1
|
Mishra AK, Tripathi MK, Kumar D, Gupta SP. Neurons Specialize in Presynaptic Autophagy: A Perspective to Ameliorate Neurodegeneration. Mol Neurobiol 2025; 62:2626-2640. [PMID: 39141193 DOI: 10.1007/s12035-024-04399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
The efficient and prolonged neurotransmission is reliant on the coordinated action of numerous synaptic proteins in the presynaptic compartment that remodels synaptic vesicles for neurotransmitter packaging and facilitates their exocytosis. Once a cycle of neurotransmission is completed, membranes and associated proteins are endocytosed into the cytoplasm for recycling or degradation. Both exocytosis and endocytosis are closely regulated in a timely and spatially constrained manner. Recent research demonstrated the impact of dysfunctional synaptic vesicle retrieval in causing retrograde degeneration of midbrain neurons and has highlighted the importance of such endocytic proteins, including auxilin, synaptojanin1 (SJ1), and endophilin A (EndoA) in neurodegenerative diseases. Additionally, the role of other associated proteins, including leucine-rich repeat kinase 2 (LRRK2), adaptor proteins, and retromer proteins, is being investigated for their roles in regulating synaptic vesicle recycling. Research suggests that the degradation of defective vesicles via presynaptic autophagy, followed by their recycling, not only revitalizes them in the active zone but also contributes to strengthening synaptic plasticity. The presynaptic autophagy rejuvenating terminals and maintaining neuroplasticity is unique in autophagosome formation. It involves several synaptic proteins to support autophagosome construction in tiny compartments and their retrograde trafficking toward the cell bodies. Despite having a comprehensive understanding of ATG proteins in autophagy, we still lack a framework to explain how autophagy is triggered and potentiated in compact presynaptic compartments. Here, we reviewed synaptic proteins' involvement in forming presynaptic autophagosomes and in retrograde trafficking of terminal cargos. The review also discusses the status of endocytic proteins and endocytosis-regulating proteins in neurodegenerative diseases and strategies to combat neurodegeneration.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Department of Zoology, Government Shaheed Gendsingh College, Charama, Uttar Bastar Kanker, 494 337, Chhattisgarh, India.
| | - Manish Kumar Tripathi
- School of Pharmacy, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Dipak Kumar
- Department of Zoology, Munger University, Munger, Bihar, India
| | - Satya Prakash Gupta
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| |
Collapse
|
2
|
Measurement of GCase Activity in Cultured Cells. Methods Mol Biol 2021. [PMID: 34043191 DOI: 10.1007/978-1-0716-1495-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Glucocerebrosidase (GCase), which is encoded by the GBA1 gene, has lysosomal glycoside hydrolase activity that hydrolyzes glucosylceramide. Defects in GCase lead to the accumulation of glucosylceramide, which causes the development of the lysosomal storage disease known as Gaucher's disease. Loss-of-function mutations in the GBA1 gene are the most important genetic risk factor for synucleinopathies, such as Parkinson's disease and dementia with Lewy bodies. Recent studies on PD genes associated with lysosomal function suggest that GCase activity is decreased in cell models of PD and in neurons derived from PD patients. In this chapter, we describe a protocol to measure GCase activity in cultured cells.
Collapse
|
3
|
Gonçalves VC, Cuenca-Bermejo L, Fernandez-Villalba E, Martin-Balbuena S, da Silva Fernandes MJ, Scorza CA, Herrero MT. Heart Matters: Cardiac Dysfunction and Other Autonomic Changes in Parkinson's Disease. Neuroscientist 2021; 28:530-542. [PMID: 33583239 DOI: 10.1177/1073858421990000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been more than 200 years since James Parkinson made the first descriptions of the disease that bears his name. Since then, knowledge about Parkinson's disease has been improved, and its pathophysiology, diagnosis, and treatments are well described in the scientific and medical literature. However, there is no way to prevent the disease from its progressive nature yet and only its symptoms can be minimized. It is known that the process of neurodegeneration begins before the onset of motor signs and symptoms of the disease, when diagnosis is usually made. Therefore, recognizing manifested non-motor symptoms can make an early diagnosis possible and lead to a better understanding of the disease. Autonomic dysfunctions are important non-motor manifestations of Parkinson's disease and affect the majority of patients. Importantly, heart failure is the third leading cause of death in people suffering from Parkinson's disease. Several evidences have shown the correlation between Parkinson's disease and the preexistence of cardiovascular diseases. Therefore, cardiovascular monitoring and identification of its dysfunctions can have a prodromal role for Parkinson's disease. This review presents studies of the literature that can lead to a better understanding of Parkinson's disease with special attention to its relation to heart and cardiovascular parameters.
Collapse
Affiliation(s)
- Valeria C Gonçalves
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain.,Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Lorena Cuenca-Bermejo
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Emiliano Fernandez-Villalba
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Sebastian Martin-Balbuena
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| | - Maria Jose da Silva Fernandes
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carla A Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maria-Trinidad Herrero
- Clinical & Experimental Neuroscience (NiCE), Biomedical Research Institute of Murcia (IMIB- Arrixaca), Murcia, Spain.,Clinical & Experimental Neuroscience (NiCE), Institute for Ageing Research (IUIE), School of Medicine, Campus Mare Nostrum. University of Murcia, Murcia, Spain
| |
Collapse
|
4
|
Ivanova MI, Lin Y, Lee YH, Zheng J, Ramamoorthy A. Biophysical processes underlying cross-seeding in amyloid aggregation and implications in amyloid pathology. Biophys Chem 2021; 269:106507. [PMID: 33254009 PMCID: PMC10317075 DOI: 10.1016/j.bpc.2020.106507] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
Abnormal aggregation of proteins into filamentous aggregates commonly associates with many diseases, such as Alzheimer's disease, Parkinson's disease and type-2 diabetes. These filamentous aggregates, also known as amyloids, can propagate their abnormal structures to either the same precursor molecules (seeding) or other protein monomers (cross-seeding). Cross-seeding has been implicated in the abnormal protein aggregation and has been found to facilitate the formation of physiological amyloids. It has risen to be an exciting area of research with a high volume of published reports. In this review article, we focus on the biophysical processes underlying the cross-seeding for some of the most commonly studied amyloid proteins. Here we will discuss the relevant literature related to cross-seeded polymerization of amyloid-beta, human islet amyloid polypeptide (hIAPP, or also known as amylin) and alpha-synuclein. SEVI (semen-derived enhancer of viral infection) amyloid formation by the cross-seeding between the bacterial curli protein and PAP248-286 is also briefly discussed.
Collapse
Affiliation(s)
- Magdalena I Ivanova
- Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea; Research headquarters, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Ohio, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Inoshita T, Takemoto D, Imai Y. Analysis of Dopaminergic Functions in Drosophila. Methods Mol Biol 2021; 2322:185-193. [PMID: 34043204 DOI: 10.1007/978-1-0716-1495-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dopaminergic (DA) neurons regulate various physiological functions, including motor function, emotion, learning, sleep, and arousal. Degeneration of DA neurons in the substantia nigra of the midbrain causes motor disturbance in Parkinson's disease (PD). Studies on familial PD have revealed that a subset of PD genes encode proteins that regulate mitochondrial function and synaptic dynamics. Drosophila is a powerful model of PD, whereby genetic interactions of PD genes with well-conserved cellular signaling can be evaluated. Morphological changes in mitochondria, along with dysfunction and degeneration of DA neurons, have been reported in many studies using Drosophila PD models. In this chapter, we will describe imaging methods to visualize mitochondria in DA neurons and to evaluate spontaneous neural activity of DA neurons in the Drosophila brain.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisaku Takemoto
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
6
|
Mori A, Imai Y, Hattori N. Lipids: Key Players That Modulate α-Synuclein Toxicity and Neurodegeneration in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21093301. [PMID: 32392751 PMCID: PMC7247581 DOI: 10.3390/ijms21093301] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease; it is characterized by the loss of dopaminergic neurons in the midbrain and the accumulation of neuronal inclusions, mainly consisting of α-synuclein (α-syn) fibrils in the affected regions. The prion-like property of the pathological forms of α-syn transmitted via neuronal circuits has been considered inherent in the nature of PD. Thus, one of the potential targets in terms of PD prevention is the suppression of α-syn conversion from the functional form to pathological forms. Recent studies suggested that α-syn interacts with synaptic vesicle membranes and modulate the synaptic functions. A series of studies suggest that transient interaction of α-syn as multimers with synaptic vesicle membranes composed of phospholipids and other lipids is required for its physiological function, while an α-syn-lipid interaction imbalance is believed to cause α-syn aggregation and the resultant pathological α-syn conversion. Altered lipid metabolisms have also been implicated in the modulation of PD pathogenesis. This review focuses on the current literature reporting the role of lipids, especially phospholipids, and lipid metabolism in α-syn dynamics and aggregation processes.
Collapse
Affiliation(s)
- Akio Mori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Yuzuru Imai
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (Y.I.); (N.H.); Tel.: +81-3-6801-8332 (Y.I. & N.H.)
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
- Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Correspondence: (Y.I.); (N.H.); Tel.: +81-3-6801-8332 (Y.I. & N.H.)
| |
Collapse
|
7
|
Imai Y, Meng H, Shiba-Fukushima K, Hattori N. Twin CHCH Proteins, CHCHD2, and CHCHD10: Key Molecules of Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Int J Mol Sci 2019; 20:ijms20040908. [PMID: 30791515 PMCID: PMC6412816 DOI: 10.3390/ijms20040908] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations of coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) have been found to be linked to Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and/or frontotemporal lobe dementia (FTD). CHCHD2 and CHCHD10 proteins, which are homologous proteins with 54% identity in amino acid sequence, belong to the mitochondrial coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family. A series of studies reveals that these twin proteins form a multimodal complex, producing a variety of pathophysiology by the disease-causing variants of these proteins. In this review, we summarize the present knowledge about the physiological and pathological roles of twin proteins, CHCHD2 and CHCHD10, in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Hongrui Meng
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Kahori Shiba-Fukushima
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|