1
|
Hoppe T, Kutschera U. Phenotypic plasticity in plasmodial slime molds and molecular phylogeny of terrestrial vs. aquatic species. Theory Biosci 2022; 141:313-319. [PMID: 36029433 PMCID: PMC9474427 DOI: 10.1007/s12064-022-00375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Fifty years ago, the enigmatic Brazilian myxomycete-species Didymium aquatile was described and analyzed with respect to the structure of the plasmodium and its spores. In this study, we compare this rare plasmodial slime mold with another, temporarily aquatic taxon from Europe, Didymium nigripes. Phenotypic plasticity of D. nigripes was investigated under various environmental conditions. Large changes in the morphology of the plasmodia were observed. For species identification, characteristics of the fruiting bodies are key features. However, Didymium aquatile was only characterized by its “abnormal” plasmodia, but no molecular data were available. Here, we analyzed DNA-sequences of 22 species of the genera Didymium and Diderma with a focus on this South American taxon via molecular genetics. A comparison of 18S-rDNA-sequences from D. aquatile and 21 other Didymium (and Diderma)-species indicates that D. aquatile is a reproductively isolated morpho-species. Phenotypic plasticity of D. nigripes is documented with respect to plasmodium morphology and the formation of fruiting bodies, as an example of an adaptation of a terrestrial species to aquatic environments.
Collapse
Affiliation(s)
- T Hoppe
- Research Group for Biology Education, Institute for Zoology and Evolutionary Research, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Am Steiger 3, 07743, Jena, Germany.
| | - U Kutschera
- AK Evolutionsbiologie, Neuburg, 79104, Freiburg i. Br., Germany
| |
Collapse
|
2
|
Wang W, Wang W, Wei S, Huang W, Qi B, Wang Q, Li Y. Design of potentially universal SSU primers in myxomycetes using next-generation sequencing. J Microbiol Methods 2021; 184:106203. [PMID: 33722637 DOI: 10.1016/j.mimet.2021.106203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/18/2022]
Abstract
Unlike fungi, which have a universally accepted barcode marker, universal primers still lack in myxomycetes. Typically, DNA barcode primers were designed based on comparing existing myxomycetes sequences and targeting the conserved regions. However, the extreme genetic diversity within major myxomycetes groups and the frequent occurrence of group I introns have made the development of universal DNA barcode a severe challenge. The emergence of next-generation sequencing provides an opportunity to address this problem. We sequenced the mixed genomic DNA of 81 myxomycetes and extracted the SSU gene's reads using next-generation sequencing. After alignment and assembly, we designed a set of SSU primers that matched all potential SNPs, avoided all known group I intron insertion sites, and were highly conserved between major myxomycetes orders. This set of SSU primers has the potential to become one of the universal primer combinations. Due to the high genetic divergence caused by long and complicated evolutionary histories, the lack of universal barcode primers is common in protists. Our research provides a new method to solve this problem.
Collapse
Affiliation(s)
- Wan Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wei Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shuwei Wei
- Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Wei Huang
- Key Laboratory of Applied Statistics of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Bao Qi
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Qi Wang
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Janik P, Ronikier M, Ronikier A. New protocol for successful isolation and amplification of DNA from exiguous fractions of specimens: a tool to overcome the basic obstacle in molecular analyses of myxomycetes. PeerJ 2020; 8:e8406. [PMID: 32002333 PMCID: PMC6984339 DOI: 10.7717/peerj.8406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 11/23/2022] Open
Abstract
Herbarium collections provide an essential basis for a wide array of biological research and, with development of DNA-based methods, they have become an invaluable material for genetic analyses. Yet, the use of such material is hindered by technical limitations related to DNA degradation and to quantity of biological material. The latter is inherent for some biological groups, as best exemplified by myxomycetes which form minute sporophores. It is estimated that ca. two-thirds of myxomycete taxa are represented by extremely scanty material. As DNA isolation methods applied so far in myxomycete studies require destructive sampling of many sporophores, a large part of described diversity of the group remains unavailable for phylogenetic studies or barcoding. Here, we tested several procedures of DNA isolation and amplification to seek for an efficient and possibly non-destructive method of sampling. Tests were based on herbarium specimens of 19 species representing different taxonomic orders. We assayed several variants of isolation based on silica gel membrane columns, and a newly designed procedure using highly reduced amount of biological material (small portion of spores), based on fine disruption of spores and direct PCR. While the most frequently used column-based method led to PCR success in 89.5% of samples when a large amount of material was used, its performance dropped to 52% when based on single sporophores. Single sporophores provided amplicons in 89.5% of samples when using a kit dedicated to low-amount DNA samples. Our new procedure appeared the most effective (94.7%) while it used only a small fraction of spores, being nearly non-destructive; it was also the most cost-effective. We thus demonstrate that combination of adequate handling of spore micro-disruption coupled with application of direct PCR can be an efficient way to circumvent technical limitations for genetic studies in myxomycetes and thus can substantially improve taxon sampling for phylogeny and barcoding. Additionally, this approach gives a unique possibility to apply both molecular and morphological assays to the same structure (sporophore), which then can be further stored as documentation.
Collapse
Affiliation(s)
- Paulina Janik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Michał Ronikier
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Anna Ronikier
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
4
|
Kutschera U, Hoppe T. Plasmodial slime molds and the evolution of microbial husbandry. Theory Biosci 2019; 138:127-132. [PMID: 30809766 DOI: 10.1007/s12064-019-00285-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/16/2019] [Indexed: 11/24/2022]
Abstract
Detailed analyses into the life cycle of the soil-dwelling microbe Dictyostelium discoideum led to the conclusion that this "social amoeba" practices some form of "non-monoculture farming" via the transfer of bacteria to novel environments. Herein, we show that in myxomycetes (plasmodial slime molds or myxogastrids) a similar "farming symbiosis" has evolved. Based on laboratory studies of two representative species in the genera Fuligo and Didymium, the sexual life cycle of these enigmatic microbes that feed on bacteria was reconstructed, with reference to plasmo- and karyogamy. We document that the spores carry and transfer bacteria and hence may inoculate new habitats. The significance of this finding with respect to Ernst Haeckel's work on myxomycetes and his concept of ecology are addressed.
Collapse
Affiliation(s)
- Ulrich Kutschera
- Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132, Kassel, Germany.
| | - Thomas Hoppe
- Museum für Naturkunde, Nicolaiberg 3, 07545, Gera, Germany
| |
Collapse
|
5
|
Kutschera U, Niklas KJ. Julius Sachs (1868): The father of plant physiology. AMERICAN JOURNAL OF BOTANY 2018; 105:656-666. [PMID: 29772073 DOI: 10.1002/ajb2.1078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/31/2018] [Indexed: 05/10/2023]
Abstract
The year 2018 marks the 150th anniversary of the first publication of Julius von Sachs' (1832-1897) Lehrbuch der Botanik (Textbook of Botany), which provided a comprehensive summary of what was then known about the plant sciences. Three years earlier, in 1865, Sachs produced the equally impressive Handbuch der Experimental-Physiologie der Pflanzen (Handbook of Experimental Plant Physiology), which summarized the state of knowledge in all aspects of the discipline known today as plant physiology. Both of these books provided numerous insights based on Sachs' seminal experiments. By virtue of a reliance on detailed empirical observation and the rigorous application of chemical and physical principles, it is fair to say that the publication of these two monumental works marked the beginning of what can be called "modern-day" plant science. Moreover, Sachs' Lehrbuch der Botanik prefigured the ascendance of plant molecular biology and the systems biology of photoautotrophic organisms. Regrettably, many of the insights of this great scientist have been forgotten by the generations who followed. It is only fitting, therefore, that the anniversary of the publication of the Lehrbuch der Botanik and the career of "the father of plant physiology" should be honored and reviewed, particularly because Sachs established the physiology of green organisms as an integral branch of botany and incorporated a Darwinian perspective into plant biology. Here we highlight key insights, with particular emphasis on Sachs' detailed discussion of sexual reproduction at the cellular level and his endorsement of Darwinian evolution.
Collapse
Affiliation(s)
- Ulrich Kutschera
- Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, D-34132, Kassel, Germany
| | - Karl J Niklas
- Plant Science Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Kutschera U. Basic versus applied research: Julius Sachs (1832-1897) and the experimental physiology of plants. PLANT SIGNALING & BEHAVIOR 2015; 10:e1062958. [PMID: 26146794 PMCID: PMC4883947 DOI: 10.1080/15592324.2015.1062958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 05/14/2023]
Abstract
The German biologist Julius Sachs was the first to introduce controlled, accurate, quantitative experimentation into the botanical sciences, and is regarded as the founder of modern plant physiology. His seminal monograph Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) was published 150 y ago (1865), when Sachs was employed as a lecturer at the Agricultural Academy in Poppelsdorf/Bonn (now part of the University). This book marks the beginning of a new era of basic and applied plant science. In this contribution, I summarize the achievements of Sachs and outline his lasting legacy. In addition, I show that Sachs was one of the first biologists who integrated bacteria, which he considered to be descendants of fungi, into the botanical sciences and discussed their interaction with land plants (degradation of wood etc.). This "plant-microbe-view" of green organisms was extended and elaborated by the laboratory botanist Wilhelm Pfeffer (1845-1920), so that the term "Sachs-Pfeffer-Principle of Experimental Plant Research" appears to be appropriate to characterize this novel way of performing scientific studies on green, photoautotrophic organisms (embryophytes, algae, cyanobacteria).
Collapse
|
7
|
Hoppe T, Kutschera U. Species-specific cell mobility of bacteria-feeding myxamoebae in plasmodial slime molds. PLANT SIGNALING & BEHAVIOR 2015; 10:e1074368. [PMID: 26357877 PMCID: PMC4883942 DOI: 10.1080/15592324.2015.1074368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 07/15/2015] [Indexed: 05/25/2023]
Abstract
On decaying wood or litter in forests, plasmodial slime molds (myxomycetes) represent a large fraction of eukaryotic protists that feed on bacteria. In his seminal book Experimental Physiology of Plants (1865), Julius Sachs referred to the multinucleate plasmodium of myxomycetes, which were considered at that time as primitive plants (or fungi). Today it is well established that myxomycetes are members of the Amoebozoa (Protista). In this study we compare the mobility of myxamoebae of 3 European species, Lycogala epidendrum (order Liceales), Tubulifera arachnoidea, and Trichia decipiens (order Trichiales). Using agar plates, on which 3 separate bacterial species were cultivated as prey organisms (Methylobacterium mesophilicum, Escherichia coli, Agrobacterium tumefaciens), we document large differences in cell motility between the myxomycetes investigated. In addition, we show that the 3 species of myxamoebae can be distinguished based on their average cell size. These data shed light on the mode of co-occurrence via differential substrate utilization in these members of the Amoebozoa.
Collapse
Affiliation(s)
- Thomas Hoppe
- Institute of Botany and Landscape Ecology; University of Greifswald; Greifswald, Germany
| | | |
Collapse
|
8
|
Niklas KJ, Kutschera U. Amphimixis and the individual in evolving populations: does Weismann's Doctrine apply to all, most or a few organisms? Naturwissenschaften 2014; 101:357-72. [PMID: 24633620 DOI: 10.1007/s00114-014-1164-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 11/24/2022]
Abstract
The German biologist August Weismann (1834-1914) proposed that amphimixis (sexual reproduction) creates variability for natural selection to act upon, and hence he became one of the founders of the Neo-Darwinian theory of biological evolution. He is perhaps best known for what is called "Weismann's Doctrine" or "Weismann's Barrier" (i.e. the irreversible separation of somatic and germ cell functionalities early during ontogeny in multicellular organisms). This concept provided an unassailable argument against "soft inheritance" sensu Lamarck and informed subsequent theorists that the only "individual" in the context of evolution is the mature, reproductive organism. Herein, we review representative model organisms whose embryology conforms to Weismann's Doctrine (e.g. flies and mammals) and those that do not (e.g. freshwater hydroids and plants) based on this survey and the Five Kingdoms of Life scheme; we point out that most species (notably bacteria, fungi, protists and plants) are "non-Weismannian" in ways that make a canonical definition of the "individual" problematic if not impossible. We also review critical life history functional traits that allow us to create a matrix of all theoretically conceivable life cycles (for eukaryotic algae, embryophytes, fungi and animals), which permits us to establish where this scheme Weismann's Doctrine holds true and where it does not. In addition, we argue that bacteria, the dominant organisms of the biosphere, exist in super-cellular biofilms but rarely as single (planktonic) microbes. Our analysis attempts to show that competition among genomic variants in cell lineages played a critical part in the evolution of multicellularity and life cycle diversity. This feature was largely ignored during the formulation of the synthetic theory of biological evolution and its subsequent elaborations.
Collapse
Affiliation(s)
- Karl J Niklas
- Department of Plant Biology, Cornell University, Ithaca, NY, 14893, USA,
| | | |
Collapse
|
9
|
|
10
|
|
11
|
Nandipati SCR, Haugli K, Coucheron DH, Haskins EF, Johansen SD. Polyphyletic origin of the genus Physarum (Physarales, Myxomycetes) revealed by nuclear rDNA mini-chromosome analysis and group I intron synapomorphy. BMC Evol Biol 2012; 12:166. [PMID: 22938158 PMCID: PMC3511172 DOI: 10.1186/1471-2148-12-166] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/15/2012] [Indexed: 11/14/2022] Open
Abstract
Background Physarales represents the largest taxonomic order among the plasmodial slime molds (myxomycetes). Physarales is of particular interest since the two best-studied myxomycete species, Physarum polycephalum and Didymium iridis, belong to this order and are currently subjected to whole genome and transcriptome analyses. Here we report molecular phylogeny based on ribosomal DNA (rDNA) sequences that includes 57 Physarales isolates. Results The Physarales nuclear rDNA sequences were found to be loaded with 222 autocatalytic group I introns, which may complicate correct alignments and subsequent phylogenetic tree constructions. Phylogenetic analysis of rDNA sequences depleted of introns confirmed monophyly of the Physarales families Didymiaceae and Physaraceae. Whereas good correlation was noted between phylogeny and taxonomy among the Didymiaceae isolates, significant deviations were seen in Physaraceae. The largest genus, Physarum, was found to be polyphyletic consisting of at least three well supported clades. A synapomorphy, located at the highly conserved G-binding site of L2449 group I intron ribozymes further supported the Physarum clades. Conclusions Our results provide molecular relationship of Physarales genera, species, and isolates. This information is important in further interpretations of comparative genomics nd transcriptomics. In addition, the result supports a polyphyletic origin of the genus Physarum and calls for a reevaluation of current taxonomy.
Collapse
Affiliation(s)
- Satish C R Nandipati
- RNA and Transcriptomics group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, MH-building Breivika, N-9037, Tromsø, Norway
| | | | | | | | | |
Collapse
|
12
|
Egel R. Primal eukaryogenesis: on the communal nature of precellular States, ancestral to modern life. Life (Basel) 2012; 2:170-212. [PMID: 25382122 PMCID: PMC4187143 DOI: 10.3390/life2010170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/29/2011] [Accepted: 01/11/2012] [Indexed: 02/08/2023] Open
Abstract
This problem-oriented, exploratory and hypothesis-driven discourse toward the unknown combines several basic tenets: (i) a photo-active metal sulfide scenario of primal biogenesis in the porespace of shallow sedimentary flats, in contrast to hot deep-sea hydrothermal vent conditions; (ii) an inherently complex communal system at the common root of present life forms; (iii) a high degree of internal compartmentalization at this communal root, progressively resembling coenocytic (syncytial) super-cells; (iv) a direct connection from such communal super-cells to proto-eukaryotic macro-cell organization; and (v) multiple rounds of micro-cellular escape with streamlined reductive evolution-leading to the major prokaryotic cell lines, as well as to megaviruses and other viral lineages. Hopefully, such nontraditional concepts and approaches will contribute to coherent and plausible views about the origins and early life on Earth. In particular, the coevolutionary emergence from a communal system at the common root can most naturally explain the vast discrepancy in subcellular organization between modern eukaryotes on the one hand and both archaea and bacteria on the other.
Collapse
Affiliation(s)
- Richard Egel
- Department of Biology, University of Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
13
|
From morphological to molecular: studies of myxomycetes since the publication of the Martin and Alexopoulos (1969) monograph. FUNGAL DIVERS 2011. [DOI: 10.1007/s13225-011-0113-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Spiegel FW. Commentary on the chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms. Proc Biol Sci 2011; 278:2096-7. [PMID: 21561976 DOI: 10.1098/rspb.2011.0608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Frederick W Spiegel
- Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
15
|
Schauer S, Kutschera U. A novel growth-promoting microbe, Methylobacterium funariae sp. nov., isolated from the leaf surface of a common moss. PLANT SIGNALING & BEHAVIOR 2011; 6:510-5. [PMID: 21673511 PMCID: PMC3142378 DOI: 10.4161/psb.6.4.14335] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/30/2010] [Indexed: 05/21/2023]
Abstract
Land plants (embryophytes) evolved in the presence of prokaryotic microbes. As a result, numerous mutually beneficial associations (symbioses) developed that can be analyzed using a variety of methods. Here we describe the isolation and characterization of a new pink-pigmented facultatively methylotrophic symbiotic bacterium of the genus Methylobacterium (laboratory strain F3.2) that was isolated from the gametophytic phylloids of the common cord moss Funaria hygrometrica Hedw. Plantlets were collected in the field and analyzed in the laboratory. Colonies of methylobacteria were obtained by the agar-impression-method. Based on its unique phenotype (the bacterial cells are characterized by fimbriae-like appendages), a comparative 16S rRNA gene (DNA) sequence analysis, and an average DNA-DNA hybridization value of 8,4 %, compared with its most closely related sister taxon, this isolate is described as a new species, Methylobacterium funariae sp. nov. (type strain F3.2). This new epiphytic bacterium inhabits the leaf surface of "primitive" land plants such as mosses and interacts with its host organism via the secretion of phytohormones (cytokinines, auxins). These external signals are perceived by the plant cells that divide and grow more rapidly than in the absence of their prokaryotic phytosymbionts. We suggest that M. funariae sp. nov. uses methanol emitted from the stomatal pores as principal carbon source for cell metabolism. However, our novel data indicate that, in this unique symbiotic plant-microbe interaction, the uptake of amino acids leached from the surface of the epidermal cells of the green host organism may be of importance as microbial carbon- and nitrogen-source.
Collapse
Affiliation(s)
- S Schauer
- Institute of Biology, University of Kassel, Kassel, Germany
| | | |
Collapse
|