1
|
Xie X, Gao M, Zhao W, Li C, Zhang W, Yang J, Zhang Y, Chen E, Guo Y, Guo Z, Zhang M, Ngowi EE, Wang H, Wang X, Zhu Y, Wang Y, Li X, Yao H, Yan L, Fang F, Li M, Qiao A, Liu X. LncRNA Snhg3 aggravates hepatic steatosis via PPARγ signaling. eLife 2024; 13:RP96988. [PMID: 39436790 PMCID: PMC11495842 DOI: 10.7554/elife.96988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
LncRNAs are involved in modulating the individual risk and the severity of progression in metabolic dysfunction-associated fatty liver disease (MASLD), but their precise roles remain largely unknown. This study aimed to investigate the role of lncRNA Snhg3 in the development and progression of MASLD, along with the underlying mechanisms. The result showed that Snhg3 was significantly downregulated in the liver of high-fat diet-induced obesity (DIO) mice. Notably, palmitic acid promoted the expression of Snhg3 and overexpression of Snhg3 increased lipid accumulation in primary hepatocytes. Furthermore, hepatocyte-specific Snhg3 deficiency decreased body and liver weight, alleviated hepatic steatosis and promoted hepatic fatty acid metabolism in DIO mice, whereas overexpression induced the opposite effect. Mechanistically, Snhg3 promoted the expression, stability and nuclear localization of SND1 protein via interacting with SND1, thereby inducing K63-linked ubiquitination modification of SND1. Moreover, Snhg3 decreased the H3K27me3 level and induced SND1-mediated chromatin loose remodeling, thus reducing H3K27me3 enrichment at the Pparg promoter and enhancing PPARγ expression. The administration of PPARγ antagonist T0070907 improved Snhg3-aggravated hepatic steatosis. Our study revealed a new signaling pathway, Snhg3/SND1/H3K27me3/PPARγ, responsible for mice MASLD and indicates that lncRNA-mediated epigenetic modification has a crucial role in the pathology of MASLD.
Collapse
Affiliation(s)
- Xianghong Xie
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Mingyue Gao
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Wei Zhao
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Chunmei Li
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Weihong Zhang
- Department of Microbiology and Immunology, Shanxi Medical UniversityTaiyuanChina
| | - Jiahui Yang
- Department of Microbiology and Immunology, Shanxi Medical UniversityTaiyuanChina
| | - Yinliang Zhang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yanfang Guo
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Zeyu Guo
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Minglong Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Ebenezeri Erasto Ngowi
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of SciencesZhongshanChina
| | - Heping Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaoman Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yinghan Zhu
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yiting Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaolu Li
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Hong Yao
- Department of Microbiology and Immunology, Shanxi Medical UniversityTaiyuanChina
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Fude Fang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Meixia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Aijun Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of SciencesZhongshanChina
| | - Xiaojun Liu
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Xie X, Gao M, Wang H, Zhang M, Zhao W, Li C, Zhang W, Yang J, Zhang Y, Chen E, Guo Y, Guo Z, Ngowi EE, Wang X, Zhu Y, Wang Y, Li X, Yao H, Yan L, Fang F, Li M, Qiao A, Liu X. LncRNA-Snhg3 regulates mouse hepatic glycogenesis under normal chow diet. FASEB J 2024; 38:e23880. [PMID: 39132919 DOI: 10.1096/fj.202401064r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/17/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Long noncoding RNAs (lncRNAs) are strongly associated with glucose homeostasis, but their roles remain largely unknown. In this study, the potential role of lncRNA-Snhg3 in glucose metabolism was evaluated both in vitro and in vivo. Here, we found a positive relationship between Snhg3 and hepatic glycogenesis. Glucose tolerance improved in hepatocyte-specific Snhg3 knock-in (Snhg3-HKI) mice, while it worsened in hepatocyte-specific Snhg3 knockout (Snhg3-HKO) mice. Furthermore, hepatic glycogenesis had shown remarkable increase in Snhg3-HKI mice and reduction in Snhg3-HKO mice, respectively. Mechanistically, Snhg3 increased mRNA and protein expression levels of PPP1R3B through inducing chromatin remodeling and promoting the phosphorylation of protein kinase B. Collectively, these results suggested that lncRNA-Snhg3 plays a critical role in hepatic glycogenesis.
Collapse
Affiliation(s)
- Xianghong Xie
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Mingyue Gao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Heping Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Minglong Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Zhao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Chunmei Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Weihong Zhang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jiahui Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Yinliang Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yanfang Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zeyu Guo
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ebenezeri Erasto Ngowi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China
| | - Xiaoman Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yinghan Zhu
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yiting Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaolu Li
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hong Yao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fude Fang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Meixia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Aijun Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China
| | - Xiaojun Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Klapproth C, Sen R, Stadler PF, Findeiß S, Fallmann J. Common Features in lncRNA Annotation and Classification: A Survey. Noncoding RNA 2021; 7:77. [PMID: 34940758 PMCID: PMC8708962 DOI: 10.3390/ncrna7040077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are widely recognized as important regulators of gene expression. Their molecular functions range from miRNA sponging to chromatin-associated mechanisms, leading to effects in disease progression and establishing them as diagnostic and therapeutic targets. Still, only a few representatives of this diverse class of RNAs are well studied, while the vast majority is poorly described beyond the existence of their transcripts. In this review we survey common in silico approaches for lncRNA annotation. We focus on the well-established sets of features used for classification and discuss their specific advantages and weaknesses. While the available tools perform very well for the task of distinguishing coding sequence from other RNAs, we find that current methods are not well suited to distinguish lncRNAs or parts thereof from other non-protein-coding input sequences. We conclude that the distinction of lncRNAs from intronic sequences and untranslated regions of coding mRNAs remains a pressing research gap.
Collapse
Affiliation(s)
- Christopher Klapproth
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| | - Rituparno Sen
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), D-97080 Würzburg, Germany;
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, D-04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Vienna, Austria
- Facultad de Ciencias, Universidad National de Colombia, Bogotá CO-111321, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; (C.K.); (P.F.S.); (S.F.)
| |
Collapse
|