1
|
Kerek R, Sawma Awad J, Bassam M, Hajjar C, Ghantous F, Rizk K, Rima M. The multifunctional protein CCN1/CYR61: Bridging physiology and disease. Exp Mol Pathol 2025; 142:104969. [PMID: 40286773 DOI: 10.1016/j.yexmp.2025.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The matricellular protein CYR61/CCN1 is a member of the CCN protein family that plays significant roles in a broad range of physiological processes, including development, tissue repair, and inflammation, among others. CCN1 is also implicated in pathological conditions such as cancer and fibrosis. The diverse functions of CCN1 arise from its ability to bind different receptors located on many cell types, thereby activating diverse signaling pathways. The diverse, yet contradictory, functions mediated by CCN1 makes it a compelling target for investigation, as it offers the prospect of understanding fundamental cellular topics and their possible implications in various diseases. Recently, new cellular functions were attributed to CCN1, including senescence, pro-/anti- fibrosis, and rejuvenation. In this review, we discuss all these new findings along with the basic knowledge about CCN1 to provide an overall understanding of its conflicting roles and their potential corresponding mechanisms of action.
Collapse
Affiliation(s)
- Racha Kerek
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Joe Sawma Awad
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Mariam Bassam
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Carla Hajjar
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Fouad Ghantous
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Karelle Rizk
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Mohamad Rima
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon.
| |
Collapse
|
2
|
Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144:2377-2398. [PMID: 39115524 PMCID: PMC11920965 DOI: 10.1016/j.jid.2024.06.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024]
Abstract
The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.
Collapse
Affiliation(s)
- Jared Simmons
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
3
|
Zhao M, Yin N, Yang R, Li S, Zhang S, Faiola F. Understanding the effects of per- and polyfluoroalkyl substances on early skin development: Role of ciliogenesis inhibition and altered microtubule dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169702. [PMID: 38163615 DOI: 10.1016/j.scitotenv.2023.169702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of highly stable chemicals, widely used in everyday products, and widespread in the environment, even in pregnant women. While epidemiological studies have linked prenatal exposure to PFAS with atopic dermatitis in children, little is known about their toxic effects on skin development, especially during the embryonic stage. In this study, we utilized human embryonic stem cells to generate non-neural ectoderm (NNE) cells and exposed them to six PFAS (perfluorooctanoic acid (PFOA), undecafluorohexanoic acid (PFHxA), heptafluorobutyric acid (PFBA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorobutyric acid (PFBS)) during the differentiation process to assess their toxicity to early skin development. Our results showed that PFOS altered the spindle-like morphology of NNE cells to a pebble-like morphology, and disrupted several NNE markers, including KRT16, SMYD1, and WISP1. The six PFAS had a high potential to cause hypohidrotic ectodermal dysplasia (HED) by disrupting the expression levels of HED-relevant genes. Transcriptomic analysis revealed that PFOS treatment produced the highest number (1156) of differentially expressed genes (DEGs) among the six PFAS, including the keratinocyte-related genes KRT6A, KRT17, KRT18, KRT24, KRT40, and KRT81. Additionally, we found that PFOS treatment disturbed several signaling pathways that are involved in regulating skin cell fate decisions and differentiation, including TGF-β, NOTCH, Hedgehog, and Hippo signaling pathways. Interestingly, we discovered that PFOS inhibited, by partially interfering with the expression of cytoskeleton-related genes, the ciliogenesis of NNE cells, which is crucial for the intercellular transduction of the above-mentioned signaling pathways. Overall, our study suggests that PFAS can inhibit ciliogenesis and hamper the transduction of important signaling pathways, leading potential congenital skin diseases. It sheds light on the underlying mechanisms of early embryonic skin developmental toxicity and provides an explanation for the epidemiological data on PFAS. ENVIRONMENTAL IMPLICATION: We employed a model based on human embryonic stem cells to demonstrate that PFOS has the potential to elevate the risk of hypohidrotic ectodermal dysplasia. This is achieved by targeting cilia, inhibiting ciliogenesis, and subsequently disrupting crucial signaling pathways like TGF-β, NOTCH, Hedgehog, and Hippo, during the early phases of embryonic skin development. Our study highlights the dangers and potential impacts of six PFAS pollutants on human skin development. Additionally, we emphasize the importance of closely considering PFHxA, PFBA, PFHxS, and PFBS, as they have shown the capacity to modify gene expression levels, albeit to a lesser degree.
Collapse
Affiliation(s)
- Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Yin H, Liu N, Zhou X, Chen J, Duan L. The advance of CCN3 in fibrosis. J Cell Commun Signal 2023:10.1007/s12079-023-00778-3. [PMID: 37378812 DOI: 10.1007/s12079-023-00778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The extracellular matrix (ECM) is comprised of various extracellular macromolecules, including collagen, enzymes, and glycoproteins, which offer structural and biochemical support to neighboring cells. After tissue injury, extracellular matrix proteins deposit in the damaged tissue to promote tissue healing. However, an imbalance between ECM production and degradation can result in excessive deposition, leading to fibrosis and subsequent organ dysfunction. Acting as a regulatory protein within the extracellular matrix, CCN3 plays a crucial role in numerous biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Many studies have demonstrated that CCN3 can reduce the production of ECM in tissues through diverse mechanisms thereby exerting an inhibitory effect on fibrosis. Consequently, CCN3 emerges as a promising therapeutic target for ameliorating fibrosis.
Collapse
Affiliation(s)
- Hui Yin
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China
| | - Na Liu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xianming Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China.
| |
Collapse
|
5
|
Perbal B, Perbal M, Perbal A. Cooperation is the key: the CCN biological system as a gate to high complex protein superfamilies' signaling. J Cell Commun Signal 2023:10.1007/s12079-023-00749-8. [PMID: 37166690 DOI: 10.1007/s12079-023-00749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Cellular signaling is generally understood as the support of communication between contiguous cells belonging to the same tissue or cells being far apart of each other, at a molecular scale, when the message emitted by the transmitters is traveling in liquid or solid matter to reach recipient targets. Subcellular signaling is also important to ensure the proper cell constitution and functioning. However cell signaling is mostly used in the first understanding, to describe how the message sent from one point to another one, will reach a target where it will be interpreted. The Cellular Communication Network (CCN) factors (Perbal et al. 2018) constitute a family of biological regulators thought to be responsible for signaling pathways coordination (Perbal 2018). Indeed, these proteins interact with a diverse group of cell receptors, such as integrins, low density lipoprotein receptors, heparan sulfate proteoglycan receptors (HSPG), and the immunoglobulin superfamily expressed exclusively in the nervous system, or with soluble factors such as bone morphogenetic proteins (BMPS) and other growth factors such as vascular endothelial growth factor, fibroblastic growth factor, and transforming growth factor (TGFbeta). Starting from the recapitulation of basic concepts in enzymology and protein-ligands interactions, we consider, in this manuscript, interpretations of the mechanistic interactions that have been put forward to explain the diversity of CCN proteins biological activities. We suggest that the cross-talks between superfamilies of proteins under the control of CCNs might play a central role in the coordination of developmental signaling pathways.
Collapse
Affiliation(s)
| | - Matthieu Perbal
- M2 Probabilités et Modèles Aléatoires, Sorbonne Université, Paris, France
| | | |
Collapse
|
6
|
Li S, Li S. Temperal and spatial expression of CCN1, CCN3, CCN4, CCN5 and CCN6 proteins in the developing postnatal teeth. J Cell Commun Signal 2023:10.1007/s12079-023-00758-7. [PMID: 37160590 DOI: 10.1007/s12079-023-00758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
CCN proteins are matricellular proteins and are important modulators of development and function of adult organs. However, there is no literature reporting the localization of CCN proteins during postnatal tooth development and the formation of periodontium. Therefore, the aim of our study was to investigate the expression of CCN1, CCN3, CCN4, CCN5 and CCN6 in the developing postnatal teeth. Wistar rats were used at postnatal (PN) 3.5, 7, 16 and 21 days and maxillas were processed for immunohistochemistry. At PN3.5 and PN7, preameloblasts (PA), secretory ameloblasts (SA), odontoblasts (OD) and dental pulp (DP) showed moderate to strong staining for CCN1, CCN4 and CCN6 respectively. CCN5 was intensely expressed in predentin, whereas CCN5 was undetectable in PA, SA, OD and DP. At PN16 and PN21, moderate to strong reaction with CCN1, CCN4 and CCN6 was evident in OD, DP, reduced enamel epithelium (REE), osteoblasts (OB) and periodontal ligament (PDL) respectively, while CCN5 was negative to weakly expressed in REE, OD, DP, OB, PDL and osteocytes (OC). Interestingly, the expression of CCN1, CCN4 and CCN6 was initially negative at PN16 but strong at PN21 in OC. Furthermore, there was no staining for CCN3 in the tissues studied. These results demonstrated that the expression pattern of CCN1, CCN4 and CCN6 is similar and inversely correlated with that of CCN3. CCN5 exhibits a unique distribution pattern. These data indicate that CCN proteins might play regulatory roles in amelogenesis, dentinogenesis, osteogenesis and PDL homeostasis.
Collapse
Affiliation(s)
- Shubo Li
- Department of Stomatology, College of Medicine and Health, Lishui University, Lishui, 323000, Zhejiang Province, China.
- Department of Stomatology, Affliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China.
| | - Shufang Li
- Department of Stomatology, Affliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Province, China
| |
Collapse
|
7
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
8
|
Machcinska S, Walendzik K, Kopcewicz M, Wisniewska J, Rokka A, Pääkkönen M, Slowinska M, Gawronska-Kozak B. Hypoxia reveals a new function of Foxn1 in the keratinocyte antioxidant defense system. FASEB J 2022; 36:e22436. [PMID: 35792861 DOI: 10.1096/fj.202200249rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 06/21/2022] [Indexed: 01/12/2023]
Abstract
Skin exposed to environmental threats, including injuries and oxidative stress, develops an efficient but not fully recognized system of repair and antioxidant protection. Here, using mass spectrometry analysis (LC-MS/MS), followed by in vitro and in vivo experiments, we provided evidence that Foxn1 in keratinocytes regulates elements of the electron transport chain and participates in the thioredoxin system (Txn2, Txnrd3, and Srxn1) induction, particularly in a hypoxic environment. We first showed that Foxn1 in keratinocytes upregulates glutathione thioredoxin reductase 3 (Txnrd3) protein expression, and high levels of Txnrd3 mRNA were detected in injured skin of Foxn1+/+ mice. We also showed that Foxn1 strongly downregulated the Ccn2 protein expression, participating in epidermal reconstruction after injury. An in vitro assay revealed that Foxn1 controls keratinocyte migration, stimulating it under normoxia and suppressing it under hypoxia. Keratinocytes overexpressing Foxn1 and exposed to hypoxia displayed a reduced ability to promote angiogenesis by downregulating Vegfa expression. In conclusion, this study showed a new mechanism in which Foxn1, along with hypoxia, participates in the activation of antioxidant defense and controls the functional properties of keratinocytes.
Collapse
Affiliation(s)
- Sylwia Machcinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mirva Pääkkönen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Mariola Slowinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
9
|
Kubota S, Kawaki H, Perbal B, Kawata K, Hattori T, Nishida T. Cellular communication network factor 3 in cartilage development and maintenance. J Cell Commun Signal 2021; 15:533-543. [PMID: 34125392 PMCID: PMC8642582 DOI: 10.1007/s12079-021-00629-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
10
|
Feng D, Gerarduzzi C. Emerging Roles of Matricellular Proteins in Systemic Sclerosis. Int J Mol Sci 2020; 21:E4776. [PMID: 32640520 PMCID: PMC7369781 DOI: 10.3390/ijms21134776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis is a rare chronic heterogenous disease that involves inflammation and vasculopathy, and converges in end-stage development of multisystem tissue fibrosis. The loss of tight spatial distribution and temporal expression of proteins in the extracellular matrix (ECM) leads to progressive organ stiffening, which is a hallmark of fibrotic disease. A group of nonstructural matrix proteins, known as matricellular proteins (MCPs) are implicated in dysregulated processes that drive fibrosis such as ECM remodeling and various cellular behaviors. Accordingly, MCPs have been described in the context of fibrosis in sclerosis (SSc) as predictive disease biomarkers and regulators of ECM synthesis, with promising therapeutic potential. In this present review, an informative summary of major MCPs is presented highlighting their clear correlations to SSc- fibrosis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
11
|
McCabe MC, Hill RC, Calderone K, Cui Y, Yan Y, Quan T, Fisher GJ, Hansen KC. Alterations in extracellular matrix composition during aging and photoaging of the skin. Matrix Biol Plus 2020; 8:100041. [PMID: 33543036 PMCID: PMC7852213 DOI: 10.1016/j.mbplus.2020.100041] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/02/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Human skin is composed of the cell-rich epidermis, the extracellular matrix (ECM) rich dermis, and the hypodermis. Within the dermis, a dense network of ECM proteins provides structural support to the skin and regulates a wide variety of signaling pathways which govern cell proliferation and other critical processes. Both intrinsic aging, which occurs steadily over time, and extrinsic aging (photoaging), which occurs as a result of external insults such as solar radiation, cause alterations to the dermal ECM. In this study, we utilized both quantitative and global proteomics, alongside single harmonic generation (SHG) and two-photon autofluorescence (TPAF) imaging, to assess changes in dermal composition during intrinsic and extrinsic aging. We find that both intrinsic and extrinsic aging result in significant decreases in ECM-supporting proteoglycans and structural ECM integrity, evidenced by decreasing collagen abundance and increasing fibril fragmentation. Intrinsic aging also produces changes distinct from those produced by photoaging, including reductions in elastic fiber and crosslinking enzyme abundance. In contrast, photoaging is primarily defined by increases in elastic fiber-associated protein and pro-inflammatory proteases. Changes associated with photoaging are evident even in young (mid 20s) sun-exposed forearm skin, indicating that proteomic evidence of photoaging is present decades prior to clinical signs of photoaging. GO term enrichment revealed that both intrinsic aging and photoaging share common features of chronic inflammation. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD015982. Intrinsic aging and photoaging both decrease ECM-supporting proteoglycans and structural ECM. Intrinsic aging produces reductions in elastic fiber and crosslinking enzyme abundance. Photoaging results in increases in pro-inflammatory proteases and elastic fiber abundance. Intrinsic aging and photoaging share common features associated with chronic inflammation. Proteomic changes associated with photoaging are evident decades prior to clinical aging signs.
Collapse
Key Words
- AUC, area under the curve
- Aging
- CE, cornified envelope
- CNBr, cyanogen bromide
- Collagen
- ECM, extracellular matrix
- Extracellular matrix
- GO, gene ontology
- Photoaging
- Proteomics
- QconCATs, quantitative concatemers
- SHG, single harmonic generation
- Skin
- TPAF, two-photon autofluorescence
- UV, ultraviolet
- iECM, insoluble ECM
- sECM, soluble ECM
Collapse
Affiliation(s)
- Maxwell C. McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
| | - Kenneth Calderone
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Yilei Cui
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Yan Yan
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Gary J. Fisher
- Department of Dermatology, University of Michigan, 1150 W. Medical Center Drive, Medical Science I R6447, Ann Arbor, MI 48109, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, 12801 E 17th Ave., Aurora, CO 80045, USA
- Corresponding author.
| |
Collapse
|
12
|
Henrot P, Truchetet ME, Fisher G, Taïeb A, Cario M. CCN proteins as potential actionable targets in scleroderma. Exp Dermatol 2018; 28:11-18. [PMID: 30329180 DOI: 10.1111/exd.13806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/01/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022]
Abstract
Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease combining inflammatory, vasculopathic and fibrotic manifestations. Skin features, which give their name to the disease and are considered as diagnostic as well as prognostic markers, have not been thoroughly investigated in terms of therapeutic targets. CCN proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3 as CCN4-5-6) are a family of secreted matricellular proteins implicated in major cellular processes such as cell growth, migration, differentiation. They have already been implicated in key pathophysiological processes of SSc, namely fibrosis, vasculopathy and inflammation. In this review, we discuss the possible implication of CCN proteins in SSc pathogenesis, with a special focus on skin features, and identify the potential actionable CCN targets.
Collapse
Affiliation(s)
- Pauline Henrot
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Rheumatology, National Reference Center for Rare Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, National Reference Center for Rare Diseases, Bordeaux University Hospital, Bordeaux, France.,University of Bordeaux, CNRS, Immunoconcept, UMR 5164, Bordeaux, France
| | - Gary Fisher
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alain Taïeb
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Muriel Cario
- University of Bordeaux, Inserm, BMGIC, UMR1035, Bordeaux, France.,Department of Dermatology and Pediatric Dermatology, National Center for Rare Skin Disorders, Hôpital Saint André, Bordeaux, France
| |
Collapse
|
13
|
Perbal B, Tweedie S, Bruford E. The official unified nomenclature adopted by the HGNC calls for the use of the acronyms, CCN1-6, and discontinuation in the use of CYR61, CTGF, NOV and WISP 1-3 respectively. J Cell Commun Signal 2018; 12:625-629. [PMID: 30393824 DOI: 10.1007/s12079-018-0491-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/01/2022] Open
Abstract
An examination of the confusion generated around the use of different acronyms for CCN proteins has been performed by the editors of the HUGO Gene Nomenclature Committee upon the request of the International CCN Society Scientific Committee. After careful consideration of the various arguments, and after polling the community of researchers who have published in the field over the past ten years, the HGNC have decided to adopt and approve the CCN nomenclature for all 6 genes. Effective October 2018, the genes referred to as CYR61, CTGF, NOV and WISP1-3 will be respectively designated by the gene symbols CCN1-6 with corresponding gene names « cellular communication Q2 network factor 1-6 ». We believe that this decision will be a step towards better communication between researchers working in the field, and will set the stage for fruitful collaborative projects. Accordingly, the Journal of Cell Communication and Signaling, the official journal of the International CCN Society, available both in print and online, constitutes a unique window into the CCN field. This official nomenclature will benefit the international scientific community that is supported by the established and renowned professionalism of the Springer-Nature publishing group.
Collapse
Affiliation(s)
| | - Susan Tweedie
- HUGO Gene Nomenclature Committee, EMBL-EBI, Hinxton, CB10 1SD, UK
| | - Elspeth Bruford
- HUGO Gene Nomenclature Committee, EMBL-EBI, Hinxton, CB10 1SD, UK
| |
Collapse
|
14
|
Faria AR, Jung JE, Silva de Catro CC, de Noronha L. Reduced immunohistochemical expression of CCN3 in vitiligo. Indian J Dermatol Venereol Leprol 2018; 84:558-562. [PMID: 29998862 DOI: 10.4103/ijdvl.ijdvl_954_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Defective adhesion seems to be involved in the chronic loss of melanocytes observed in vitiligo. Recent findings showed an association of genetic variants of an adhesion gene with vitiligo and reduced immunohistochemical expression of some adhesion molecules in vitiligo skin. Aims To compare CCN3 immunohistochemical expression in lesional and non-lesional epidermis of individuals with vitiligo. Methods A total of 66 skin specimens from 33 volunteers with vitiligo were analyzed by immunohistochemistry using anti-CCN3 antibodies. Absence of topical or systemic treatment for vitiligo over the previous 30 days and availability of an area of non-lesional skin for biopsy at least 15 cm away from any vitiliginous macules were the main inclusion criteria. Results A significant reduction of CCN3 expression was observed in lesional skin as compared to non-lesional skin (P = 0.001). Limitations Paraffin embedded skin samples do not allow investigation by molecular biology methods. Not all samples allowed analysis due to the lamina preparation technique. Complete clinical data was not available for all patients. Conclusion Our results support the hypothesis of impaired cell adhesion in vitiligo suggested by genetic studies. The pattern of immunohistochemical expression suggests that vitiligo might be an epithelial disease and not just a melanocyte disorder.
Collapse
Affiliation(s)
- Adriane Reichert Faria
- Department of Dermatology, School of Medicine, Pontifical Catholic University of Paraná, Santa Casa De Misericórdia Hospital; Department of Pathology, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | | | - Caio Cesar Silva de Catro
- Department of Dermatology, School of Medicine, Pontifical Catholic University of Paraná, Santa Casa De Misericórdia Hospital, Curitiba, Paraná, Brazil
| | - Lucia de Noronha
- Department of Pathology, Graduate Program in Health Sciences, School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
15
|
Fisher G, Rittié L. Restoration of the basement membrane after wounding: a hallmark of young human skin altered with aging. J Cell Commun Signal 2017; 12:401-411. [PMID: 29086203 DOI: 10.1007/s12079-017-0417-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022] Open
Abstract
In skin, the basement membrane at the dermal-epidermal junction (DEJ-BM) is an important structure that tightly binds the epidermis to the dermis, and acts as a permeability barrier that controls exchange of macromolecules. Repair of the DEJ-BM during wound healing is important for restoration of skin functional properties after wounding. Here, we used a CO2 laser to perform partial thickness wounds in human volunteers, and directly compared wound repair in healthy young and aged individuals, focusing on the DEJ-BM. Our results show that the DEJ-BM is restored within four weeks after partial thickness wounds in young adults. We identified laminin-γ2 as preferred substrate for keratinocytes during reepithelialization of partial thickness human wounds. Laminin-γ2 is expressed continuously by migrating keratinocytes during reepithelialization, whereas collagen IV and collagen VII are deposited after wound closure. In contrast, our study shows that the DEJ-BM restoration following wounding is deficient in elderly individuals. Specifically, COL7A2 was barely increased during wound repair in aged skin and, as a result, the DEJ-BM in elderly skin was not restored and showed abnormal structure. Our data suggest that ameliorating the quality of the DEJ-BM restoration is a promising therapeutic approach to improve the quality of repaired skin in the elderly.
Collapse
Affiliation(s)
- Gary Fisher
- Department of Dermatology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Laure Rittié
- Department of Dermatology, Medical School, University of Michigan, Ann Arbor, MI, USA. .,Dermatology Unit, R&D Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 Collegeville Rd, UP1410, Collegeville, PA, 19426, USA.
| |
Collapse
|
16
|
Liu JL, Kaddour N, Chowdhury S, Li Q, Gao ZH. Role of CCN5 (WNT1 inducible signaling pathway protein 2) in pancreatic islets. J Diabetes 2017; 9:462-474. [PMID: 27863006 DOI: 10.1111/1753-0407.12507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
In search of direct targets of insulin-like growth factor (IGF)-1 action, we discovered CCN5 (WNT1 inducible signaling pathway protein 2 [WISP2]) as a novel protein expressed in pancreatic β-cells. As a member of the "CCN" ( C ysteine-rich angiogenic inducer 61 [Cyr61], C onnective tissue growth factor [CTGF in humans], and N ephroblastoma overexpressed [Nov; in chickens]) family, the expression of CCN5/WISP2 is stimulated by IGF-1 together with Wnt signaling. When overexpressed in insulinoma cells, CCN5 promotes cell proliferation and cell survival against streptozotocin-induced cell death. The cell proliferation effect seems to be caused by AKT phosphorylation and increased cyclin D1 levels. These properties resemble those of CCN2/CTGF, another isoform of the CCN family, although CCN5 is the only one within the family of six proteins that lacks the C-terminal repeat. Treatment of primary mouse islets with recombinant CCN5 protein produced similar effects to those of gene transfection, indicating that either as a matricellular protein or a secreted growth factor, CCN5 stimulates β-cell proliferation and regeneration in a paracrine fashion. This review also discusses the regulation of CCN5/WISP2 by estrogen and its involvement in angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Jun-Li Liu
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Nancy Kaddour
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Subrata Chowdhury
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Qing Li
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Zu-Hua Gao
- Department of Pathology, The Research Institute of McGill University Health Centre, Montreal, Canada
| |
Collapse
|
17
|
Kiwanuka E, Junker JP, Eriksson E. Transforming growth factor β1 regulates the expression of CCN2 in human keratinocytes via Smad-ERK signalling. Int Wound J 2017; 14:1006-1018. [PMID: 28371159 DOI: 10.1111/iwj.12749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/04/2017] [Indexed: 01/22/2023] Open
Abstract
Connective tissue growth factor (CCN2/CTGF) and transforming growth factor β1 (TGF-β1) are important regulators of skin wound healing, but controversy remains regarding their expression in epithelial cell lineages. Here, we investigate the expression of CCN2 in keratinocytes during reepithelialisation and its regulation by TGF-β1. CCN2 was detected in the epidermis of healing full-thickness porcine wounds. Human keratinocytes were incubated with or without 10 ng/ml TGF-β1, and signalling pathways were blocked with 10-μM SIS3 or 20-μM PD98059. Semi-quantitative real-time PCR was used to study CCN2 mRNA expression, and western blot was used to measure CCN2, phosphorylated-ERK1/2, ERK1/2, phosphorylated-Smad3 and Smad2/3 proteins. CCN2 was transiently expressed in neoepidermis at the leading edge of the wound in vivo. In vitro, CCN2 expression was induced by TGF-β1 at 2 hours (7·5 ± 1·9-fold mRNA increase and 3·0 ± 0·6-fold protein increase) and 12 hours (5·4 ± 1·9-fold mRNA increase and 3·3 ± 0·6-fold protein increase). Compared with inhibiting the SMAD pathway, inhibiting the mitogen-activated protein kinase (MAPK) pathway was more effective in reducing TGF-β1-induced CCN2 mRNA and protein expression. Inhibition of the MAPK pathway had minimal impact on the activity of the SMAD pathway. CCN2 is expressed in keratinocytes in response to tissue injury or TGF-β1. In addition, TGF-β1 induces CCN2 expression in keratinocytes through the ras/MEK/ERK pathway. A complete understanding of CCN2 expression in keratinocytes is critical to developing novel therapies for wound healing and cutaneous malignancy.
Collapse
Affiliation(s)
- Elizabeth Kiwanuka
- Department of Plastic Surgery, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, USA
| | - Johan Pe Junker
- Center for Disaster Medicine and Traumatology, Department of Clinical and Experimental Medicine, Linköping University Hospital, Linköping, Sweden
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Expression of CCN Genes and Proteins in Human Skin: Methods and Protocols. Methods Mol Biol 2016. [PMID: 27734362 DOI: 10.1007/978-1-4939-6430-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
CCN proteins are vital to a variety of biological processes that contribute to the normal development and function of skin. Quantitative real-time reverse transcriptase PCR (qPCR) quantifies mRNA levels of these key genes. Immunostaining localizes CCN proteins within skin tissue, and provides semiquantitative information regarding relative levels of the proteins. Reliable determinations of the expression levels of CCN genes and proteins are essential to uncovering their roles in skin physiology and pathology.
Collapse
|
19
|
Rittié L, Farr EA, Orringer JS, Voorhees JJ, Fisher GJ. Reduced cell cohesiveness of outgrowths from eccrine sweat glands delays wound closure in elderly skin. Aging Cell 2016; 15:842-52. [PMID: 27184009 PMCID: PMC5013029 DOI: 10.1111/acel.12493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 01/03/2023] Open
Abstract
Human skin heals more slowly in aged vs. young adults, but the mechanism for this delay is unclear. In humans, eccrine sweat glands (ESGs) and hair follicles underlying wounds generate cohesive keratinocyte outgrowths that expand to form the new epidermis. Here, we compared the re‐epithelialization of partial‐thickness wounds created on the forearm of healthy young (< 40 yo) and aged (> 70 yo) adults. Our results confirm that the outgrowth of cells from ESGs is a major feature of repair in young skin. Strikingly, in aged skin, although ESG density is unaltered, less than 50% of the ESGs generate epithelial outgrowths during repair (vs. 100% in young). Surprisingly, aging does not alter the wound‐induced proliferation response in hair follicles or ESGs. Instead, there is an overall reduced cohesiveness of keratinocytes in aged skin. Reduced cell–cell cohesiveness was most obvious in ESG‐derived outgrowths that, when present, were surrounded by unconnected cells in the scab overlaying aged wounds. Reduced cell–cell contact persisted during the repair process, with increased intercellular spacing and reduced number of desmosomes. Together, reduced outgrowths of ESG (i) reduce the initial number of cells participating in epidermal repair, (ii) delay wound closure, and (iii) lead to a thinner repaired epidermis in aged vs. young skin. Failure to form cohesive ESG outgrowths may reflect impaired interactions of keratinocytes with the damaged ECM in aged skin. Our findings provide a framework to better understand the mediators of delayed re‐epithelialization in aging and further support the importance of ESGs for the repair of human wounds.
Collapse
Affiliation(s)
- Laure Rittié
- Department of Dermatology University of Michigan Medical School Ann Arbor MI USA
| | - Elyssa A. Farr
- Department of Dermatology University of Michigan Medical School Ann Arbor MI USA
| | - Jeffrey S. Orringer
- Department of Dermatology University of Michigan Medical School Ann Arbor MI USA
| | - John J. Voorhees
- Department of Dermatology University of Michigan Medical School Ann Arbor MI USA
| | - Gary J. Fisher
- Department of Dermatology University of Michigan Medical School Ann Arbor MI USA
| |
Collapse
|
20
|
Han AA, Currie HN, Loos MS, Vrana JA, Fabyanic EB, Prediger MS, Boyd JW. Spatiotemporal phosphoprotein distribution and associated cytokine response of a traumatic injury. Cytokine 2015; 79:12-22. [PMID: 26702931 DOI: 10.1016/j.cyto.2015.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/06/2015] [Indexed: 02/02/2023]
Abstract
Molecular mechanisms of wound healing have been extensively characterized, providing a better understanding of the processes involved in wound repair and offering advances in treatment methods. Both spatial and temporal investigations of injury biomarkers have helped to pinpoint significant time points and locations during the recovery process, which may be vital in managing the injury and making the appropriate diagnosis. This study addresses spatial and temporal differences of phosphoproteins found in skeletal muscle tissue following a traumatic femur fracture, which were further compared to co-localized cytokine responses. In particular, several proteins (Akt, ERK, c-Jun, CREB, JNK, MEK1, and p38) and post-translational phosphorylations (p-Akt, p-c-Jun, p-CREB, p-ERK1/2, p-MEK1, p-p38, p-GSK3α/β, p-HSP27, p-p70S6K, and p-STAT3) associated with inflammation, new tissue formation, and remodeling were found to exhibit significant spatial and temporal differences in response to the traumatic injury. Quadratic discriminant analysis of all measured responses, including cytokine concentrations from previously published findings, was used to classify temporal and spatial observations at high predictive rates, further confirming that distinct spatiotemporal distributions for total protein, phosphorylation signaling, and cytokine (IL-1α, IL-1ß, IL2, IL6, TNF-α, and MIP-1α) responses exist. Finally, phosphoprotein measurements were found to be significantly correlated to cytokine concentrations, suggesting coordinated intracellular and extracellular activity during crucial periods of repair. This study represents a first attempt to monitor and assess integrated changes in extracellular and intracellular signaling in response to a traumatic injury in muscle tissues, which may provide a framework for future research to improve both our understanding of wounds and their treatment options.
Collapse
Affiliation(s)
- Alice A Han
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Holly N Currie
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Matthew S Loos
- Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Julie A Vrana
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Emily B Fabyanic
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Maren S Prediger
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Jonathan W Boyd
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
21
|
Hellewell AL, Adams JC. Insider trading: Extracellular matrix proteins and their non-canonical intracellular roles. Bioessays 2015; 38:77-88. [PMID: 26735930 DOI: 10.1002/bies.201500103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In metazoans, the extracellular matrix (ECM) provides a dynamic, heterogeneous microenvironment that has important supportive and instructive roles. Although the primary site of action of ECM proteins is extracellular, evidence is emerging for non-canonical intracellular roles. Examples include osteopontin, thrombospondins, IGF-binding protein 3 and biglycan, and relate to roles in transcription, cell-stress responses, autophagy and cancer. These findings pose conceptual problems on how proteins signalled for secretion can be routed to the cytosol or nucleus, or can function in environments with diverse redox, pH and ionic conditions. We review evidence for intracellular locations and functions of ECM proteins, and current knowledge of the mechanisms by which they may enter intracellular compartments. We evaluate the experimental methods that are appropriate to obtain rigorous evidence for intracellular localisation and function. Better insight into this under-researched topic is needed to decipher the complete spectrum of physiological and pathological roles of ECM proteins.
Collapse
|
22
|
Elliott CG, Forbes TL, Leask A, Hamilton DW. Inflammatory microenvironment and tumor necrosis factor alpha as modulators of periostin and CCN2 expression in human non-healing skin wounds and dermal fibroblasts. Matrix Biol 2015; 43:71-84. [PMID: 25779637 DOI: 10.1016/j.matbio.2015.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/07/2015] [Accepted: 03/08/2015] [Indexed: 12/18/2022]
Abstract
Non-healing skin wounds remain a significant clinical burden, and in recent years, the regulatory role of matricellular proteins in skin healing has received significant attention. Periostin and CCN2 are both upregulated at day 3 post-wounding in murine skin, where they regulate aspects of the proliferative phase of repair including mesenchymal cell infiltration and myofibroblast differentiation. In this study, we examined 1) the wound phenotype and expression patterns of periostin and CCN2 in non-healing skin wounds in humans and 2) the regulation of their expression in wound fibroblasts by tumor necrosis factor α (TNFα) and transforming growth factor-β1 (TGF-β1). Chronic skin wounds had a pro-inflammatory phenotype, characterized by macrophage infiltration, TNFα immunoreactivity, and neutrophil infiltration. Periostin, but not CCN2, was significantly suppressed in non-healing wound edge tissue at the mRNA and protein level compared with non-involved skin. In vitro, human wound edge fibroblasts populations were still able to proliferate and contract collagen gels. Compared to cells from non-involved skin, periostin and α-SMA mRNA levels increased significantly in the presence of TGF-β1 in wound cells and were significantly decreased by TNFα, but not those of Col1A2 or CCN2. In the presence of both TGF-β1 and TNFα, periostin and α-SMA mRNA levels were significantly reduced compared to TGF-β1 treated wound cells. Effects of TGF-β1 and TNFα on gene expression were also more pronounced in wound edge cells compared to non-involved fibroblasts. We conclude that variations in the expression of periostin and CCN2, are related to an inflammatory microenvironment and the presence of TNFα in human chronic wounds.
Collapse
Affiliation(s)
- Christopher G Elliott
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada
| | - Thomas L Forbes
- Division of Vascular Surgery, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada
| | - Andrew Leask
- Division of Oral Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada; Division of Oral Biology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
23
|
Ren JG, Chen G, Zhu JY, Zhang W, Sun YF, Jia J, Zhang J, Zhao YF. Downregulation of the transforming growth factor-β/connective tissue growth factor 2 signalling pathway in venous malformations: its target potential for sclerotherapy. Br J Dermatol 2014; 171:242-51. [PMID: 24655310 DOI: 10.1111/bjd.12977] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 01/04/2023]
Affiliation(s)
- J.-G. Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - G. Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - J.-Y. Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - W. Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Y.-F. Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - J. Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - J. Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Y.-F. Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
24
|
Tran CM, Schoepflin ZR, Markova DZ, Kepler CK, Anderson DG, Shapiro IM, Risbud MV. CCN2 suppresses catabolic effects of interleukin-1β through α5β1 and αVβ3 integrins in nucleus pulposus cells: implications in intervertebral disc degeneration. J Biol Chem 2014; 289:7374-87. [PMID: 24464580 DOI: 10.1074/jbc.m113.526111] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The objective of the study was to examine the regulation of CCN2 by inflammatory cytokines, IL-1β, and TNF-α and to determine whether CCN2 modulates IL-1β-dependent catabolic gene expression in nucleus pulposus (NP) cells. IL-1β and TNF-α suppress CCN2 mRNA and protein expression in an NF-κB-dependent but MAPK-independent manner. The conserved κB sites located at -93/-86 and -546/-537 bp in the CCN2 promoter mediated this suppression. On the other hand, treatment of NP cells with IL-1β in combination with CCN2 suppressed the inductive effect of IL-1β on catabolic genes, including MMP-3, ADAMTS-5, syndecan 4, and prolyl hydroxylase 3. Likewise, silencing of CCN2 in human NP cells resulted in elevated basal expression of several catabolic genes and inflammatory cytokines like IL-6, IL-4, and IL-12 as measured by gene expression and cytokine protein array, respectively. Interestingly, the suppressive effect of CCN2 on IL-1β was independent of modulation of NF-κB signaling. Using disintegrins, echistatin, and VLO4, peptide inhibitors to αvβ3 and α5β1 integrins, we showed that CCN2 binding to both integrins was required for the inhibition of IL-1β-induced catabolic gene expression. It is noteworthy that analysis of human tissues showed a trend of altered expression of these integrins during degeneration. Taken together, these results suggest that CCN2 and inflammatory cytokines form a functional negative feedback loop in NP cells that may be important in the pathogenesis of disc disease.
Collapse
Affiliation(s)
- Cassie M Tran
- From the Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | |
Collapse
|
25
|
Kiwanuka E, Hackl F, Caterson EJ, Nowinski D, Junker JPE, Gerdin B, Eriksson E. CCN2 is transiently expressed by keratinocytes during re-epithelialization and regulates keratinocyte migration in vitro by the ras-MEK-ERK signaling pathway. J Surg Res 2013; 185:e109-19. [PMID: 24079812 DOI: 10.1016/j.jss.2013.05.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND CCN2 (previously known as connective tissue growth factor) is a multifunctional matricellular protein that has numerous effects on cell life and cell interactions with the connective tissue. Although the importance of CCN2 for the fibrotic process in wound healing has been well studied, the involvement of CCN2 in keratinocyte function has not yet been explored. Therefore, the aim of the present study was to investigate the role of CCN2 in the epidermis during wound healing. MATERIALS AND METHODS Immunohistochemistry was done on sections from full-thickness porcine wounds. The effect of CCN2 on the migration of cultured human keratinocytes exposed to scratch wounds, the effect on phosphorylation of extracellular signal-related kinases (ERK), and the effect of adding inhibitors to the ERK/mitogen-activated protein kinase pathway to human keratinocytes were studied. RESULTS The CCN2 protein was transiently expressed in vivo at the leading keratinocyte edge during re-epithelialization of full-thickness porcine wounds. In vitro, exogenous addition of CCN2 to human keratinocyte cultures regulated keratinocyte migration and resulted in phosphorylation of ERK. The addition of inhibitors of ERK/mitogen-activated protein kinase counteracted the effect of CCN2 on migration. CONCLUSIONS CCN2 was transiently expressed at the leading keratinocyte edge in vivo. The biologic importance of this was supported in vitro, because CCN2 regulated human keratinocyte migration through activation of the Ras-mitogen-activated protein kinase kinase-ERK signal transduction pathway.
Collapse
Affiliation(s)
- Elizabeth Kiwanuka
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Surgical Sciences, Plastic Surgery Unit, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Perbal B. CCN proteins: A centralized communication network. J Cell Commun Signal 2013; 7:169-77. [PMID: 23420091 DOI: 10.1007/s12079-013-0193-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/19/2022] Open
Abstract
The CCN family of proteins includes six members presently known as CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6. These proteins were originally designated CYR61, CTGF, NOV, and WISP-1, WISP-2, WISP-3. Although these proteins share a significant amount of structural features and a partial identity with other large families of regulatory proteins, they exhibit different biological functions. A critical examination of the progress made over the past two decades, since the first CCN proteins were discovered brings me to the conclusion that most of our present knowledge regarding the functions of these proteins was predicted very early after their discovery. In an effort to point out some of the gaps that prevent us to reach a comprehensive view of the functional interactions between CCN proteins, it is necessary to reconsider carefully data that was already published and put aside, either because the scientific community was not ready to accept them, or because they were not fitting with the « consensus » when they were published. This review article points to avenues that were not attracting the attention that they deserved. However, it is quite obvious that the six members of this unique family of tetra-modular proteins must act in concert, either simultaneously or sequentially, on the same sites or at different times in the life of living organisms. A better understanding of the spatio-temporal regulation of CCN proteins expression requires considering the family as such, not as a set of single proteins related only by their name. As proposed in this review, there is enough convincing pieces of evidence, at the present time, in favor of these proteins playing a role in the coordination of multiple signaling pathways, and constituting a Centralized Communication Network. Deciphering the hierarchy of regulatory circuits involved in this complex system is an important challenge for the near future. In this article, I would like to briefly review the concept of a CCN family of proteins and critically examine the progress made over the past 10 years in the understanding of their biological functions and involvement in both normal and pathological processes.
Collapse
|
27
|
Rittié L, Sachs DL, Orringer JS, Voorhees JJ, Fisher GJ. Eccrine sweat glands are major contributors to reepithelialization of human wounds. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:163-71. [PMID: 23159944 DOI: 10.1016/j.ajpath.2012.09.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/05/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Eccrine sweat glands are skin-associated epithelial structures (appendages) that are unique to some primates including humans and are absent in the skin of most laboratory animals including rodents, rabbits, and pigs. On the basis of the known importance of other skin appendages (hair follicles, apocrine glands, and sebaceous glands) for wound repair in model animals, the present study was designed to assess the role of eccrine glands in the repair of wounded human skin. Partial-thickness wounds were generated on healthy human forearms, and epidermal repair was studied in skin biopsy samples obtained at precise times during the first week after wounding. Wound reepithelialization was assessed using immunohistochemistry and computer-assisted 3-dimensional reconstruction of in vivo wounded skin samples. Our data demonstrate a key role for eccrine sweat glands in reconstituting the epidermis after wounding in humans. More specifically, (i) eccrine sweat glands generate keratinocyte outgrowths that ultimately form new epidermis; (ii) eccrine sweat glands are the most abundant appendages in human skin, outnumbering hair follicles by a factor close to 3; and (iii) the rate of expansion of keratinocyte outgrowths from eccrine sweat glands parallels the rate of reepithelialization. This novel appreciation of the unique importance of eccrine sweat glands for epidermal repair may be exploited to improve our approaches to understanding and treating human wounds.
Collapse
Affiliation(s)
- Laure Rittié
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
28
|
A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22:471-83. [PMID: 22863788 DOI: 10.1016/j.semcancer.2012.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/21/2022]
Abstract
Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound. Looking toward clinical interventions that might modulate these processes, the mechanisms and outcomes of current and potential therapies are reviewed for both anti-cancer and pro-wound healing treatments related to the pathways that are central to EMT. Taken together, the comparison of re-epithelialization and tumor EMT serves as a starting point for the development of therapies that can selectively modulate different forms of EMT.
Collapse
|
29
|
Capturing the finer points of gene expression in psoriasis: beaming in on the CCL19/CCR7 axis. J Invest Dermatol 2012; 132:1535-8. [PMID: 22584500 DOI: 10.1038/jid.2012.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Laser capture microdissection-coupled complementary DNA microarray analysis is a powerful tool for studying minor cell populations in tissues. In this issue, Mitsui et al. use this method to characterize the immune infiltrates that localize in the dermis of psoriatic skin. They identify the T-cell activation regulators C-C chemokine ligand 19 and C-C chemokine receptor 7 as potential mediators of immune organization in psoriasis.
Collapse
|
30
|
Heparin-binding EGF-like growth factor promotes epithelial-mesenchymal transition in human keratinocytes. J Invest Dermatol 2012; 132:2148-57. [PMID: 22592159 PMCID: PMC3423535 DOI: 10.1038/jid.2012.78] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have shown that autocrine proliferation of human keratinocytes (KC) is strongly dependent upon amphiregulin (AREG), whereas blockade of heparin-binding EGF-like growth factor (HB-EGF) inhibits KC migration in scratch wound assays. Here we demonstrate that expression of soluble HB-EGF (sHB-EGF) or full-length transmembrane HB-EGF (proHB-EGF), but not proAREG, results in profound increases in KC migration and invasiveness in monolayer culture. Coincident with these changes, HB-EGF significantly decreases mRNA expression of several epithelial markers including keratins 1, 5, 10, and 14, while increasing expression of markers of cellular motility including SNAI1, ZEB1, COX-2 and MMP1. Immunostaining revealed HB-EGF-induced expression of the mesenchymal protein vimentin and decreased expression of E-cadherin as well as nuclear translocation of β-catenin. Suggestive of a trade-off between KC motility and proliferation, overexpression of HB-EGF also reduced KC growth by more than 90%. We also show that HB-EGF is strongly induced in regenerating epidermis after partial thickness wounding of human skin. Taken together, our data suggest that expression of HB-EGF in human KC triggers a migratory and invasive phenotype with many features of epithelial-mesenchymal transition (EMT), which may be beneficial in the context of cutaneous wound healing.
Collapse
|
31
|
Ricard AS, Pain C, Daubos A, Ezzedine K, Lamrissi-Garcia I, Bibeyran A, Guyonnet-Dupérat V, Taieb A, Cario-André M. Study of CCN3 (NOV) and DDR1 in normal melanocytes and vitiligo skin. Exp Dermatol 2012; 21:411-6. [PMID: 22507556 DOI: 10.1111/j.1600-0625.2012.01473.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have hypothesised that melanocytes disappear in vitiligo because they are weakly attached to the epidermal basal membrane (melanocytorrhagy). In the epidermis, attachment of melanocytes to collagen IV is mediated through DDR1, which is under the control of CCN3. DDR1 genetic variants have been associated with vitiligo in patients of different ethnic origin. In vitro studies have shown that inhibition of CCN3 induces the detachment of melanocytes. We have studied in parallel the expression of CCN3 and DDR1 in lesional and perilesional skin of patients with vitiligo and the impact of the silencing of CCN3 and DDR1 in normal human melanocytes on their behaviour in epidermal reconstructs. Our in vivo study provides evidence of a dysregulation of the DDR1-CCN3 interaction in vitiligo skin as melanocytes remaining in perilesional skin did not express CCN3. Expression of DDR1 was decreased in lesional versus perilesional vitiligo skin in the majority of patients, and the expression of collagen IV was found decreased in all patients. Silencing of CCN3 in melanocytes induced a significant inhibition of cell adhesion to collagen IV whereas melanocytes transduced with shDDR1 still adhered well on collagen IV and did not increase melanocyte loss in epidermal reconstructs as compared with normal melanocytes. Melanocyte detachment was observed but not in all reconstructs using CCN3 silenced melanocytes. Overall, our study confirms that a downregulation of CCN3 is implicated in melanocyte adhesion in part through DDR1. In vitiligo skin, the interaction of CCN3 with other molecules, such as TGFβ and CCN2, needs to be addressed.
Collapse
|
32
|
Perbal B. CCN3: the-pain-killer inside me. J Cell Commun Signal 2012; 6:117-20. [PMID: 22460931 DOI: 10.1007/s12079-012-0163-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 11/29/2022] Open
Abstract
There is increasing evidence that metalloproteinases are involved in neuropathic pain [Dev et al., Expert Opin Investig Drugs 19:455-468 2010] Hence, the identification of molecules that can regulate MMP9 and MMP2 is warranted. In a recent publication, Kular et al. (2012) claim that CCN3 functions to decrease inflammatory pain via the regulation of two metalloproteinases, MMP2 and MMP9, in response to experimentally-induced inflammation. Their conclusion is based on the following observations : i) the expression of CCN3 was reduced following induction of pain by subcutaneous injection of complete Freund's adjuvent in rat's paw, ii) an inhibition of MMP9 decreased CFA-associated mechanical allodynia, iii) inhibition of CCN3 expression by siRNA led to an upregulation of MMP2 in the dorsal horn of the spinal cord (DHSC) and MMP9 in the dorsal root ganglia (DRG), iv) a partial effect of CCN3 on CFA-induced expression of MMP9 and MMP2 in DRG and DHSC following intrathecal injection of CCN3. Unfortunately, the conclusion of this study is weakened by the lack of experimental evidence showing a direct relationship between the expression of CCN3 and MMPs. Furthermore, several results contained in this manuscript only confirm data that were previously established by others. Owing to the wide range of activities which have been attributed to CCN3 (Perbal, Mol Pathol 54:57-79 2001, Brigstock, J Endocrinol 178:169-175 2003, Perbal, Lancet 363(9402):62-64 2004, Perbal, Cell Commun Signal 4:6 2006, Holbourn et al. Trends Biochem Sci. 33:461-473 2008, Leask and Abraham, J Cell Sci 119:4803-4810 2006, Jun and Lau, Nat Rev Drug Discov 10:945-963 2011, Rachfal and Brigstock, Vitam Horm 70:69-103 2005), the mechanisms underlying the potential role of CCN3 in the expression of these MMPs in the context of inflammatory pain must be thoroughly studied before a meaningful conclusion can be reached. Indeed, Kular et al. description of variations in CCN3, MMP9 and MMP2 levels occurring simultaneously is not sufficient to draw a functional relationship between these three proteins. It should be noted that the expression of CCN3 was already reported to repress MMP9 (Benini et al., Oncogene 24:4349-4361 2005, Fukunaga-Kalabis et al., Oncogene 27:2552-2560 2008) and the roles of CCN3 in inflammatory processes has been extensively documented in the past few years (Bleau et al., Front Biosci 10:998-1009 2005, Lin et al., J Biol Chem 280:8229-8237 2005, Perbal, Cell Commun Signal 4:6 2006, Hughes et al., Diabetologia 50:1089-1098 2007, Lin et al., J Cell Commun Signal 4:141-153 2010, Pasmant et al., J Neuropathol Exp Neurol 69:60-69 2010, Shimoyama et al., Thromb Vasc Biol 30:675-682 2010, Lemaire et al., J Invest Dermatol 130:2517 2010, Chen and Lau, J Cell Commun Signal 4:63-69 2010, Le Dréau et al., Glia 58:1510-1521 2010, Rittié et al. J Cell Commun Signal 5:69-80 2011, Janune et al., J Cell Commun Signal 5:167-171 2011). In addition, the expression of CCN3 in the neurons of dorsal root ganglia and dorsal horn of the spinal horn in rat and human has also been documented (Su et al., C R Acad Sci III 321:883-892 1998, Mol Pathol 54:184-191 2001, Kocialkowski et al., Anat Embryol (Berl) 203:417-427 2001). Implication of CCN3 in cognitive functions (Su et al., Sheng Li Xue Bao 52:290-294 2000) and the possible involvement of CCN3 in the regulation of pain was already suggested almost a decade ago (Perbal, Expert Rev Mol Diagn 3:597-604 2003, Perbal et al., Mol Pathol 56:80-85 2003) with the demonstration of cell-specific effects of CCN3 on intracellular calcium stores and inhibition of anionic channels by CCN3 (Li et al., Mol Pathol 55:250-261 2002, Lombet et al., Cell Commun Signal 1:1 2003, Perbal, Expert Rev Mol Diagn 3:597-604 2003, Perbal et al., Mol Pathol 56:80-85 2003). Aside from these general aspects, and in the light of the potential participation of CCN3 in the whole process of pain sensing, the reader would have appreciated the discussion in this manuscript not being essentially a flat summary of the data presented, but a more thorough discussion of the possible role for CCN3 in the regulation of MMPs and its significance in the context of the wide biological functions of CCN3.
Collapse
|
33
|
Hermes O, Schlage P, auf dem Keller U. Wound degradomics - current status and future perspectives. Biol Chem 2011; 392:949-54. [PMID: 21819269 DOI: 10.1515/bc.2011.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Proteases are pivotal modulators of extracellular matrix components and bioactive proteins at all phases of cutaneous wound healing and thereby essentially contribute to the successful reestablishment of skin integrity upon injury. As a consequence, disturbance of proteolytic activity at the wound site is a major factor in the pathology of chronic wounds. A large body of data acquired in many years of research provide a good understanding of how individual proteases may influence the repair process. The next challenge will be to integrate these findings and to elucidate the complex interactions of proteolytic enzymes, their inhibitors and substrates on a system-wide level. Here, we present novel approaches that might help to achieve this ambitious goal in cutaneous wound healing research.
Collapse
Affiliation(s)
- Olivia Hermes
- Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
34
|
Ohkawa Y, Ohmi Y, Tajima O, Yamauchi Y, Furukawa K, Furukawa K. Wisp2/CCN5 up-regulated in the central nervous system of GM3-only mice facilitates neurite formation in Neuro2a cells via integrin-Akt signaling. Biochem Biophys Res Commun 2011; 411:483-9. [PMID: 21723256 DOI: 10.1016/j.bbrc.2011.06.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 01/01/2023]
Abstract
Wisp2/CCN5 belongs to CCN family proteins which are involved in cell proliferation, angiogenesis, tumorigenesis and wound healing. Although a number of studies on the roles of Wisp2/CCN5 in cancers have been reported, no study on the expression and function of Wisp2/CCN5 in the central nervous system has been reported. In this study, we focused on Wisp2/CCN5 that was up-regulated in nervous tissues in GM3-only mice. Over-expression of Wisp2/CCN5 enhanced neurite outgrowth potently after serum withdrawal with increased phosphorylation levels of Akt and ERKs. When cells were cultured with recombinant Wisp2/CCN5 proteins, more and longer neurites were formed than in the controls. Thus, we demonstrated for the first time that Wisp2/CCN5 facilitates neurite formation in a mouse neuroblastoma cell line, Neuro2a. Akt phosphorylation induced by recombinant Wisp2/CCN5 was suppressed after knockdown of integrin β1. Moreover, Wisp2/CCN5-over-expressing cells were resistant to apoptosis induced by H(2)O(2). These results suggested that secreted Wisp2/CCN5 induces Akt and ERK phosphorylation via integrins, and consequently facilitates neurite formation and conferred resistance to apoptosis. Up-regulation of Wisp2/CCN5 in GM3-only mice should be, therefore, a reaction to protect nervous tissues from neurodegeneration caused by ganglioside deficiency.
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Sha W, Leask A. CCN2 expression and localization in melanoma cells. J Cell Commun Signal 2011; 5:219-26. [PMID: 21667293 DOI: 10.1007/s12079-011-0128-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/07/2011] [Indexed: 01/22/2023] Open
Abstract
The matricellular protein connective tissue growth factor (CTGF, CCN2) is overexpressed in several forms of cancer and may represent a novel target in anti-cancer therapy. However, whether CCN2 is expressed in melanoma cells is unknown. The highly metastatic murine melanoma cell line B16(F10) was used for our studies. Real time polymerase chain reaction analysis was used to detect mRNA expression of CCN1, CCN2, CCN3 and CCN4 in Western blot and immunofluorescence analyses were used to detect CCN2 protein. Inhibitors of signal transduction cascades were used to probe the mechanism underlying CCN2 expression in B16(F10) cells. CCN2 was expressed in B16(F10) cells, and was reduced by the FAK/src inhibitor PP2 and the MEK/ERK inhibitor U0126 indicating that CCN2 acts downstream of these pathways in B16(F10) murine melanoma cells. Expression of CCN1, CCN3 and CCN4 was not reduced by PP2 or U0126; in fact, expression of CCN4 mRNA was elevated by PP2 or U0126 treatment. To our surprise, CCN2 protein was detected in the nuclei of B16(F10) cells, and was undetectable in the cytoplasm. CCN2 was expressed in B16(F10) melanoma cells, adding to the list of cancer cells in which CCN2 is expressed. Of the CCN family members tested, only CCN2 is downstream of the highly oncogenic MEK/ERK pathway. CCN2 should be further evaluated for a possible role in melanoma growth and progression.
Collapse
Affiliation(s)
- Wei Sha
- Department of Dentistry, Schulich School of Medicine of Dentistry, Dental Sciences Building, University of Western Ontario, London, ON, Canada, N6A 5C1
| | | |
Collapse
|