
Affiliation(s)
- Jie Wang
- Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan, 430415, China
| | - Kai Lu
- Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan, 430415, China
| | - Haipeng Nie
- Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan, 430415, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qisen Zeng
- Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan, 430415, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bowen Wu
- Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan, 430415, China
| | - Junjie Qian
- Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan, 430415, China
| | - Zhongming Fang
- Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan, 430415, China.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Sevanthi AMV, Kandwal P, Kale PB, Prakash C, Ramkumar MK, Yadav N, Mahato AK, Sureshkumar V, Behera M, Deshmukh RK, Jeyaparakash P, Kar MK, Manonmani S, Muthurajan R, Gopala KS, Neelamraju S, Sheshshayee MS, Swain P, Singh AK, Singh NK, Mohapatra T, Sharma RP. Whole Genome Characterization of a Few EMS-Induced Mutants of Upland Rice Variety Nagina 22 Reveals a Staggeringly High Frequency of SNPs Which Show High Phenotypic Plasticity Towards the Wild-Type. FRONTIERS IN PLANT SCIENCE 2018; 9:1179. [PMID: 0 PMCID: PMC6132179 DOI: 10.3389/fpls.2018.01179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/24/2018] [Indexed: 05/07/2023]
Abstract
The Indian initiative, in creating mutant resources for the functional genomics in rice, has been instrumental in the development of 87,000 ethylmethanesulfonate (EMS)-induced mutants, of which 7,000 are in advanced generations. The mutants have been created in the background of Nagina 22, a popular drought- and heat-tolerant upland cultivar. As it is a pregreen revolution cultivar, as many as 573 dwarf mutants identified from this resource could be useful as an alternate source of dwarfing. A total of 541 mutants, including the macromutants and the trait-specific ones, obtained after appropriate screening, are being maintained in the mutant garden. Here, we report on the detailed characterizations of the 541 mutants based on the distinctness, uniformity, and stability (DUS) descriptors at two different locations. About 90% of the mutants were found to be similar to the wild type (WT) with high similarity index (>0.6) at both the locations. All 541 mutants were characterized for chlorophyll and epicuticular wax contents, while a subset of 84 mutants were characterized for their ionomes, namely, phosphorous, silicon, and chloride contents. Genotyping of these mutants with 54 genomewide simple sequence repeat (SSR) markers revealed 93% of the mutants to be either completely identical to WT or nearly identical with just one polymorphic locus. Whole genome resequencing (WGS) of four mutants, which have minimal differences in the SSR fingerprint pattern and DUS characters from the WT, revealed a staggeringly high number of single nucleotide polymorphisms (SNPs) on an average (16,453 per mutant) in the genic sequences. Of these, nearly 50% of the SNPs led to non-synonymous codons, while 30% resulted in synonymous codons. The number of insertions and deletions (InDels) varied from 898 to 2,595, with more than 80% of them being 1-2 bp long. Such a high number of SNPs could pose a serious challenge in identifying gene(s) governing the mutant phenotype by next generation sequencing-based mapping approaches such as Mutmap. From the WGS data of the WT and the mutants, we developed a genic resource of the WT with a novel analysis pipeline. The entire information about this resource along with the panicle architecture of the 493 mutants is made available in a mutant database EMSgardeN22 (http://14.139.229.201/EMSgardeN22).
Collapse
Affiliation(s)
- Amitha M. V. Sevanthi
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- *Correspondence: Amitha M. V. Sevanthi,
| | - Prashant Kandwal
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Prashant B. Kale
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Chandra Prakash
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - M. K. Ramkumar
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Neera Yadav
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Ajay K. Mahato
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | - V. Sureshkumar
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | | | | | - Meera K. Kar
- ICAR-National Rice Research Institute, Cuttack, India
| | - S. Manonmani
- Tamil Nadu Agricultural University, Coimbatore, India
| | | | - K. S. Gopala
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - P. Swain
- ICAR-National Rice Research Institute, Cuttack, India
| | - Ashok K. Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - N. K. Singh
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - R. P. Sharma
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| |
Collapse
|
17
|
Yang X, Chen L, He J, Yu W. Knocking out of carotenoid catabolic genes in rice fails to boost carotenoid accumulation, but reveals a mutation in strigolactone biosynthesis. PLANT CELL REPORTS 2017; 36:1533-1545. [PMID: 28676963 DOI: 10.1007/s00299-017-2172-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/21/2017] [Indexed: 05/05/2023]
Abstract
Targeted mutations in five carotenoid catabolism genes failed to boost carotenoid accumulation in rice seeds, but produced dwarf and high tillering mutants when OsCCD7 gene was knocked out. Carotenoids play an important role in human diet as a source of vitamin A. Rice is a major staple food in Asia, but does not accumulate carotenoids in the endosperm because of the low carotenoid biosynthesis or the degradation in metabolism. In this study, the CRISPR/Cas9 system was investigated in the targeted knockout of five rice carotenoid catabolic genes (OsCYP97A4, OsDSM2, OsCCD4a, OsCCD4b and OsCCD7) and in an effort to increase β-carotene accumulation in rice endosperm. Transgenic plants that expressed OsNLSCas9 and sgRNAs were generated by Agrobacterium-mediated transformation. Various knockout mutations were identified at the T0 generation of the transgenic rice by TILLING and direct sequencing of the PCR products amplified from the target sites. Carotenoids were not accumulated in both mono-allelic and bi-allelic knockout mutations of the five genes. However, transgenic plants with homozygous or bi-allelic mutations to the OsCCD7 gene were extremely dwarfish with more tillers and lower seed setting than other transgenic or nontransgenic plants. This phenotype was similar to the previously reported ccd7 mutants, which are defective in the biosynthesis of strigolactone, a plant hormone that regulates branching in plants and tiller formation in rice.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Lei Chen
- Shenzhen Research Institute, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shenzhen, China
| | - Junxian He
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong.
| | - Weichang Yu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
18
|
Liu L, Meng F, He Y, Zhu M, Shen Y, Zhang Z. Fine Mapping and Candidate Gene Analysis of the Tiller Suppression Gene ts1 in Rice. PLoS One 2017; 12:e0170574. [PMID: 28107441 PMCID: PMC5249193 DOI: 10.1371/journal.pone.0170574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/06/2017] [Indexed: 01/12/2023] Open
Abstract
Tiller number is one of the key factors that influences rice plant type and yield components. In this study, an EMS-induced rice tiller suppression mutant ts1 was characterized. Morphological and histological observations revealed that, in the ts1 plants, the tiller buds were abnormally formed and therefore cannot outgrow into tillers. With an F2 population derived from a cross between ts1 and an indica cultivar Wushansimiao, a major gene, tiller suppression 1 (ts1) was fine-mapped to a 108.5 kb genomic region between markers ID8378 and SSR6884 on the short arm of rice chromosome 2. Candidate gene analysis identified nineteen putative genes. Among them, ORF4 (LOC_Os02g01610) is a PPR gene which harbored a point mutation c.+733/C→T in ts1 mutant plants. A co-dominant SNP marker cd-733C/T was subsequently developed and the SNP assay demonstrated that the point mutation co-segregated with tiller suppression phenotype. Quantitative RT-PCR analysis showed that the expression level of ORF4 in ts1 plants was significantly lower than that in their wild plants, and the expression of rice tillering regulators MOC1 and HTD1 was also significantly decreased in ts1 plants. Our data indicated that ORF4 was a strong candidate gene for ts1 and ts1 might play a role in regulating rice tillering through MOC1 and HTD1 associated pathway. The results above provide a basis for further functional characterization of ts1 and will shed light on molecular mechanism of rice tillering. The informative SNP marker cd-733C/T will facilitate marker-assisted selection of ts1 in rice plant type breeding.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fen Meng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yonggang He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Menghao Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yanhao Shen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhihong Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
19
|
Agarwal P, Parida SK, Raghuvanshi S, Kapoor S, Khurana P, Khurana JP, Tyagi AK. Rice Improvement Through Genome-Based Functional Analysis and Molecular Breeding in India. RICE (NEW YORK, N.Y.) 2016; 9:1. [PMID: 26743769 PMCID: PMC4705060 DOI: 10.1186/s12284-015-0073-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/22/2015] [Indexed: 05/05/2023]
Abstract
Rice is one of the main pillars of food security in India. Its improvement for higher yield in sustainable agriculture system is also vital to provide energy and nutritional needs of growing world population, expected to reach more than 9 billion by 2050. The high quality genome sequence of rice has provided a rich resource to mine information about diversity of genes and alleles which can contribute to improvement of useful agronomic traits. Defining the function of each gene and regulatory element of rice remains a challenge for the rice community in the coming years. Subsequent to participation in IRGSP, India has continued to contribute in the areas of diversity analysis, transcriptomics, functional genomics, marker development, QTL mapping and molecular breeding, through national and multi-national research programs. These efforts have helped generate resources for rice improvement, some of which have already been deployed to mitigate loss due to environmental stress and pathogens. With renewed efforts, Indian researchers are making new strides, along with the international scientific community, in both basic research and realization of its translational impact.
Collapse
Affiliation(s)
- Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saurabh Raghuvanshi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
20
|
Lima JM, Nath M, Dokku P, Raman KV, Kulkarni KP, Vishwakarma C, Sahoo SP, Mohapatra UB, Mithra SVA, Chinnusamy V, Robin S, Sarla N, Seshashayee M, Singh K, Singh AK, Singh NK, Sharma RP, Mohapatra T. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AOB PLANTS 2015; 7:plv023. [PMID: 25818072 PMCID: PMC4482838 DOI: 10.1093/aobpla/plv023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 02/26/2015] [Indexed: 05/04/2023]
Abstract
Water stress is one of the most severe constraints to crop productivity. Plants display a variety of physiological and biochemical responses both at the cellular and whole organism level upon sensing water stress. Leaf rolling, stomatal closure, deeper root penetration, higher relative water content (RWC) and better osmotic adjustment are some of the mechanisms that plants employ to overcome water stress. In the current study, we report a mutant, enhanced water stress tolerant1 (ewst1) with enhanced water stress tolerance, identified from the ethyl methanesulfonate-induced mutant population of rice variety Nagina22 by field screening followed by withdrawal of irrigation in pots and hydroponics (PEG 6000). Though ewst1 was morphologically similar to the wild type (WT) for 35 of the 38 morphological descriptors (except chalky endosperm/expression of white core, decorticated grain colour and grain weight), it showed enhanced germination in polyethylene glycol-infused medium. It exhibited increase in maximum root length without any significant changes in its root weight, root volume and total root number on crown when compared with the WT under stress in PVC tube experiment. It also showed better performance for various physiological parameters such as RWC, cell membrane stability and chlorophyll concentration upon water stress in a pot experiment. Root anatomy and stomatal microscopic studies revealed changes in the number of xylem and phloem cells, size of central meta-xylem and number of closed stomata in ewst1. Comparative genome-wide transcriptome analysis identified genes related to exocytosis, secondary metabolites, tryptophan biosynthesis, protein phosphorylation and other signalling pathways to be playing a role in enhanced response to water stress in ewst1. The possible involvement of a candidate gene with respect to the observed morpho-physiological and transcriptional changes and its role in stress tolerance are discussed. The mutant identified and characterized in this study will be useful for further dissection of water stress tolerance in rice.
Collapse
Affiliation(s)
- John Milton Lima
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India Department of Botany, North Orissa University, Baripada, Odisha, India
| | - Manoj Nath
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - Prasad Dokku
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - K V Raman
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - K P Kulkarni
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - C Vishwakarma
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - S P Sahoo
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - U B Mohapatra
- Department of Botany, North Orissa University, Baripada, Odisha, India
| | - S V Amitha Mithra
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - V Chinnusamy
- Indian Agricultural Research Institute, New Delhi, India
| | - S Robin
- Tamil Nadu Agricultural University, Coimbatore, India
| | - N Sarla
- Directorate of Rice Research, Hyderabad, India
| | - M Seshashayee
- University of Agricultural Sciences, Bangalore, India
| | - K Singh
- Punjab Agricultural University, Ludhiana, India
| | - A K Singh
- Indian Agricultural Research Institute, New Delhi, India
| | - N K Singh
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - R P Sharma
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India
| | - T Mohapatra
- National Research Centre on Plant Biotechnology, IARI, New Delhi, India Present address: Central Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|