1
|
Ma L, Fan ZY, Lian WQ, Wei XF, Bao RY, Yang W. Nanoplastics and microplastics released from an enzyme-embedded biodegradable polyester during hydrolysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137640. [PMID: 39970644 DOI: 10.1016/j.jhazmat.2025.137640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Embedding enzyme in biodegradable polyester accelerates hydrolysis in environments it ends up, but the release of microplastics (MPs) and nanoplastics (NPs) during this process remains underexplored. This work investigated the evolution of MPs and NPs released from poly(ε-caprolactone) (PCL) with embedded Lipase PS. The embedded enzyme significantly accelerated hydrolysis, causing the PCL film to disappear within 96 h. Notably, the formation rates and quantities of MPs and NPs were much higher compared to film with external enzyme. At 96 h, MPs (3.55 ×105 particles/mL) was 2.4 times, and NPs (4.65 ×107 particles/mL) was an order of magnitude higher than that with external enzyme. After 130 days, although both quantities and average size of MPs and NPs decreased due to only 90.6 % of enzymes were detected leaking, they did not completely disappear. The quantities of MPs and NPs were comparable to that with external enzyme, and the average size of MPs remained 1 μm. The simultaneous erosion inside film macroscopically, and severe chain cleavage microscopically, contributed to feasible film disintegration and formation of high amounts MPs and NPs. These findings underscore the importance of managing the release of MPs and NPs during the hydrolysis of enzyme-embedded biodegradable polyesters to ensure safety and mitigate environmental impact.
Collapse
Affiliation(s)
- Ling Ma
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China
| | - Zi-Yang Fan
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China
| | - Wen-Qian Lian
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China
| | - Xin-Feng Wei
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE 100 44, Sweden
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China.
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Hussain SM, Sharif A, Bashir F, Ali S, Javid A, Hussain AI, Ghafoor A, Alshehri MA, Naeem A, Naeem E, Amjad M. Polymerase Chain Reaction: A Toolbox for Molecular Discovery. Mol Biotechnol 2025:10.1007/s12033-025-01390-z. [PMID: 39955471 DOI: 10.1007/s12033-025-01390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/23/2025] [Indexed: 02/17/2025]
Abstract
Polymerase chain reaction (PCR), a revolutionary molecular tool, has transformed genetic studies by facilitating rapid DNA amplification. The PCR process relies on several key components: a DNA template or cDNA, two primers, Taq polymerase, nucleotides, and a buffer. These elements collectively facilitate the amplification process, which comprises three stages: denaturation, annealing, and extension. These stages are repeated in cycles to exponentially amplify the target DNA sequence. Furthermore, the power of PCR lies in its ability to generate exponential copies of target DNA in a remarkably short period. Moreover, various PCR techniques are available, encompassing traditional approaches like quantitative PCR, reverse transcription PCR, and nested PCR, as well as innovative methods such as extreme PCR, inverse PCR, and touchdown PCR. These techniques are extensively utilized in molecular, biological, and medical research laboratories for both research and diagnostic applications. This review explores a comprehensive overview of PCR, covering its history, underlying principles, and diverse applications in diagnostics, research, and drug development.
Collapse
Affiliation(s)
- Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan.
| | - Aqsa Sharif
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Fatima Bashir
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Arshad Javid
- Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdullah Ijaz Hussain
- Department of Chemistry, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Abdul Ghafoor
- Center for Water and Environmental Studies, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Mohammad Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Adan Naeem
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Eman Naeem
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Muhammad Amjad
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan
| |
Collapse
|
3
|
Saavedra DEM, Baltar F. Multifunctionality of alkaline phosphatase in ecology and biotechnology. Curr Opin Biotechnol 2025; 91:103229. [PMID: 39615073 DOI: 10.1016/j.copbio.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 02/11/2025]
Abstract
Multifunctional enzymes can significantly impact biotechnological applications by performing activities beyond their primary functions. This review explores the role of the multifunctionality of alkaline phosphatase, a key enzyme in the phosphorus cycle, focusing on the molecular mechanisms influencing its activity and its biotechnological potential. We argue that understanding these aspects can enhance the utility of alkaline phosphatase in research and industry, fostering innovations in enzyme engineering, environmental biotechnology, and metabolic engineering. By exploring enzyme promiscuity, we highlight alkaline phosphatase's versatility, paving the way for advancements in sustainable agriculture, environmental remediation, and clinical diagnostics. Further research will unlock new applications and catalytic efficiencies, driving forward ecological and biotechnological progress.
Collapse
Affiliation(s)
- Daniel E M Saavedra
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
| | - Federico Baltar
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China; Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Kuddus M, Roohi, Bano N, Sheik GB, Joseph B, Hamid B, Sindhu R, Madhavan A. Cold-active microbial enzymes and their biotechnological applications. Microb Biotechnol 2024; 17:e14467. [PMID: 38656876 PMCID: PMC11042537 DOI: 10.1111/1751-7915.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Microorganisms known as psychrophiles/psychrotrophs, which survive in cold climates, constitute majority of the biosphere on Earth. Their capability to produce cold-active enzymes along with other distinguishing characteristics allows them to survive in the cold environments. Due to the relative ease of large-scale production compared to enzymes from plants and animals, commercial uses of microbial enzyme are alluring. The ocean depths, polar, and alpine regions, which make up over 85% of the planet, are inhabited to cold ecosystems. Microbes living in these regions are important for their metabolic contribution to the ecosphere as well as for their enzymes, which may have potential industrial applications. Cold-adapted microorganisms are a possible source of cold-active enzymes that have high catalytic efficacy at low and moderate temperatures at which homologous mesophilic enzymes are not active. Cold-active enzymes can be used in a variety of biotechnological processes, including food processing, additives in the detergent and food industries, textile industry, waste-water treatment, biopulping, environmental bioremediation in cold climates, biotransformation, and molecular biology applications with great potential for energy savings. Genetically manipulated strains that are suitable for producing a particular cold-active enzyme would be crucial in a variety of industrial and biotechnological applications. The potential advantage of cold-adapted enzymes will probably lead to a greater annual market than for thermo-stable enzymes in the near future. This review includes latest updates on various microbial source of cold-active enzymes and their biotechnological applications.
Collapse
Affiliation(s)
- Mohammed Kuddus
- Department of Biochemistry, College of MedicineUniversity of HailHailSaudi Arabia
| | - Roohi
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | - Naushin Bano
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | | | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Burhan Hamid
- Center of Research for DevelopmentUniversity of KashmirSrinagarIndia
| | - Raveendran Sindhu
- Department of Food TechnologyTKM Institute of TechnologyKollamKeralaIndia
| | - Aravind Madhavan
- School of BiotechnologyAmrita Vishwa Vidyapeetham, AmritapuriKollamKeralaIndia
| |
Collapse
|
5
|
Oh DE, Kim HB, Kim TH. Electrochemical DNA Cleavage Sensing for EcoRV Activity and Inhibition with an ERGO Electrode. BIOSENSORS 2024; 14:73. [PMID: 38391992 PMCID: PMC10886839 DOI: 10.3390/bios14020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
An electrochemically reduced graphene oxide (ERGO) electrode-based electrochemical assay was developed for rapid, sensitive, and straightforward analysis of both activity and inhibition of the endonuclease EcoRV. The procedure uses a DNA substrate designed for EcoRV, featuring a double-stranded DNA (dsDNA) region labeled with methylene blue (MB) and a single-stranded DNA (ssDNA) region immobilized on the ERGO surface. The ERGO electrode, immobilized with the DNA substrate, was subsequently exposed to a sample containing EcoRV. Upon enzymatic hydrolysis, the cleaved dsDNA fragments were detached from the ERGO surface, leading to a decrease in the MB concentration near the electrode. This diminished the electron transfer efficiency for MB reduction, resulting in a decreased reduction current. This assay demonstrates excellent specificity and high sensitivity, with a limit of detection (LOD) of 9.5 × 10-3 U mL-1. Importantly, it can also measure EcoRV activity in the presence of aurintricarboxylic acid, a known inhibitor, highlighting its potential for drug discovery and clinical diagnostic applications.
Collapse
Affiliation(s)
| | | | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea; (D.E.O.); (H.B.K.)
| |
Collapse
|
6
|
Ma Z, Chen H, Yang Y, Gao S, Yang J, Cui S, Zhou S, Jiang B, Zou B, Sun M, Wang L. Characterization of an ssDNA ligase and its application in aptamer circularization. Anal Biochem 2024; 685:115409. [PMID: 38006953 DOI: 10.1016/j.ab.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Aptamers are widely used in various biomedical areas as novel molecular recognition elements, however, short single-stranded DNA (ssDNA) or RNA oligonucleotides are easily degraded by nucleases in biological fluids. This problem can be solved by circularizing aptamers with circular ligases. Herein, a moderately thermostable ssDNA ligase was expressed and purified. The purified ligase showed good circularization activity for different length substrates and much higher circularization efficiency than T4 RNA ligase 1. Biochemical characterization revealed that the enzyme showed optimal circularization activity at pH 7.5 and 50 ᵒC. Mn2+ and Mg2+ increased enzyme circularization activity, with Mn2+ having higher activity than Mg2+. The optimal concentrations of Mn2+ and ligase were 1.25-2.5 mM and 0.02 nM, respectively. The kinetic parameters Km, Vmax and Kcat of ssDNA ligase were 1.16 μM, 10.71 μM/min, and 10.7 min-1, respectively. The ssDNA ligase efficiency was nucleotide-dependent, and 5'-G and 3'-T were the most ligase-favored terminal nucleotides. In addition, the affinity and stability of the circular aptamer were determined. The affinity constant (KD) was 4.9 μM, and the stability increased compared to its linear form. Molecular docking results showed that the circular aptamer bound to the target via two hydrogen bonds. This study provides a simple and efficient aptamer circularization modification method for improving aptamer stability and expanding its applications.
Collapse
Affiliation(s)
- Zhenxia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Han Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yao Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Siyi Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Jiaping Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Shihai Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Shiyuan Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Boyang Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Bin Zou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Kalendar R, Ivanov KI, Samuilova O, Kairov U, Zamyatnin AA. Isolation of High-Molecular-Weight DNA for Long-Read Sequencing Using a High-Salt Gel Electroelution Trap. Anal Chem 2023; 95:17818-17825. [PMID: 37993972 DOI: 10.1021/acs.analchem.3c03894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Long-read sequencing technologies require high-molecular-weight (HMW) DNA of sufficient purity and integrity, which can be difficult to obtain from complex biological samples. We propose a method for purifying HMW DNA that takes advantage of the fact that DNA's electrophoretic mobility decreases in a high-ionic-strength environment. The method begins with the separation of HMW DNA from various impurities by electrophoresis in an agarose gel-filled channel. After sufficient separation, a high-salt gel block is placed ahead of the DNA band of interest, leaving a gap between the separating gel and the high-salt gel that serves as a reservoir for sample collection. The DNA is then electroeluted from the separating gel into the reservoir, where its migration slows due to electrostatic shielding of the DNA's negative charge by excess counterions from the high-salt gel. As a result, the reservoir accumulates HMW DNA of high purity and integrity, which can be easily collected and used for long-read sequencing and other demanding applications without additional desalting. The method is simple and inexpensive, yields sequencing-grade HMW DNA even from difficult plant and soil samples, and has the potential for automation and scalability.
Collapse
Affiliation(s)
- Ruslan Kalendar
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki 00014, Finland
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Konstantin I Ivanov
- Department of Microbiology, University of Helsinki, Helsinki 00014, Finland
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354340, Russian Federation
| | - Olga Samuilova
- Department of Biological Chemistry, Institute of Biodesign and Modeling of Complex Systems, Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation
- HSE University, Faculty of Biology and Biotechnology, Moscow 117418, Russian Federation
| | - Ulykbek Kairov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi 354340, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russian Federation
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russian Federation
| |
Collapse
|
8
|
Wang M, Liu H, Ren J, Huang Y, Deng Y, Liu Y, Chen Z, Chow FWN, Leung PHM, Li S. Enzyme-Assisted Nucleic Acid Amplification in Molecular Diagnosis: A Review. BIOSENSORS 2023; 13:bios13020160. [PMID: 36831926 PMCID: PMC9953907 DOI: 10.3390/bios13020160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/12/2023]
Abstract
Infectious diseases and tumors have become the biggest medical challenges in the 21st century. They are driven by multiple factors such as population growth, aging, climate change, genetic predispositions and more. Nucleic acid amplification technologies (NAATs) are used for rapid and accurate diagnostic testing, providing critical information in order to facilitate better follow-up treatment and prognosis. NAATs are widely used due their high sensitivity, specificity, rapid amplification and detection. It should be noted that different NAATs can be selected according to different environments and research fields; for example, isothermal amplification with a simple operation can be preferred in developing countries or resource-poor areas. In the field of translational medicine, CRISPR has shown great prospects. The core component of NAAT lies in the activity of different enzymes. As the most critical material of nucleic acid amplification, the key role of the enzyme is self-evident, playing the upmost important role in molecular diagnosis. In this review, several common enzymes used in NAATs are compared and described in detail. Furthermore, we summarize both the advances and common issues of NAATs in clinical application.
Collapse
Affiliation(s)
- Meiling Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jie Ren
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yunqi Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuan Liu
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
9
|
Abula A, Yang T, Zhang Y, Li T, Ji X. Enhancement of Escherichia coli Ribonuclease R Cytosine-Sensitive Activity by Single Amino Acid Substitution. Mol Biotechnol 2023; 65:108-115. [PMID: 35838865 DOI: 10.1007/s12033-022-00533-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Exoribonucleases are frequently used as nuclei acids detection tools for their sequences, modifications, and structures. Escherichia coli ribonuclease R (EcR) is the prototypical exoribonuclease of the RNase II/RNB family degrading RNA in the 3'-5' direction. Different from RNase II, EcR is capable of degrading structured RNA efficiently, which makes it a potential analysis tool for various RNA species. In this work, we examined the nuclease activity of EcR degrading a series of RNA substrates with various sequences. Our biochemical work reveals that EcR is significantly sensitive to cytosine compared with other bases when catalyzing RNA degradation. EcR shows higher cytosine sensitivity compared to its homolog RNase II when degrading RNAs, and the hydrolysis process of EcR is transiently halted and produces apparent intermediate product when the 1-nt upstream of C is A or U, or G. Furthermore, the substitution of glycine with proline (G273P) in EcR enhances its cytosine sensitivity. These findings expand our understanding of EcR enzymatic activities. The EcR G273P mutant bearing higher cytosine sensitivity could help enrich cytosine trails in RNAs and will have potential implications in the detection and analysis of various RNA species especially small RNAs in biological and clinical samples.
Collapse
Affiliation(s)
- Abudureyimu Abula
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.,School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Tingting Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Yingxin Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China. .,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China. .,Ministry of Education, Engineering Research Center of Protein and Peptide Medicine, Nanjing, China.
| |
Collapse
|
10
|
Zaborowska M, Bernat K. The development of recycling methods for bio-based materials - A challenge in the implementation of a circular economy: A review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:68-80. [PMID: 35765777 PMCID: PMC9925894 DOI: 10.1177/0734242x221105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
This review focuses on the characteristics of the most widely used biopolymers that contain starch, polylactic acid, cellulose and/or polybutylene succinate. Because worldwide production of bio-based materials has grown dynamically, their waste is increasingly found in the existing waste treatment plants. The development of recycling methods for bio-based materials remains a challenge in the implementation of a circular economy. This article summarizes the recycling methods for bio-based materials, which, in the hierarchy of waste management, is much more desirable than landfilling. Several methods of recycling are available for the end-of-life management of bio-based products, which include mechanical (reuse of waste as a valuable raw material for further processing), chemical (feedstock recycling) and organic (anaerobic digestion or composting) ones. The use of chemical or mechanical recycling is less favourable, more costly and requires the improvement of systems for separation of bio-based materials from the rest of the waste stream. Organic recycling can be a sustainable alternative to those two methods. In organic recycling, bio-based materials can be biologically treated under aerobic or anaerobic conditions, depending on the characteristics of the materials. The choice of the recycling method to be implemented depends on the economic situation and on the properties of the bio-based products and their susceptibility to degradation. Thus, it is necessary to label the products to indicate which method of recycling is most appropriate.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Magdalena Zaborowska, Department of
Environmental Biotechnology, University of Warmia and Mazury in
Olsztyn, Sloneczna 45G, Olsztyn 10-709, Poland.
| | | |
Collapse
|
11
|
Shirshikov FV, Bespyatykh JA. Loop-Mediated Isothermal Amplification: From Theory to Practice. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:1159-1174. [PMID: 36590469 PMCID: PMC9788664 DOI: 10.1134/s106816202206022x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022]
Abstract
Increasing the accuracy of pathogen identification and reducing the duration of analysis remain relevant for modern molecular diagnostics up to this day. In laboratory and clinical practice, detection of pathogens mostly relies on methods of nucleic acid amplification, among which the polymerase chain reaction (PCR) is considered the "gold standard." Nevertheless, in some cases, isothermal amplification methods act as an alternative to PCR diagnostics. Upon more than thirty years of the development of isothermal DNA synthesis, the appearance of loop-mediated isothermal amplification (LAMP) has enabled new directions of in-field diagnostics of bacterial and viral infections. This review examines the key characteristics of the LAMP method and corresponding features in practice. We discuss the structure of LAMP amplicons with single-stranded loops, which have the sites for primer annealing under isothermal conditions. The latest achievements in the modification of the LAMP method are analyzed, which allow considering it as a unique platform for creating the next-generation diagnostic assays.
Collapse
Affiliation(s)
- F. V. Shirshikov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - J. A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| |
Collapse
|
12
|
Integrated Omics Reveal Time-Resolved Insights into T4 Phage Infection of E. coli on Proteome and Transcriptome Levels. Viruses 2022; 14:v14112502. [PMID: 36423111 PMCID: PMC9697503 DOI: 10.3390/v14112502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages are highly abundant viruses of bacteria. The major role of phages in shaping bacterial communities and their emerging medical potential as antibacterial agents has triggered a rebirth of phage research. To understand the molecular mechanisms by which phages hijack their host, omics technologies can provide novel insights into the organization of transcriptional and translational events occurring during the infection process. In this study, we apply transcriptomics and proteomics to characterize the temporal patterns of transcription and protein synthesis during the T4 phage infection of E. coli. We investigated the stability of E. coli-originated transcripts and proteins in the course of infection, identifying the degradation of E. coli transcripts and the preservation of the host proteome. Moreover, the correlation between the phage transcriptome and proteome reveals specific T4 phage mRNAs and proteins that are temporally decoupled, suggesting post-transcriptional and translational regulation mechanisms. This study provides the first comprehensive insights into the molecular takeover of E. coli by bacteriophage T4. This data set represents a valuable resource for future studies seeking to study molecular and regulatory events during infection. We created a user-friendly online tool, POTATO4, which is available to the scientific community and allows access to gene expression patterns for E. coli and T4 genes.
Collapse
|
13
|
Hu H, Li J, Wang Q, Ouyang X, Wang J, Zhao YL, Kang C, Zhang R, Zhu J. Efficient Synthesis of Itaconate Polyesters with Amine-Triggered Rapid Degradation and Outstanding Mechanical Properties: An Experimental and Theoretical Study on Degradation Mechanisms. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianfeng Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cheng Kang
- Department of Otolaryngology − Head & Neck Surgery, HuaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China
| | - Ruoyu Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
14
|
Marco-Dufort B, Janczy JR, Hu T, Lütolf M, Gatti F, Wolf M, Woods A, Tetter S, Sridhar BV, Tibbitt MW. Thermal stabilization of diverse biologics using reversible hydrogels. SCIENCE ADVANCES 2022; 8:eabo0502. [PMID: 35930644 PMCID: PMC9355364 DOI: 10.1126/sciadv.abo0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Improving the thermal stability of biologics, including vaccines, is critical to reduce the economic costs and health risks associated with the cold chain. Here, we designed a versatile, safe, and easy-to-use reversible PEG-based hydrogel platform formed via dynamic covalent boronic ester cross-linking for the encapsulation, stabilization, and on-demand release of biologics. Using these reversible hydrogels, we thermally stabilized a wide range of biologics up to 65°C, including model enzymes, heat-sensitive clinical diagnostic enzymes (DNA gyrase and topoisomerase I), protein-based vaccines (H5N1 hemagglutinin), and whole viruses (adenovirus type 5). Our data support a generalized protection mechanism for the thermal stabilization of diverse biologics using direct encapsulation in reversible hydrogels. Furthermore, preliminary toxicology data suggest that the components of our hydrogel are safe for in vivo use. Our reversible hydrogel platform offers a simple material solution to mitigate the costs and risks associated with reliance on a continuous cold chain for biologic transport and storage.
Collapse
Affiliation(s)
- Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Tianjing Hu
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Marco Lütolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Francesco Gatti
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Morris Wolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Alex Woods
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
15
|
Huang D, Liu TY, Nie Y, Lu B, Zhen ZC, Xu PY, Wang GX, Zou GJ, Ji JH. Trickily designed copolyesters degraded in both land and sea - confirmed by the successful capture of degradation end product CO2. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Krauklis AE, Karl CW, Rocha IBCM, Burlakovs J, Ozola-Davidane R, Gagani AI, Starkova O. Modelling of Environmental Ageing of Polymers and Polymer Composites-Modular and Multiscale Methods. Polymers (Basel) 2022; 14:216. [PMID: 35012240 PMCID: PMC8747293 DOI: 10.3390/polym14010216] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/29/2021] [Indexed: 12/04/2022] Open
Abstract
Service lifetimes of polymers and polymer composites are impacted by environmental ageing. The validation of new composites and their environmental durability involves costly testing programs, thus calling for more affordable and safe alternatives, and modelling is seen as such an alternative. The state-of-the-art models are systematized in this work. The review offers a comprehensive overview of the modular and multiscale modelling approaches. These approaches provide means to predict the environmental ageing and degradation of polymers and polymer composites. Furthermore, the systematization of methods and models presented herein leads to a deeper and reliable understanding of the physical and chemical principles of environmental ageing. As a result, it provides better confidence in the modelling methods for predicting the environmental durability of polymeric materials and fibre-reinforced composites.
Collapse
Affiliation(s)
- Andrey E. Krauklis
- Institute for Mechanics of Materials, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia;
| | | | - Iuri B. C. M. Rocha
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands;
| | - Juris Burlakovs
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, 5 Kreutzwaldi St., 51014 Tartu, Estonia;
| | - Ruta Ozola-Davidane
- Faculty of Geography and Earth Sciences, University of Latvia, Raina Blvd 19, LV-1586 Riga, Latvia;
| | - Abedin I. Gagani
- Siemens Digital Industries Software, Via Werner von Siemens 1, 20128 Milan, Italy;
| | - Olesja Starkova
- Institute for Mechanics of Materials, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia;
| |
Collapse
|
17
|
Approaching Sites of Action of Temozolomide for Pharmacological and Clinical Studies in Glioblastoma. Biomedicines 2021; 10:biomedicines10010001. [PMID: 35052681 PMCID: PMC8772814 DOI: 10.3390/biomedicines10010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Temozolomide (TMZ), together with bulk resection and focal radiotherapy, is currently a standard of care for glioblastoma. Absorption, distribution, metabolism, and excretion (ADME) parameters, together with the mode of action of TMZ, make its biochemical and biological action difficult to understand. Accurate understanding of the mode of action of TMZ and the monitoring of TMZ at its anatomical, cellular, and molecular sites of action (SOAs) would greatly benefit precision medicine and the development of novel therapeutic approaches in combination with TMZ. In the present perspective article, we summarize the known ADME parameters and modes of action of TMZ, and we review the possible methodological options to monitor TMZ at its SOAs. We focus our descriptions of methodologies on mass spectrometry-based approaches, and all related considerations are taken into account regarding the avoidance of artifacts in mass spectrometric analysis during sampling, sample preparation, and the evaluation of results. Finally, we provide an overview of potential applications for precision medicine and drug development.
Collapse
|
18
|
Yan X, Shu Q, Zhao K, Xiao Y, Ai F, Zheng X. Chemiluminescence "signal-on-off" dual signals ratio biosensor based on single-stranded DNA functions as guy wires to detect EcoR V. Talanta 2021; 235:122749. [PMID: 34517617 DOI: 10.1016/j.talanta.2021.122749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
Signal output mode is the important part of biosensor. In general, "signal on" and "signal off" are two common output modes. The development of dual signals-based ratio analysis as a powerful diagnostic tool has attracted widespread attention in the biosensor field in recent years. Dual signals ratio sensors with "signal on" and "signal off" are more favored because of their low background signal and better sensitivity and selectivity. In this study, inspired by the idea that EcoR V can cut specific sites of DNA to produce two corresponding fragments, and by using the capturing probe as guy wires, a reliable and sensitive method for EcoR V assay is developed based on the ratio of dual chemiluminescence (CL) signals for the first time. In particular, in the existence of the objective EcoR V, the substrate DNA would be degraded into two double stranded oligonucleotides with blunt ends which include the sequence I and the sequence II, then they can separately compete with two different corresponding capture probes on magnetic beads (MBs). One of capture probe hybridized with the sequence I containing more guanine (G) bases that reacted with the phenylglyoxal (PG) to produce chemical reaction which triggered a positive CL signal output I + CL as "signal-on"; another capture probe is priority to hybridize the sequence II, which triggered the weaker reporter DNA linked with horseradish peroxidase (HRP) probe to fall off the MBs, thereby outputting a negative CL signal I-CL as "signal-off". By comparing the linear relation and the correlation coefficient, the I-CL/I + CL ratio method has better linear relation (0.01-10 U/mL) and higher sensitivity (0.0045 U/mL). In addition, this developed strategy of high selectivity which can directly detect low concentration of target EcoR V in human serum, and thus this dual ratio biosensor might offer a promising detection approach for clinical diagnostics.
Collapse
Affiliation(s)
- Xiluan Yan
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qinglei Shu
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Kun Zhao
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yipi Xiao
- Department of Orthopedics, Hongdu Traditional Chinese Medicine Hospital, Nanchang, 330031, China
| | - Fanrong Ai
- School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiangjuan Zheng
- College of Chemistry, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
19
|
Sutton JM, Kim J, El Zahar NM, Bartlett MG. BIOANALYSIS AND BIOTRANSFORMATION OF OLIGONUCLEOTIDE THERAPEUTICS BY LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:334-358. [PMID: 32588492 DOI: 10.1002/mas.21641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/05/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Since 2016, eight new oligonucleotide therapies have been approved which has led to increased interest in oligonucleotide analysis. There is a particular need for powerful bioanalytical tools to study the metabolism and biotransformation of these molecules. This review provides the background on the biological basis of these molecules as currently used in therapies. The article also reviews the current state of analytical methodology including state of the art sample preparation techniques, liquid chromatography-mass spectrometry methods, and the current limits of detection/quantitation. Finally, the article summarizes the challenges in oligonucleotide bioanalysis and provides future perspectives for this emerging field. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- James Michael Sutton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| | - Jaeah Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| | - Noha M El Zahar
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo, 11566, Egypt
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| |
Collapse
|
20
|
Shen Y, Li H, Zhao J, Tang S, Zhao Y, Bi Y, Chen X. The digestive system of mandarin fish (Siniperca chuatsi) can adapt to domestication by feeding with artificial diet. AQUACULTURE 2021; 538:736546. [DOI: 10.1016/j.aquaculture.2021.736546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
|
21
|
Takahashi M, Tehseen M, Salunke R, Takahashi E, Mfarrej S, Sobhy MA, Alhamlan FS, Hala S, Ramos-Mandujano G, Al-Qahtani AA, Alofi FS, Alsomali A, Hashem AM, Khogeer A, Almontashiri NAM, Lee JM, Mon H, Sakashita K, Li M, Kusakabe T, Pain A, Hamdan SM. Quick and Easy Assembly of a One-Step qRT-PCR Kit for COVID-19 Diagnostics Using In-House Enzymes. ACS OMEGA 2021; 6:7374-7386. [PMID: 33778250 PMCID: PMC7986002 DOI: 10.1021/acsomega.0c05635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
One-step reverse-transcription quantitative polymerase chain reaction (qRT-PCR) is the most widely applied method for COVID-19 diagnostics. Notwithstanding the facts that one-step qRT-PCR is well suited for the diagnosis of COVID-19 and that there are many commercially available one-step qRT-PCR kits in the market, their high cost and unavailability due to airport closures and shipment restriction became a major bottleneck that had driven the desire to produce the key components of such kits locally. Here, we provide a simple, economical, and powerful one-step qRT-PCR kit based on patent-free, specifically tailored versions of Moloney murine leukemia virus reverse transcriptase and Thermus aquaticus DNA polymerase and termed R3T (Rapid Research Response Team) one-step qRT-PCR. We also demonstrate the robustness of our enzyme production strategies and provide the optimal reaction conditions for their efficient augmentation in a one-step approach. Our kit was routinely able to reliably detect as low as 10 copies of the synthetic RNAs of SARS-CoV-2. More importantly, our kit successfully detected COVID-19 in clinical samples of broad viral titers with similar reliability and selectivity to that of the Invitrogen SuperScript III Platinum One-step qRT-PCR and TaqPath one-step RT-qPCR kits. Overall, our kit has shown robust performance in both laboratory settings and the Saudi Ministry of Health-approved testing facility.
Collapse
Affiliation(s)
- Masateru Takahashi
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Tehseen
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rahul Salunke
- Pathogen
Genomics Laboratory, BESE Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Etsuko Takahashi
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sara Mfarrej
- Pathogen
Genomics Laboratory, BESE Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed A. Sobhy
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Fatimah S. Alhamlan
- Department
of Infection and Immunity, King Faisal Specialist
Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sharif Hala
- Pathogen
Genomics Laboratory, BESE Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- King
Saud Bin Abdulaziz University of Health Sciences, Jeddah 22384, Saudi Arabia
- King
Abdullah International Medical Research Centre, Jeddah, Makkah, Ministry of National Guard Health Affairs, Jeddah, Makkah 22384, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Stem
Cell
and Regenration Laboratory. Biological and Environmental Sciences
and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department
of Infection and Immunity, King Faisal Specialist
Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Fadwa S. Alofi
- Infectious
Diseases Department, King Fahad Hospital, Madinah 3177, Saudi Arabia
| | - Afrah Alsomali
- King
Abdullah Medical Complex (KAMC), Jeddah 23816, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines
and Immunotherapy Unit, King Fahd Medical Research Center; King Abdulaziz University, Jeddah, Saudi Arabia
- Department
of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asim Khogeer
- Plan and Research Department, General Directorate
of Health Affairs Makkah Region, MOH Mecca 24321, Saudi Arabia
| | - Naif A. M. Almontashiri
- College of Applied Medical Sciences, Taibah
University, Madinah 41311, Saudi Arabia
- Center for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu
University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu
University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Sakashita
- Department of Infection and Immunity, King Faisal Specialist
Hospital
and Research Centre, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mo Li
- Stem
Cell
and Regenration Laboratory. Biological and Environmental Sciences
and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu
University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Arnab Pain
- Pathogen
Genomics Laboratory, BESE Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Samir M. Hamdan
- Laboratory
of DNA Replication and Recombination, Biological and Environmental
Sciences and Engineering Division, King
Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
22
|
Magnesium magnetic isotope effects in microbiology. Arch Microbiol 2021; 203:1853-1861. [PMID: 33611633 DOI: 10.1007/s00203-021-02219-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Two main properties of atomic nuclei-mass and nuclear magnetic moments-are origin of many biological effects. Mass-dependent isotope effects have been studied for a long time. The effect of magnetic isotopes having a magnetic moment and spin was first shown in the early twenty-first century for the magnetic isotope magnesium 25Mg on enzymatic ATP synthesis. This stimulated the search for experimental evidence and theoretical justification of magnetic nuclei influence on biological processes. This review contains the results of scientific research on the magnesium magnetic isotope effects in microbiology. Microorganisms have been found to be sensitive to the presence of nuclear magnetic moment of magnesium isotope 25Mg compared with non-magnetic 24,26Mg isotopes.
Collapse
|
23
|
Understanding the Effect of Multiple Domain Deletion in DNA Polymerase I from Geobacillus Sp. Strain SK72. Catalysts 2020. [DOI: 10.3390/catal10080936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The molecular structure of DNA polymerase I or family A polymerases is made up of three major domains that consist of a single polymerase domain with two extra exonuclease domains. When the N-terminal was deleted, the enzyme was still able to perform basic polymerase activity with additional traits that used isothermal amplification. However, the 3′-5′ exonuclease domain that carries a proofreading activity was disabled. Yet, the structure remained attached to the 5′-3′ polymerization domain without affecting its ability. The purpose of this non-functional domain still remains scarce. It either gives negative effects or provides structural support to the DNA polymerase. Here, we compared the effect of deleting each domain against the polymerase activity. The recombinant wild type and its variants were successfully purified and characterized. Interestingly, SK72-Exo (a large fragment excluding the 5′-3′ exonuclease domain) exhibited better catalytic activity than the native SK72 (with all three domains) at similar optimum temperature and pH profile, and it showed longer stability at 70 °C. Meanwhile, SK72-Exo2 (polymerization domain without both the 5′-3′ and 3′-5′ exonuclease domain) displayed the lowest activity with an optimum at 40 °C and favored a more neutral environment. It was also the least stable among the variants, with almost no activity at 50 °C for the first 10 min. In conclusion, cutting both exonuclease domains in DNA polymerase I has a detrimental effect on the polymerization activity and structural stability.
Collapse
|
24
|
Mitousis L, Thoma Y, Musiol-Kroll EM. An Update on Molecular Tools for Genetic Engineering of Actinomycetes-The Source of Important Antibiotics and Other Valuable Compounds. Antibiotics (Basel) 2020; 9:E494. [PMID: 32784409 PMCID: PMC7460540 DOI: 10.3390/antibiotics9080494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
The first antibiotic-producing actinomycete (Streptomyces antibioticus) was described by Waksman and Woodruff in 1940. This discovery initiated the "actinomycetes era", in which several species were identified and demonstrated to be a great source of bioactive compounds. However, the remarkable group of microorganisms and their potential for the production of bioactive agents were only partially exploited. This is caused by the fact that the growth of many actinomycetes cannot be reproduced on artificial media at laboratory conditions. In addition, sequencing, genome mining and bioactivity screening disclosed that numerous biosynthetic gene clusters (BGCs), encoded in actinomycetes genomes are not expressed and thus, the respective potential products remain uncharacterized. Therefore, a lot of effort was put into the development of technologies that facilitate the access to actinomycetes genomes and activation of their biosynthetic pathways. In this review, we mainly focus on molecular tools and methods for genetic engineering of actinomycetes that have emerged in the field in the past five years (2015-2020). In addition, we highlight examples of successful application of the recently developed technologies in genetic engineering of actinomycetes for activation and/or improvement of the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
| | | | - Ewa M. Musiol-Kroll
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (L.M.); (Y.T.)
| |
Collapse
|
25
|
Carøe C, Bohmann K. Tagsteady: A metabarcoding library preparation protocol to avoid false assignment of sequences to samples. Mol Ecol Resour 2020; 20:1620-1631. [PMID: 32663358 DOI: 10.1111/1755-0998.13227] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/30/2022]
Abstract
Metabarcoding of environmental DNA (eDNA) and DNA extracted from bulk specimen samples is a powerful tool in studies of biodiversity, diet and ecological interactions as its inherent labelling of amplicons allows sequencing of taxonomically informative genetic markers from many samples in parallel. However, the occurrence of so-called 'tag-jumps' can cause incorrect assignment of sequences to samples and artificially inflate diversity. Two steps during library preparation of pools of 5' nucleotide-tagged amplicons have been suggested to cause tag-jumps: (a) T4 DNA polymerase blunt-ending in the end-repair step and (b) postligation PCR amplification of amplicon libraries. The discovery of tag-jumps has led to recommendations to only carry out metabarcoding PCR amplifications with primers carrying twin-tags to ensure that tag-jumps cannot result in false assignments of sequences to samples. As this increases both cost and workload, a metabarcoding library preparation protocol which circumvents the two steps that causes tag-jumps is needed. Here, we demonstrate Tagsteady, a PCR-free metabarcoding Illumina library preparation protocol for pools of nucleotide-tagged amplicons that enables efficient and cost-effective generation of metabarcoding data with virtually no tag-jumps. We use pools of twin-tagged amplicons to investigate the effect of T4 DNA polymerase blunt-ending and postligation PCR on the occurrence of tag-jumps and demonstrate that both blunt-ending and postligation PCR, alone or together, can result in detrimental amounts of tag-jumps (here, up to ca. 49% of total sequences), while leaving both steps out (the Tagsteady protocol) results in amounts of sequences carrying new combinations of used tags (tag-jumps) comparable to background contamination.
Collapse
Affiliation(s)
- Christian Carøe
- Section for Evolutionary Genomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Bohmann
- Section for Evolutionary Genomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Kim J, Ahn JK, Kim JS, Choi BR, Cho J, Lee H. Highly selective detection of single nucleotide polymorphism (SNP) using a dumbbell DNA probe with a gap-filling approach. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Kurbanoglu S, Erkmen C, Uslu B. Frontiers in electrochemical enzyme based biosensors for food and drug analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115809] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Hu J, Li WC, Qiu JG, Jiang B, Zhang CY. A multifunctional DNA nanostructure based on multicolor FRET for nuclease activity assay. Analyst 2020; 145:6054-6060. [DOI: 10.1039/d0an01212b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a four-color fluorescent probe for ratiometric detection of multiple nucleases based on multistep fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Juan Hu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wen-can Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jian-Ge Qiu
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou
- China
| | - BingHua Jiang
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou
- China
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
29
|
Wang G, Huang D, Ji J, Völker C, Wurm FR. Seawater-Degradable Polymers-Fighting the Marine Plastic Pollution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001121. [PMID: 33437568 PMCID: PMC7788598 DOI: 10.1002/advs.202001121] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/31/2020] [Indexed: 05/06/2023]
Abstract
Polymers shape human life but they also have been identified as pollutants in the oceans due to their long lifetime and low degradability. Recently, various researchers have studied the impact of (micro)plastics on marine life, biodiversity, and potential toxicity. Even if the consequences are still heavily discussed, prevention of unnecessary waste is desired. Especially, newly designed polymers that degrade in seawater are discussed as potential alternatives to commodity polymers in certain applications. Biodegradable polymers that degrade in vivo (used for biomedical applications) or during composting often exhibit too slow degradation rates in seawater. To date, no comprehensive summary for the degradation performance of polymers in seawater has been reported, nor are the studies for seawater-degradation following uniform standards. This review summarizes concepts, mechanisms, and other factors affecting the degradation process in seawater of several biodegradable polymers or polymer blends. As most of such materials cannot degrade or degrade too slowly, strategies and innovative routes for the preparation of seawater-degradable polymers with rapid degradation in natural environments are reviewed. It is believed that this selection will help to further understand and drive the development of seawater-degradable polymers.
Collapse
Affiliation(s)
- Ge‐Xia Wang
- National Engineering Research Center of Engineering PlasticsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
| | - Dan Huang
- National Engineering Research Center of Engineering PlasticsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jun‐Hui Ji
- National Engineering Research Center of Engineering PlasticsTechnical Institute of Physics and ChemistryThe Chinese Academy of SciencesBeijing100190P. R. China
| | - Carolin Völker
- ISOE – Institute for Social‐Ecological ResearchHamburger Allee 45Frankfurt60486Germany
| | - Frederik R. Wurm
- Max‐Planck‐Institut für PolymerforschungAckermannweg 10Mainz55128Germany
- Sustainable Polymer Chemistry GroupMESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit TwentePO Box 217Enschede7500 AEThe Netherlands
| |
Collapse
|
30
|
Breiner B, Johnson K, Stolarek M, Silva AL, Negrea A, Bell NM, Isaac TH, Dethlefsen M, Chana J, Ibbotson LA, Palmer RN, Bush J, Dunning AJ, Love DM, Pachoumi O, Kelly DJ, Shibahara A, Wu M, Sosna M, Dear PH, Tolle F, Petrini E, Amasio M, Shelford LR, Saavedra MS, Sheridan E, Kuleshova J, Podd GJ, Balmforth BW, Frayling CA. Single-molecule detection of deoxyribonucleoside triphosphates in microdroplets. Nucleic Acids Res 2019; 47:e101. [PMID: 31318971 PMCID: PMC6753480 DOI: 10.1093/nar/gkz611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 11/12/2022] Open
Abstract
A new approach to single-molecule DNA sequencing in which dNTPs, released by pyrophosphorolysis from the strand to be sequenced, are captured in microdroplets and read directly could have substantial advantages over current sequence-by-synthesis methods; however, there is no existing method sensitive enough to detect a single nucleotide in a microdroplet. We have developed a method for dNTP detection based on an enzymatic two-stage reaction which produces a robust fluorescent signal that is easy to detect and process. By taking advantage of the inherent specificity of DNA polymerases and ligases, coupled with volume restriction in microdroplets, this method allows us to simultaneously detect the presence of and distinguish between, the four natural dNTPs at the single-molecule level, with negligible cross-talk.
Collapse
Affiliation(s)
- Boris Breiner
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Kerr Johnson
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Magdalena Stolarek
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Ana-Luisa Silva
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Aurel Negrea
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Neil M Bell
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Tom H Isaac
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Mark Dethlefsen
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Jasmin Chana
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Lindsey A Ibbotson
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Rebecca N Palmer
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - James Bush
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Alexander J Dunning
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - David M Love
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Olympia Pachoumi
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Douglas J Kelly
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Aya Shibahara
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Mei Wu
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Maciej Sosna
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Paul H Dear
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Fabian Tolle
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Edoardo Petrini
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Michele Amasio
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Leigh R Shelford
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Monica S Saavedra
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Eoin Sheridan
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Jekaterina Kuleshova
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Gareth J Podd
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Barnaby W Balmforth
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Cameron A Frayling
- Base4 Innovation Ltd, Broers Building, 21 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| |
Collapse
|
31
|
Deshpande S, Yang Y, Chilkoti A, Zauscher S. Enzymatic synthesis and modification of high molecular weight DNA using terminal deoxynucleotidyl transferase. Methods Enzymol 2019; 627:163-188. [PMID: 31630739 PMCID: PMC7241426 DOI: 10.1016/bs.mie.2019.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The recognition that nucleic acids can be used as polymeric materials led to the blossoming of the field of DNA nanotechnology, with a broad range of applications in biotechnology, biosensors, diagnostics, and drug delivery. These applications require efficient methods to synthesize and chemically modify high molecular weight DNA. Here, we discuss terminal deoxynucleotidyl transferase (TdT)-catalyzed enzymatic polymerization (TcEP) as an alternative to conventional enzymatic and solid-phase DNA synthesis. We describe biochemical requirements for TcEP and provide step-by-step protocols to carry out TcEP in solution and from surfaces.
Collapse
Affiliation(s)
- Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Yunqi Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, United States.
| | - Stefan Zauscher
- Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, United States.
| |
Collapse
|
32
|
de Paz AM, Cybulski TR, Marblestone AH, Zamft BM, Church GM, Boyden ES, Kording KP, Tyo KEJ. High-resolution mapping of DNA polymerase fidelity using nucleotide imbalances and next-generation sequencing. Nucleic Acids Res 2019; 46:e78. [PMID: 29718339 PMCID: PMC6061839 DOI: 10.1093/nar/gky296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/12/2018] [Indexed: 02/06/2023] Open
Abstract
DNA polymerase fidelity is affected by both intrinsic properties and environmental conditions. Current strategies for measuring DNA polymerase error rate in vitro are constrained by low error subtype sensitivity, poor scalability, and lack of flexibility in types of sequence contexts that can be tested. We have developed the Magnification via Nucleotide Imbalance Fidelity (MagNIFi) assay, a scalable next-generation sequencing assay that uses a biased deoxynucleotide pool to quantitatively shift error rates into a range where errors are frequent and hence measurement is robust, while still allowing for accurate mapping to error rates under typical conditions. This assay is compatible with a wide range of fidelity-modulating conditions, and enables high-throughput analysis of sequence context effects on base substitution and single nucleotide deletion fidelity using a built-in template library. We validate this assay by comparing to previously established fidelity metrics, and use it to investigate neighboring sequence-mediated effects on fidelity for several DNA polymerases. Through these demonstrations, we establish the MagNIFi assay for robust, high-throughput analysis of DNA polymerase fidelity.
Collapse
Affiliation(s)
- Alexandra M de Paz
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Thaddeus R Cybulski
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Adam H Marblestone
- Biophysics Program, Harvard University, Boston, MA 02115, USA.,Wyss Institute, Harvard University, Boston, MA 02115, USA
| | - Bradley M Zamft
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - George M Church
- Biophysics Program, Harvard University, Boston, MA 02115, USA.,Wyss Institute, Harvard University, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Konrad P Kording
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
33
|
Thioflavin T as luminescence biosensors for nucleic acid study and RNase A activity detection. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Wang Y, Zhao Y, Sarkar A, Wang X. Optical sensor revealed abnormal nuclease spatial activity on cancer cell membrane. JOURNAL OF BIOPHOTONICS 2019; 12:e201800351. [PMID: 30488667 PMCID: PMC6550314 DOI: 10.1002/jbio.201800351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/11/2018] [Accepted: 11/21/2018] [Indexed: 05/22/2023]
Abstract
Nucleases are important enzymes that cleave nucleic acids and play critical roles in DNA repair, immune defense and potentially in cancer invasion. However, their spatial dynamics at subcellular level is much less studied. Here, we developed a surface-tethered nuclease sensor (SNS) which directly converts membrane-bound nuclease (MN) activity to fluorescent signal, therefore, mapping MN activity on cell adhesion sites with high resolution and sensitivity. With SNS, we studied MN activity on the ventral membrane of cancer cells, where MN activity initially occurs in punctate regions and advances in a coral-shaped pattern. In six tested cell-lines, the MN activity levels in cancer cells are significantly higher than those in non-cancer cells. We then tested SNS as a sensitive approach to detect cancer cells at single cell level. Single breast cancer cells were successfully detected from thousands of adherent non-cancer cells and from millions of non-adherent blood cells.
Collapse
Affiliation(s)
- Yongliang Wang
- Department of Physics and AstronomyIowa State UniversityAmesIowa
| | - Yuanchang Zhao
- Department of Physics and AstronomyIowa State UniversityAmesIowa
| | - Anwesha Sarkar
- Department of Physics and AstronomyIowa State UniversityAmesIowa
| | - Xuefeng Wang
- Department of Physics and AstronomyIowa State UniversityAmesIowa
- Molecular, Cellular, and Developmental Biology Interdepartmental ProgramMolecular Biology BuildingAmesIowa
| |
Collapse
|
35
|
Finke A, Schneider A, Spreng A, Leist M, Niemeyer CM, Marx A. Functionalized DNA Hydrogels Produced by Polymerase-Catalyzed Incorporation of Non-Natural Nucleotides as a Surface Coating for Cell Culture Applications. Adv Healthc Mater 2019; 8:e1900080. [PMID: 30861332 DOI: 10.1002/adhm.201900080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 12/17/2022]
Abstract
Cells from most mammalian tissues require an extracellular matrix (ECM) for attachment and proper functioning. In vitro cell cultures therefore must be supplied with an ECM that satisfies both the biological needs of cells used and the technical demands of the experimental setup. The latter include matrix functionalization for cell attachment, favorable microscopic properties, and affordable production costs. Here, modified DNA materials are therefore developed as an ECM mimic. The material is prepared by chemical cross-linking of commonly available salmon sperm DNA. To render the material cell-compatible, it is enzymatically modified by DNA polymerase I to provide versatile attachment points for peptides, proteins, or antibodies via a modular strategy. Different cells specifically attach to the material, even from mixed populations. They can be mildly released for further cell studies by DNase I-mediated digestion of the DNA material. Additionally, neural stem cells not only attach and survive on the material but also differentiate to a neural lineage when prompted. Furthermore, the DNA material can be employed to capture and retain cells under flow conditions. The simple preparation of the DNA material and its wide scope of applications open new perspectives for various cell study challenges and medical applications.
Collapse
Affiliation(s)
- Alexander Finke
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| | - Ann‐Kathrin Schneider
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann‐von‐Helmholtz‐Platz D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Anna‐Sophie Spreng
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| | - Marcel Leist
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann‐von‐Helmholtz‐Platz D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Andreas Marx
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversity of Konstanz Universitätsstraße 10 78464 Konstanz Germany
| |
Collapse
|
36
|
Abstract
The study of bacteriophages (phages) and prophages has provided key insights into almost every cellular process as well as led to the discovery of unexpected new mechanisms and the development of valuable tools. This is exemplified for RNA-based regulation. For instance, the characterization and exploitation of the antiphage CRISPR (clustered regularly interspaced short palindromic repeat) systems is revolutionizing molecular biology. Phage-encoded proteins such as the RNA-binding MS2 protein, which is broadly used to isolate tagged RNAs, also have been developed as valuable tools. Hfq, the RNA chaperone protein central to the function of many base-pairing small RNAs (sRNAs), was first characterized as a bacterial host factor required for Qβ phage replication. The ongoing studies of RNAs are continuing to reveal regulatory connections between infecting phages, prophages, and bacteria and to provide novel insights. There are bacterial and prophage sRNAs that regulate prophage genes, which impact bacterial virulence as well as bacterial cell killing. Conversely, phage- and prophage-encoded sRNAs modulate the expression of bacterial genes modifying metabolism. An interesting subcategory of the prophage-encoded sRNAs are sponge RNAs that inhibit the activities of bacterial-encoded sRNAs. Phages also affect posttranscriptional regulation in bacteria through proteins that inhibit or alter the activities of key bacterial proteins involved in posttranscriptional regulation. However, what is most exciting about phage and prophage research, given the millions of phage-encoded genes that have not yet been characterized, is the vast potential for discovering new RNA regulators and novel mechanisms and for gaining insight into the evolution of regulatory RNAs.
Collapse
|
37
|
Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Kunststoffe der Zukunft? Der Einfluss von bioabbaubaren Polymeren auf Umwelt und Gesellschaft. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805766] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tobias P. Haider
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Carolin Völker
- Institut für sozial-ökologische Forschung (ISOE); Hamburger Allee 45 60486 Frankfurt am Main Deutschland
| | - Johanna Kramm
- Institut für sozial-ökologische Forschung (ISOE); Hamburger Allee 45 60486 Frankfurt am Main Deutschland
| | - Katharina Landfester
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| | - Frederik R. Wurm
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
38
|
Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew Chem Int Ed Engl 2018; 58:50-62. [DOI: 10.1002/anie.201805766] [Citation(s) in RCA: 531] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Tobias P. Haider
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Carolin Völker
- Institute for Social-Ecological Research (ISOE); Hamburger Allee 45 60486 Frankfurt am Main Germany
| | - Johanna Kramm
- Institute for Social-Ecological Research (ISOE); Hamburger Allee 45 60486 Frankfurt am Main Germany
| | | | - Frederik R. Wurm
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
39
|
Abstract
Epstein-Barr virus (EBV) expresses an abundant nuclear noncoding RNA called EBER2, which interacts with and acts as a guide RNA for the host transcription factor PAX5. This ribonucleoprotein complex localizes to the terminal repeat (TR) regions of the EBV genome via RNA-RNA interactions between EBER2 and nascent transcripts originating from these target sites. Given the fact that EBER2 base pairs with a viral RNA, we developed a protocol to identify EBER2-interacting RNAs in a transcriptome-wide manner. Our approach entails psoralen-mediated crosslinking, selection with antisense oligonucleotides targeting EBER2, and RNase V1 digestion coupled to next-generation sequencing. The use of RNase V1 circumvents the need of extensive computational analysis post data acquisition to search for predicted RNA hybrids, as the RNase V1 cleavage site marks the region of RNA duplex formation. As proof of principle, we show that our approach correctly identifies the known EBER2 interaction with TR RNAs. Moreover, we identify the host functional noncoding RNAs MRP, H1, and 7SL RNAs as well as three putative enhancer RNAs as candidate EBER2-interacting RNAs. As all of these gene loci exhibit PAX5 occupancy, we propose that EBER2 is recruited to these sites through its binding partner PAX5 and forms RNA-RNA interactions with nascent transcripts on chromatin. Thus, our novel approach facilitates the identification of targeted RNA-RNA-interactions and minimizes the need of downstream computational analyses to predict RNA duplexes.
Collapse
Affiliation(s)
- Adalena V Nanni
- a Department of Microbiology and Molecular Genetics, 450 Technology Drive , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Nara Lee
- a Department of Microbiology and Molecular Genetics, 450 Technology Drive , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
40
|
Bhadra S, Pothukuchy A, Shroff R, Cole AW, Byrom M, Ellefson JW, Gollihar JD, Ellington AD. Cellular reagents for diagnostics and synthetic biology. PLoS One 2018; 13:e0201681. [PMID: 30110361 PMCID: PMC6093680 DOI: 10.1371/journal.pone.0201681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 11/18/2022] Open
Abstract
We have found that the overproduction of enzymes in bacteria followed by their lyophilization leads to 'cellular reagents' that can be directly used to carry out numerous molecular biology reactions. We demonstrate the use of cellular reagents in a variety of molecular diagnostics, such as TaqMan qPCR with no diminution in sensitivity, and in synthetic biology cornerstones such as the Gibson assembly of DNA fragments, where new plasmids can be constructed solely based on adding cellular reagents. Cellular reagents have significantly reduced complexity and cost of production, storage and implementation, features that should facilitate accessibility and use in resource-poor conditions.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Arti Pothukuchy
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Raghav Shroff
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Austin W. Cole
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Michelle Byrom
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jared W. Ellefson
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jimmy D. Gollihar
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
- * E-mail:
| |
Collapse
|
41
|
Tan L, Strong EJ, Woods K, West NP. Homologous alignment cloning: a rapid, flexible and highly efficient general molecular cloning method. PeerJ 2018; 6:e5146. [PMID: 30038856 PMCID: PMC6054264 DOI: 10.7717/peerj.5146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022] Open
Abstract
Homologous alignment cloning (HAC) is a rapid method of molecular cloning that facilitates low-cost, highly efficient cloning of polymerase chain reaction products into any plasmid vector in approximately 2 min. HAC facilitates insert integration due to a sequence alignment strategy, by way of short, vector-specific homology tails appended to insert during amplification. Simultaneous exposure of single-stranded fragment ends, utilising the 3′→5′ exonuclease activity of T4 DNA polymerase, creates overlapping homologous DNA on each molecule. The exonuclease activity of T4 polymerase is quenched simply by the addition of EDTA and a simple annealing step ensures high yield and high fidelity vector formation. The resultant recombinant plasmids are transformed into standard E. coli cloning strains and screened via established methods as necessary. HAC exploits reagents commonly found in molecular research laboratories and achieves efficiencies that exceed conventional cloning methods, including another ligation-independent method we tested. HAC is also suitable for combining multiple fragments in a single reaction, thus extending its flexibility.
Collapse
Affiliation(s)
- Lendl Tan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Emily J Strong
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Kyra Woods
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Sridhar BV, Janczy JR, Hatlevik Ø, Wolfson G, Anseth KS, Tibbitt MW. Thermal Stabilization of Biologics with Photoresponsive Hydrogels. Biomacromolecules 2018; 19:740-747. [PMID: 29394044 DOI: 10.1021/acs.biomac.7b01507] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modern medicine, biological research, and clinical diagnostics depend on the reliable supply and storage of complex biomolecules. However, biomolecules are inherently susceptible to thermal stress and the global distribution of value-added biologics, including vaccines, biotherapeutics, and Research Use Only (RUO) proteins, requires an integrated cold chain from point of manufacture to point of use. To mitigate reliance on the cold chain, formulations have been engineered to protect biologics from thermal stress, including materials-based strategies that impart thermal stability via direct encapsulation of the molecule. While direct encapsulation has demonstrated pronounced stabilization of proteins and complex biological fluids, no solution offers thermal stability while enabling facile and on-demand release from the encapsulating material, a critical feature for broad use. Here we show that direct encapsulation within synthetic, photoresponsive hydrogels protected biologics from thermal stress and afforded user-defined release at the point of use. The poly(ethylene glycol) (PEG)-based hydrogel was formed via a bioorthogonal, click reaction in the presence of biologics without impact on biologic activity. Cleavage of the installed photolabile moiety enabled subsequent dissolution of the network with light and release of the encapsulated biologic. Hydrogel encapsulation improved stability for encapsulated enzymes commonly used in molecular biology (β-galactosidase, alkaline phosphatase, and T4 DNA ligase) following thermal stress. β-galactosidase and alkaline phosphatase were stabilized for 4 weeks at temperatures up to 60 °C, and for 60 min at 85 °C for alkaline phosphatase. T4 DNA ligase, which loses activity rapidly at moderately elevated temperatures, was protected during thermal stress of 40 °C for 24 h and 60 °C for 30 min. These data demonstrate a general method to employ reversible polymer networks as robust excipients for thermal stability of complex biologics during storage and shipment that additionally enable on-demand release of active molecules at the point of use.
Collapse
Affiliation(s)
- Balaji V Sridhar
- Nanoly Bioscience, Inc. , Denver , Colorado 80231 , United States
| | - John R Janczy
- Nanoly Bioscience, Inc. , Denver , Colorado 80231 , United States
| | - Øyvind Hatlevik
- Nanoly Bioscience, Inc. , Denver , Colorado 80231 , United States
| | - Gabriel Wolfson
- Nanoly Bioscience, Inc. , Denver , Colorado 80231 , United States
| | | | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering , ETH Zürich , 8092 Zürich , Switzerland
| |
Collapse
|
43
|
Exploration of the Germline Genome of the Ciliate Chilodonella uncinata through Single-Cell Omics (Transcriptomics and Genomics). mBio 2018; 9:mBio.01836-17. [PMID: 29317511 PMCID: PMC5760741 DOI: 10.1128/mbio.01836-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Separate germline and somatic genomes are found in numerous lineages across the eukaryotic tree of life, often separated into distinct tissues (e.g., in plants, animals, and fungi) or distinct nuclei sharing a common cytoplasm (e.g., in ciliates and some foraminifera). In ciliates, germline-limited (i.e., micronuclear-specific) DNA is eliminated during the development of a new somatic (i.e., macronuclear) genome in a process that is tightly linked to large-scale genome rearrangements, such as deletions and reordering of protein-coding sequences. Most studies of germline genome architecture in ciliates have focused on the model ciliates Oxytricha trifallax, Paramecium tetraurelia, and Tetrahymena thermophila, for which the complete germline genome sequences are known. Outside of these model taxa, only a few dozen germline loci have been characterized from a limited number of cultivable species, which is likely due to difficulties in obtaining sufficient quantities of “purified” germline DNA in these taxa. Combining single-cell transcriptomics and genomics, we have overcome these limitations and provide the first insights into the structure of the germline genome of the ciliate Chilodonella uncinata, a member of the understudied class Phyllopharyngea. Our analyses reveal the following: (i) large gene families contain a disproportionate number of genes from scrambled germline loci; (ii) germline-soma boundaries in the germline genome are demarcated by substantial shifts in GC content; (iii) single-cell omics techniques provide large-scale quality germline genome data with limited effort, at least for ciliates with extensively fragmented somatic genomes. Our approach provides an efficient means to understand better the evolution of genome rearrangements between germline and soma in ciliates. Our understanding of the distinctions between germline and somatic genomes in ciliates has largely relied on studies of a few model genera (e.g., Oxytricha, Paramecium, Tetrahymena). We have used single-cell omics to explore germline-soma distinctions in the ciliate Chilodonella uncinata, which likely diverged from the better-studied ciliates ~700 million years ago. The analyses presented here indicate that developmentally regulated genome rearrangements between germline and soma are demarcated by rapid transitions in local GC composition and lead to diversification of protein families. The approaches used here provide the basis for future work aimed at discerning the evolutionary impacts of germline-soma distinctions among diverse ciliates.
Collapse
|
44
|
Ramos AE, Muñoz M, Moreno-Pérez DA, Patarroyo MA. pELMO, an optimised in-house cloning vector. AMB Express 2017; 7:26. [PMID: 28116699 PMCID: PMC5265227 DOI: 10.1186/s13568-017-0324-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/02/2017] [Indexed: 11/18/2022] Open
Abstract
DNA cloning is an essential tool regarding DNA recombinant technology as it allows the replication of foreign DNA fragments within a cell. pELMO was here constructed as an in-house cloning vector for rapid and low-cost PCR product propagation; it is an optimally designed vector containing the ccdB killer gene from the pDONR 221 plasmid, cloned into the pUC18 vector’s multiple cloning site (Thermo Scientific). The ccdB killer gene has a cleavage site (CCC/GGG) for the SmaI restriction enzyme which is used for vector linearisation and cloning blunt-ended products. pELMO transformation efficiency was evaluated with different sized inserts and its cloning efficiency was compared to that of the pGEM-T Easy commercial vector. The highest pELMO transformation efficiency was observed for ~500 bp DNA fragments; pELMO vector had higher cloning efficiency for all insert sizes tested. In-house and commercial vector cloned insert reads after sequencing were similar thus highlighting that sequencing primers were designed and localised appropriately. pELMO is thus proposed as a practical alternative for in-house cloning of PCR products in molecular biology laboratories.
Collapse
|
45
|
Optimizing T4 DNA polymerase conditions enhances the efficiency of one-step sequence- and ligation-independent cloning. Biotechniques 2017; 63:125-130. [DOI: 10.2144/000114588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/25/2017] [Indexed: 11/23/2022] Open
Abstract
Previously, we developed a one-step sequence- and ligation-independent cloning (SLIC) method that is simple, fast, and cost-effective. However, although one-step SLIC generally works well, its cloning efficiency is occasionally poor, potentially due to formation of stable secondary structures within the single-stranded DNA (ssDNA) region generated by T4 DNA polymerase during the 2.5 min treatment at room temperature. To overcome this problem, we developed a modified thermo-regulated one-step SLIC approach by testing shorter T4 DNA polymerase treatment durations (5 s–2.5 min) over a wide range of temperatures (25–75°C). The highest cloning efficiency resulted when inserts with homology lengths <20 bases were treated with T4 DNA polymerase for 30 s at 50°C. This briefer T4 polymerase treatment at a higher temperature helps increase cloning efficiency for inserts with strong secondary structures at their ends, increasing the utility of one-step SLIC for the cloning of short fragments.
Collapse
|
46
|
Letuta UG, Berdinskiy VL. Magnetosensitivity of bacteria E. coli: Magnetic isotope and magnetic field effects. Bioelectromagnetics 2017; 38:581-591. [PMID: 28782834 DOI: 10.1002/bem.22073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/09/2017] [Indexed: 11/12/2022]
Abstract
The biological effects of a 25 Mg nuclear spin and weak magnetic fields have been found and studied by using bacterial cells of Escherichia coli (E. coli) grown on standard M9 nutrient media with different isotopes of magnesium: 24 Mg, 25 Mg, 26 Mg, and a natural mixture of Mg isotopes. Among these isotopes only 25 Mg has a nuclear spin I = 5/2 and nuclear magnetic moment which have been known to affect enzymatic processes in vitro due to hyperfine interactions with uncoupled electrons of substrates. Other non-magnetic magnesium isotopes, 24 Mg and 26 Mg, have neither a nuclear spin (I = 0) nor a nuclear magnetic moment. Bacterial cells grown on 25 Mg-media and enriched with this isotope manifest a higher growth rate and colony-forming units (CFU) compared with cells grown on media containing nonmagnetic 24 Mg and 26 Mg isotopes. Magnetic field dependencies of CFU cells enriched with different magnesium isotopes have been obtained. The observed isotope-dependent differences are explained by intracellular enzymatic ion-radical reactions which are magnetic field and nuclear spin sensitive. Enzymatic synthesis of ATP is considered as the most probable magnetosensitive biochemical process in vivo as far as effectiveness of ATP production is concerned; it determines the viability of cells and was shown in vitro as a nuclear spin-dependent reaction. Bioelectromagnetics. 38:581-591, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
47
|
Laycock B, Nikolić M, Colwell JM, Gauthier E, Halley P, Bottle S, George G. Lifetime prediction of biodegradable polymers. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.02.004] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Abraham OSJ, Miguel TS, Inocencio HC, Blondy CC. A quick and effective in-house method of DNA purification from agarose gel, suitable for sequencing. 3 Biotech 2017; 7:180. [PMID: 28664367 DOI: 10.1007/s13205-017-0851-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/29/2017] [Indexed: 11/28/2022] Open
Abstract
Sequencing of DNA fragments (e.g., ITS, 16S, 18S, particular genes, and molecular markers) is increasingly required in studies on microbial diversity, microbial genetic population and phylogeny, sequencing of alleles, and searching for SNPs, among others. The cost of obtaining these DNAs, in quantity and quality for sequencing, is high as it involves special kits to recover DNA from gel after PCR, or the cloning and purification of plasmids with commercial kits. Genetic population and other studies require the analyses of many samples, and therefore, the high cost represents an obstacle for carrying out such projects in countries where there is great biodiversity, such as the tropical and subtropical developing countries, where funds are limited. Modifying an already known method for DNA recovery from gel, the first in-house protocol of DNA recovery suitable for direct use in sequencing is presented herein. This protocol is broadly applicable on DNAs from all different living beings, e.g., bacteria, fungi, and plants. Its simplicity, speed, and low cost make this procedure amenable for high-throughput DNA sequencings as required in microbial population studies, development of molecular markers, molecular identification of strains in microbial collections, and others. Recovery of DNA fragments from agarose gel is one of the most common tasks in molecular biology laboratories. Therefore, its potential of applicability of the protocol presented here is enormous.
Collapse
Affiliation(s)
- Obrador-Sánchez José Abraham
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Tzec-Sima Miguel
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico
| | - Higuera-Ciapara Inocencio
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Colinas de La Normal, 44270, Guadalajara, Jalisco, Mexico
| | - Canto-Canché Blondy
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
49
|
Guo L, Chao SB, Xiao L, Wang ZB, Meng TG, Li YY, Han ZM, Ouyang YC, Hou Y, Sun QY, Ou XH. Sperm-carried RNAs play critical roles in mouse embryonic development. Oncotarget 2017; 8:67394-67405. [PMID: 28978041 PMCID: PMC5620181 DOI: 10.18632/oncotarget.18672] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022] Open
Abstract
Recently, numerous studies have reported that the mature sperm contains both coding and non-coding RNAs and the sperm delivers some RNAs to the oocyte at fertilization. However, the functions of the RNAs carried to the oocyte by sperm at fertilization in embryonic development remains a mystery. In this study, the mature spermatozoa were treated with lysolecithin, pronase and RNases (RNase A and RNase H) to remove the sperm-carried RNAs, and then injected into normal mature oocyte. The results showed that after the treatment, the content of the sperm RNAs was decreased by about 90%. The blastocyst formation rate and the live birth rate of the embryos from intracytoplasmic sperm injection (ICSI) using the treated sperm were significantly decreased (P<0.01), while these effects were partially rescued by injecting total wide-type sperm RNAs. The reproductive capacity of offspring (F0) in sperm-treated group was similar with that in control group (P>0.05), but the body weight of F1 mice from sperm-treated group was lower than that in control group after two weeks of birth (P<0.05). These results demonstrated that the sperm-carried RNAs have important roles in embryonic development.
Collapse
Affiliation(s)
- Lei Guo
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Shi-Bin Chao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,The ART Center, Jiujiang Maternal and Child Health Care Hospital, Jiangxi 332000, PR China
| | - Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Ming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiang-Hong Ou
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| |
Collapse
|
50
|
Abstract
Poly(A) tails are found at the 3' end of almost every eukaryotic mRNA and are important for the stability of mRNAs and their translation into proteins. Thus, removal of the poly(A) tail, a process called deadenylation, is critical for regulation of gene expression. Most deadenylation enzymes are components of large multi-protein complexes. Here, we describe an in vitro deadenylation assay developed to study the exonucleolytic activities of the multi-protein Ccr4-Not and Pan2-Pan3 complexes. We discuss how this assay can be used with short synthetic RNAs, as well as longer RNA substrates generated using in vitro transcription. Importantly, quantitation of the reactions allows detailed analyses of deadenylation in the presence and absence of accessory factors, leading to new insights into targeted mRNA decay.
Collapse
|