1
|
Harissa Z, Kim Y, Dicks AR, Steward N, Guilak F. Skeletal dysplasia-causing mutations in TRPV4 alter the chondrocyte transcriptomic response to mechanical loading. Am J Physiol Cell Physiol 2025; 328:C1135-C1149. [PMID: 40019039 DOI: 10.1152/ajpcell.01066.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a mechanosensitive ion channel highly expressed in chondrocytes that supports cartilage development and homeostasis. Mutations in the channel can cause skeletal dysplasias, including the gain-of-function mutations V620I and T89I, which lead to brachyolmia and metatropic dysplasia, respectively. These mutations suppress hypertrophic differentiation, but the mechanisms by which they alter chondrocyte response to mechanical load remain to be elucidated. To determine the effect of these mutations on chondrocyte mechanotransduction, tissue-engineered cartilage was derived from differentiated clustered regularly interspaced short palindromic repeats (CRISPR)-edited human-induced pluripotent stem cells (hiPSCs) harboring the moderate V620I or severe T89I TRPV4 mutations. Wild-type and mutant tissue-engineered hiPSC-derived cartilage contructs were subjected to compressive mechanical loading at physiological levels, and transcriptomic signatures were assessed by RNA-sequencing. Our results demonstrate that the V620I and T89I mutations diminish the mechanoresponsiveness of chondrocytes, as evidenced by reduced gene expression downstream of TRPV4 activation, including those involved in endochondral ossification. Changes in the expression of genes involved in extracellular matrix production and organization were found to contribute toward the phenotype in V620I mutant chondrocytes, whereas dysregulated retinoic acid signaling was linked to T89I, and disrupted proliferation was common to both. Our findings suggest that dysfunctional mechanotransduction due to V620I and T89I mutations in TRPV4 contribute to the developmental phenotypes, supporting TRPV4 modulation as a potential pharmacologic target.NEW & NOTEWORTHY Gain-of-function mutations in TRPV4, a mechano- and osmosensitive ion channel, are linked to skeletal dysplasias, but their effects on chondrocyte mechanotransduction remain unknown. Using human iPSCs harboring skeletal dysplasia-causing mutations, we developed and mechanically loaded tissue-engineered cartilage. Our findings show that V620I and T89I mutations reduce chondrocyte mechanoresponsiveness, evidenced by decreased gene expression downstream of TRPV4 activation, providing insight into TRPV4-related skeletal disorders and potential pharmacological targets.
Collapse
Affiliation(s)
- Zainab Harissa
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, United States
| | - Yuseon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, United States
| | - Amanda R Dicks
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, United States
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, United States
| |
Collapse
|
2
|
Donati S, Palmini G, Aurilia C, Falsetti I, Marini F, Galli G, Zonefrati R, Iantomasi T, Margheriti L, Franchi A, Beltrami G, Masi L, Moro A, Brandi ML. Establishment and Molecular Characterization of a Human Stem Cell Line from a Primary Cell Culture Obtained from an Ectopic Calcified Lesion of a Tumoral Calcinosis Patient Carrying a Novel GALNT3 Mutation. Genes (Basel) 2025; 16:263. [PMID: 40149415 PMCID: PMC11942111 DOI: 10.3390/genes16030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Tumoral calcinosis (TC) is an extremely rare inherited disease characterized by multilobulated, dense ectopic calcified masses, usually in the periarticular soft tissue regions. In a previous study, we isolated a primary cell line from an ectopic lesion of a TC patient carrying a previously undescribed GALNT3 mutation. Here, we researched whether a stem cell (SC) subpopulation, which may play a critical role in TC progression, could be present within these lesions. METHODS A putative SC subpopulation was initially isolated by the sphere assay (marked as TC1-SC line) and characterized for its stem-like phenotype through several cellular and molecular assays, including colony forming unit assay, immunofluorescence staining for mesenchymal SC (MSC) markers, gene expression analyses for embryonic SC (ESC) marker genes, and multidifferentiation capacity. In addition, a preliminary expression pattern of osteogenesis-related pathways miRNAs and genes were assessed in the TC1-SC by quantitative Real-Time PCR (qPCR). RESULTS These cells were capable of differentiating into both the adipogenic and the osteogenic lineages. Moreover, they showed the presence of the MSC and ESC markers, confirmed respectively by using immunofluorescence and qualitative reverse transcriptase PCR (RT-PCR), and a good rate of clonogenic capacity. Finally, qPCR data revealed a signature of miRNAs (i.e., miR-21, miR-23a-3p, miR-26a, miR-27a-3p, miR-27b-3p, and miR-29b-3p) and osteogenic marker genes (i.e., ALP, RUNX2, COLIA1, OPG, OCN, and CCN2) characteristic for the established TC1-SC line. CONCLUSIONS The establishment of this in vitro cell model system could advance the understanding of mechanisms underlying TC pathogenesis, thereby paving the way for the discovery of new diagnostic and novel gene-targeted therapeutic approaches for TC.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Gaia Palmini
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Francesca Marini
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Roberto Zonefrati
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Lorenzo Margheriti
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Giovanni Beltrami
- Department of Orthopaedic Oncology and Reconstructive Surgery, Azienda Ospedaliero, Universitaria Careggi, 50134 Firenze, Italy;
| | - Laura Masi
- Metabolic Bone Diseases Unit, University Hospital of Florence, AOU Careggi, 50139 Florence, Italy;
| | - Arcangelo Moro
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Maria Luisa Brandi
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| |
Collapse
|
3
|
Eun K, Kim AY, Ryu S. Matricellular proteins in immunometabolism and tissue homeostasis. BMB Rep 2024; 57:400-416. [PMID: 38919018 PMCID: PMC11444987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2023] [Accepted: 04/25/2024] [Indexed: 06/27/2024] Open
Abstract
Matricellular proteins are integral non-structural components of the extracellular matrix. They serve as essential modulators of immunometabolism and tissue homeostasis, playing critical roles in physiological and pathological conditions. These extracellular matrix proteins including thrombospondins, osteopontin, tenascins, the secreted protein acidic and rich in cysteine (SPARC) family, the Cyr61, CTGF, NOV (CCN) family, and fibulins have multi-faceted functions in regulating immune cell functions, metabolic pathways, and tissue homeostasis. They are involved in immune-metabolic regulation and influence processes such as insulin signaling, adipogenesis, lipid metabolism, and immune cell function, playing significant roles in metabolic disorders such as obesity and diabetes. Furthermore, their modulation of tissue homeostasis processes including cellular adhesion, differentiation, migration, repair, and regeneration is instrumental for maintaining tissue integrity and function. The importance of these proteins in maintaining physiological equilibrium is underscored by the fact that alterations in their expression or function often coincide with disease manifestation. This review contributes to our growing understanding of these proteins, their mechanisms, and their potential therapeutic applications. [BMB Reports 2024; 57(9): 400-416].
Collapse
Affiliation(s)
- Kyoungjun Eun
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Ah Young Kim
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Seungjin Ryu
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Institute of Natural Medicine, College of Medicine, Hallym Unviersity, Chuncheon 24252, Korea
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul 06974, Korea
| |
Collapse
|
4
|
Li X, Zhang C, Feng C, Zhang Z, Feng N, Sha H, Luo X, Zou G, Liang H. Transcriptome Analysis Elucidates the Potential Key Genes Involved in Rib Development in bmp6-Deficient Silver Carp ( Hypophthalmichthys molitrix). Animals (Basel) 2024; 14:1451. [PMID: 38791669 PMCID: PMC11117292 DOI: 10.3390/ani14101451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Bone morphogenetic protein 6 (BMP-6) is a constituent of the TGF-β superfamily, known for its ability to stimulate bone and cartilage formation. The investigation of bmp6's involvement in the formation of intermuscular bones in fish has garnered significant attention in recent years. The rib cage is an important skeletal structure that plays a protective function for internal organs in fish. However, there has been limited research conducted on the effects of the bmp6 gene on rib development. Silver carp is one of four major fish in China, favoured for its affordability and tender muscle. Nevertheless, the presence of numerous intermuscular bones in silver carp significantly hinders the advancement of its palatability and suitability for processing. This study showcases the effective utilisation of CRISPR/Cas9 technology for the purpose of disrupting the bmp6 gene in silver carp, leading to the creation of chimeras in the P0 generation, marking the first instance of such an achievement. The chimeras exhibited complete viability, normal appearance, and partial intermuscular bones loss, with approximately 30% of them displaying rib bifurcation or bending. Subsequently, a transcriptome analysis on ribs of P0 chimeras and wild-type silver carp was conducted, leading to the identification of 934 genes exhibiting differential expression, of which 483 were found to be up-regulated and 451 were found to be down-regulated. The results of the KEGG analysis revealed that the "NF-kappa B signalling pathway", "Hippo signalling pathway", "osteoclast differentiation", and "haematopoietic cell lineage" exhibited enrichment and displayed a significant correlation with bone development. The up-regulated genes such as tnfα, fos, and ctgf in pathways may facilitate the proliferation and differentiation of osteoclasts, whereas the down-regulation of genes such as tgfb2 and tgfbr1 in pathways may hinder the formation and specialisation of osteoblasts, ultimately resulting in rib abnormalities. This study presents novel findings on the impact of bmp6 gene deletion on the rib development of silver carp, while simultaneously investigating the previously unexplored molecular mechanisms underlying rib defects in fish.
Collapse
Affiliation(s)
- Xiaohui Li
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Chunyan Zhang
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Laboratory of Zooligical Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Cui Feng
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Zewen Zhang
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Laboratory of Zooligical Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Nannan Feng
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Laboratory of Zooligical Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Hang Sha
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Xiangzhong Luo
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Guiwei Zou
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institude, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (X.L.); (C.Z.); (C.F.); (Z.Z.); (N.F.); (H.S.); (X.L.); (G.Z.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Isshiki T, Naiel S, Vierhout M, Otsubo K, Ali P, Tsubouchi K, Yazdanshenas P, Kumaran V, Dvorkin-Gheva A, Kolb MRJ, Ask K. Therapeutic strategies to target connective tissue growth factor in fibrotic lung diseases. Pharmacol Ther 2024; 253:108578. [PMID: 38103794 DOI: 10.1016/j.pharmthera.2023.108578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The treatment of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), remains challenging as current available antifibrotic agents are not effective in halting disease progression. Connective tissue growth factor (CTGF), also known as cellular communication factor 2 (CCN2), is a member of the CCN family of proteins that regulates cell signaling through cell surface receptors such as integrins, the activity of cytokines/growth factors, and the turnover of extracellular matrix (ECM) proteins. Accumulating evidence indicates that CTGF plays a crucial role in promoting lung fibrosis through multiple processes, including inducing transdifferentiation of fibroblasts to myofibroblasts, epithelial-mesenchymal transition (EMT), and cooperating with other fibrotic mediators such as TGF-β. Increased expression of CTGF has been observed in fibrotic lungs and inhibiting CTGF signaling has been shown to suppress lung fibrosis in several animal models. Thus, the CTGF signaling pathway is emerging as a potential therapeutic target in IPF and other pulmonary fibrotic conditions. This review provides a comprehensive overview of the current evidence on the pathogenic role of CTGF in pulmonary fibrosis and discusses the current therapeutic agents targeting CTGF using a systematic review approach.
Collapse
Affiliation(s)
- Takuma Isshiki
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada; Department of Respiratory Medicine, Toho University School of Medicine, 6-11-1 Omori Nisi, Ota-ku, Tokyo 143-8541, Japan
| | - Safaa Naiel
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Megan Vierhout
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kohei Otsubo
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Pareesa Ali
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Kazuya Tsubouchi
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Parichehr Yazdanshenas
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Vaishnavi Kumaran
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada
| | - Martin R J Kolb
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Kjetil Ask
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, 5o Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada; Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 48L, Canada.
| |
Collapse
|
6
|
Hoang LD, Aoyama E, Hiasa M, Omote H, Kubota S, Kuboki T, Takigawa M. Positive Regulation of S-Adenosylmethionine on Chondrocytic Differentiation via Stimulation of Polyamine Production and the Gene Expression of Chondrogenic Differentiation Factors. Int J Mol Sci 2023; 24:17294. [PMID: 38139122 PMCID: PMC10743985 DOI: 10.3390/ijms242417294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
S-adenosylmethionine (SAM) is considered to be a useful therapeutic agent for degenerative cartilage diseases, although its mechanism is not clear. We previously found that polyamines stimulate the expression of differentiated phenotype of chondrocytes. We also found that the cellular communication network factor 2 (CCN2) played a huge role in the proliferation and differentiation of chondrocytes. Therefore, we hypothesized that polyamines and CCN2 could be involved in the chondroprotective action of SAM. In this study, we initially found that exogenous SAM enhanced proteoglycan production but not cell proliferation in human chondrocyte-like cell line-2/8 (HCS-2/8) cells. Moreover, SAM enhanced gene expression of cartilage-specific matrix (aggrecan and type II collagen), Sry-Box transcription factor 9 (SOX9), CCN2, and chondroitin sulfate biosynthetic enzymes. The blockade of the methionine adenosyltransferase 2A (MAT2A) enzyme catalyzing intracellular SAM biosynthesis restrained the effect of SAM on chondrocytes. The polyamine level in chondrocytes was higher in SAM-treated culture than control culture. Additionally, Alcian blue staining and RT-qPCR indicated that the effects of SAM on the production and gene expression of aggrecan were reduced by the inhibition of polyamine synthesis. These results suggest that the stimulation of polyamine synthesis and gene expression of chondrogenic differentiation factors, such as CCN2, account for the mechanism underlying the action of SAM on chondrocytes.
Collapse
Affiliation(s)
- Loc Dinh Hoang
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
| | - Miki Hiasa
- Laboratory of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-0082, Japan; (M.H.); (H.O.)
| | - Hiroshi Omote
- Laboratory of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-0082, Japan; (M.H.); (H.O.)
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
| |
Collapse
|
7
|
Hochi H, Kubota S, Takigawa M, Nishida T. Dual roles of cellular communication network factor 6 (CCN6) in the invasion and metastasis of oral cancer cells to bone via binding to BMP2 and RANKL. Carcinogenesis 2023; 44:695-707. [PMID: 37590989 PMCID: PMC10692700 DOI: 10.1093/carcin/bgad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023] Open
Abstract
The acquisition of motility via epithelial-mesenchymal transition (EMT) and osteoclast induction are essential for the invasion and metastasis of oral squamous cell carcinoma (OSCC) to bone. However, the molecule suppressing both EMT and osteoclastogenesis is still unknown. In this study, we found that cellular communication network factor 6 (CCN6) was less produced in a human OSCC cell line, HSC-3 with mesenchymal phenotype, than in HSC-2 cells without it. Notably, CCN6 interacted with bone morphogenetic protein 2 (BMP2) and suppressed the cell migration of HSC-3 cells stimulated by BMP2. Moreover, knockdown of CCN6 in HSC-2 cells led to the promotion of EMT and enhanced the effect of transforming growth factor-β (TGF-β) on the promotion of EMT. Furthermore, CCN6 combined with BMP2 suppressed EMT. These results suggest that CCN6 strongly suppresses EMT in cooperation with BMP2 and TGF-β. Interestingly, CCN6 combined with BMP2 increased the gene expression of receptor activator of nuclear factor-κB ligand (RANKL) in HSC-2 and HSC-3 cells. Additionally, CCN6 interacted with RANKL, and CCN6 combined with RANKL suppressed RANKL-induced osteoclast formation. In metastatic lesions, increasing BMP2 due to the bone destruction led to interference with binding of CCN6 to RANKL, which results in the promotion of bone metastasis of OSCC cells due to continuous osteoclastogenesis. These findings suggest that CCN6 plays dual roles in the suppression of EMT and in the promotion of bone destruction of OSCC in primary and metastatic lesions, respectively, through cooperation with BMP2 and interference with RANKL.
Collapse
Affiliation(s)
- Hiroaki Hochi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8525, Japan
| |
Collapse
|
8
|
Colombini A, Doro G, Ragni E, Forte L, de Girolamo L, Zerbinati F. Treatment with CR500® improves algofunctional scores in patients with knee osteoarthritis: a post-market confirmatory interventional, single arm clinical investigation. BMC Musculoskelet Disord 2023; 24:647. [PMID: 37573322 PMCID: PMC10422714 DOI: 10.1186/s12891-023-06754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/25/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is a progressive and degenerative condition. Several pharmacological and non-pharmacological treatments are able to improve the OA symptoms and the structural characteristics of the affected joints. Among these, infiltrative therapy with hyaluronic acid (HA) is the most used and consolidated procedure for the pain management. The addition of skin conditioning peptides to HA promotes the cartilage remodeling processes and a better permeation of the HA-based gel containing a peptide mixture, CR500®. Furthermore, the topic route of administration is convenient over the routinely used intra-articular injective procedures. In this study, the effectiveness of CR500® was evaluated in terms of improvement of the algo-functional symptoms related to unilateral knee OA. METHODS 38 mild and moderate OA patients were enrolled at a screening visit (V-1), treated at baseline visit (V1), and then continued the topical application of CR500® twice a week for 4 weeks, and followed-up for 3 visits (V2-V4) from week 2 to 4. Lequesne Knee Index (LKI) and Knee injury and Osteoarthritis Outcome Score (KOOS) were collected. Synovial fluid was collected and used for the quantification of neoepitope of type II collagen (C2C), C-terminal telopeptide of type II collagen (CTX-II), type II collagen propeptide (CPII), tumor necrosis factor alpha (TNFα) and HA. The expression of CD11c and CD206 was evaluated on cell pellets. RESULTS Three patients were excluded, thus 35 patients were included in the analysis. The treatment with CR500® was safe and well tolerated, with 7.9% patients had mild adverse events, not related to the device. The LKI total score showed a significant decrease from V1 to V4. KOOS score also showed a significant improvement of patient condition at V2, V3 and V4 in comparison with V1 for all subscales, except for KOOS sport subscale which improved only from V3. At V1 a negative correlation among KOOS pain subscale values and C2C, CPII and TNFα levels was observed, as well as a positive correlation between KOOS pain subscale and CD11c/CD206 ratio. CONCLUSION CR500® is safe and appear to be effective in improving pain and function in OA patients during the 4 weeks of treatment. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT05661162. This trial was registered on 22/12/2022.
Collapse
Affiliation(s)
- Alessandra Colombini
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20161, Italy
| | - Gianluca Doro
- Orthopedics and Traumatology Department, Humanitas Mater Domini, Varese, Italy
| | - Enrico Ragni
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20161, Italy
| | | | - Laura de Girolamo
- Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20161, Italy.
| | - Fabio Zerbinati
- Orthopedics and Traumatology Department, Humanitas Mater Domini, Varese, Italy
| |
Collapse
|
9
|
Muromachi K, Nakano R, Fujita-Yoshigaki J, Sugiya H, Tani-Ishii N. BMP-1-induced GBA1 nuclear accumulation provokes CCN2 mRNA expression via importin-β-mediated nucleocytoplasmic pathway. J Cell Commun Signal 2023:10.1007/s12079-023-00740-3. [DOI: 10.1007/s12079-023-00740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
|
10
|
Kubota S, Kawaki H, Perbal B, Takigawa M, Kawata K, Hattori T, Nishida T. Do not overwork: cellular communication network factor 3 for life in cartilage. J Cell Commun Signal 2023:10.1007/s12079-023-00723-4. [PMID: 36745317 DOI: 10.1007/s12079-023-00723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 02/07/2023] Open
Abstract
Cellular communication network factor (CCN) 3, which is one of the founding members of the CCN family, displays diverse functions. However, this protein generally represses the proliferation of a variety of cells. Along with skeletal development, CCN3 is produced in cartilaginous anlagen, growth plate cartilage and epiphysial cartilage. Interestingly, CCN3 is drastically induced in the growth plates of mice lacking CCN2, which promotes endochondral ossification. Notably, chondrocytes in these mutant mice with elevated CCN3 production also suffer from impaired glycolysis and energy metabolism, suggesting a critical role of CCN3 in cartilage metabolism. Recently, CCN3 was found to be strongly induced by impaired glycolysis, and in our study, we located an enhancer that mediated CCN3 regulation via starvation. Subsequent investigations specified regulatory factor binding to the X-box 1 (RFX1) as a transcription factor mediating this CCN3 regulation. Impaired glycolysis is a serious problem, resulting in an energy shortage in cartilage without vasculature. CCN3 produced under such starved conditions restricts energy consumption by repressing cell proliferation, leading chondrocytes to quiescence and survival. This CCN3 regulatory system is indicated to play an important role in articular cartilage maintenance, as well as in skeletal development. Furthermore, CCN3 continues to regulate cartilage metabolism even during the aging process, probably utilizing this regulatory system. Altogether, CCN3 seems to prevent "overwork" by chondrocytes to ensure their sustainable life in cartilage by sensing energy metabolism. Similar roles are suspected to exist in relation to systemic metabolism, since CCN3 is found in the bloodstream.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School, Okayama, Japan
| |
Collapse
|
11
|
Shoji M, Kuzuhara T. Imaging Analysis of Neurotrophic Effects by CCN2 Protein in Neuronal Precursor Cells Derived from Human-Induced Pluripotent Stem Cells. Methods Mol Biol 2023; 2582:269-280. [PMID: 36370356 DOI: 10.1007/978-1-0716-2744-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Human-induced pluripotent stem cells (hiPSCs) are useful tools to examine human neuronal maturation processes. In this chapter, we describe the maturation of human neuronal precursor cells derived from hiPSCs by cellular communication network family member 2, also known as connective tissue growth factor. We describe the (1) preparation of feeder cells for undifferentiated culture of hiPSCs, (2) undifferentiated culture of hiPSCs, (3) induction of neuronal precursor cells from hiPSCs, (4) maturation of neuronal precursor cells from hiPSCs, (5) immunofluorescent staining of neuronal cells from hiPSCs, and (6) immunofluorescence analysis.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| |
Collapse
|
12
|
Takigawa M. CCN Proteins (Cellular Communication Network Factors): Expanding Their Repertoire Toward a New Concept. Methods Mol Biol 2023; 2582:1-10. [PMID: 36370338 DOI: 10.1007/978-1-0716-2744-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
I herein report the general structures and functions of CCN proteins and possible molecular mechanisms involved in the unique biological actions of this family of intercellular signaling regulators, which are considered matricellular proteins and were once referred to as "signal conductors" but have recently been renamed "Cellular Communication Network Factors." Their repertoire of functions beyond their role as matricellular proteins is also described to aid in future studies. Advanced research concerning their relevance to pathology is briefly introduced as well. The information provided in this chapter is expected to be useful for readers of subsequent chapters.
Collapse
Affiliation(s)
- Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
13
|
Takeshita N, Takano-Yamamoto T. Analysis of Chemotactic Property of CCN2/CTGF in Intramembranous Osteogenesis. Methods Mol Biol 2023; 2582:237-253. [PMID: 36370354 DOI: 10.1007/978-1-0716-2744-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemotaxis is a directed migration of cells in response to a gradient of extracellular molecules called chemoattractants. Development, growth, remodeling, and fracture healing of bones are advanced through intramembranous osteogenesis. Chemotaxis of preosteoblasts toward future bone formation sites observed in the early stage of intramembranous osteogenesis is a critical cellular process for normal bone formation. However, molecular biological mechanisms of the chemotaxis of preosteoblasts are not fully understood. We have recently clarified, for the first time, the critical role of the cellular communication network factor 2 (CCN2)/connective tissue growth factor (CTGF)-integrin α5-Ras axis for chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis. In this chapter, we describe in detail the procedures of the in vivo and in vitro assays to investigate the chemotactic property of CCN2/CTGF and its underlying molecular biological mechanisms during intramembranous osteogenesis.
Collapse
Affiliation(s)
- Nobuo Takeshita
- Section of Orthodontics and Dentofacial Orthopedics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan.
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
14
|
Kawaki H, Kubota S, Takigawa M. Cellular Fluorescence Imaging for the Evaluation of Bioactivity of CCN Family Proteins. Methods Mol Biol 2023; 2582:23-29. [PMID: 36370341 DOI: 10.1007/978-1-0716-2744-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The method of labeling proteins of interest with fluorescent dyes that can specifically stain organelles in living cells provides a tool for investigating various cellular processes under a microscope. Visualization (imaging) of the cells using fluorescence has many advantages, including the ability to stain multiple cell organelles and intracellular proteins simultaneously and discriminately, and is used in many research fields. In this chapter, we describe the observation of cell organelles using fluorescence staining to analyze the functions of CCN family proteins involved in various cellular events.
Collapse
Affiliation(s)
- Harumi Kawaki
- Department of Chemistry, Asahi University School of Dentistry, Gifu, Japan.
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
15
|
Hirose K, Kuwahara M, Nakata E, Tetsunaga T, Yamada K, Saiga K, Takigawa M, Ozaki T, Kubota S, Hattori T. Elevated Expression of CCN3 in Articular Cartilage Induces Osteoarthritis in Hip Joints Irrespective of Age and Weight Bearing. Int J Mol Sci 2022; 23:15311. [PMID: 36499638 PMCID: PMC9738275 DOI: 10.3390/ijms232315311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) occurs not only in the knee but also in peripheral joints throughout the whole body. Previously, we have shown that the expression of cellular communication network factor 3 (CCN3), a matricellular protein, increases with age in knee articular cartilage, and the misexpression of CCN3 in cartilage induces senescence-associated secretory phenotype (SASP) factors, indicating that CCN3 promotes cartilage senescence. Here, we investigated the correlation between CCN3 expression and OA degenerative changes, principally in human femoral head cartilage. Human femoral heads obtained from patients who received total hip arthroplasty were categorized into OA and femoral neck fracture (normal) groups without significant age differences. Gene expression analysis of RNA obtained from femoral head cartilage revealed that CCN3 and MMP-13 expression in the non-weight-bearing part was significantly higher in the OA group than in the normal group, whereas the weight-bearing OA parts and normal cartilage showed no significant differences in the expression of these genes. The expression of COL10A1, however, was significantly higher in weight-bearing OA parts compared with normal weight-bearing parts, and was also higher in weight-bearing parts compared with non-weight-bearing parts in the OA group. In contrast, OA primary chondrocytes from weight-bearing parts showed higher expression of CCN3, p16, ADAMTS4, and IL-1β than chondrocytes from the corresponding normal group, and higher ADAMTS4 and IL-1β in the non-weight-bearing part compared with the corresponding normal group. Acan expression was significantly lower in the non-weight-bearing group in OA primary chondrocytes than in the corresponding normal chondrocytes. The expression level of CCN3 did not show significant differences between the weight-bearing part and non-weight-bearing part in both OA and normal primary chondrocytes. Immunohistochemical analysis showed accumulated CCN3 and aggrecan neoepitope staining in both the weight-bearing part and non-weight-bearing part in the OA group compared with the normal group. The CCN3 expression level in cartilage had a positive correlation with the Mankin score. X-ray analysis of cartilage-specific CCN3 overexpression mice (Tg) revealed deformation of the femoral and humeral head in the early stage, and immunohistochemical analysis showed accumulated aggrecan neoepitope staining as well as CCN3 staining and the roughening of the joint surface in Tg femoral and humeral heads. Primary chondrocytes from the Tg femoral head showed enhanced expression of Ccn3, Adamts5, p16, Il-6, and Tnfα, and decreased expression of Col2a1 and -an. These findings indicate a correlation between OA degenerative changes and the expression of CCN3, irrespective of age and mechanical loading. Furthermore, the Mankin score indicates that the expression level of Ccn3 correlates with the progression of OA.
Collapse
Affiliation(s)
- Kazuki Hirose
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Miho Kuwahara
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Eiji Nakata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Tomonori Tetsunaga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Kazuki Yamada
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Kenta Saiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
16
|
Koh YE, Choi EH, Kim JW, Kim KP. The Kleisin Subunits of Cohesin are Involved in the Fate Determination of Embryonic Stem Cells. Mol Cells 2022; 45:820-832. [PMID: 36172976 PMCID: PMC9676991 DOI: 10.14348/molcells.2022.2042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/20/2022] [Accepted: 07/24/2022] [Indexed: 11/27/2022] Open
Abstract
As a potential candidate to generate an everlasting cell source to treat various diseases, embryonic stem cells are regarded as a promising therapeutic tool in the regenerative medicine field. Cohesin, a multi-functional complex that controls various cellular activities, plays roles not only in organizing chromosome dynamics but also in controlling transcriptional activities related to self-renewal and differentiation of stem cells. Here, we report a novel role of the α-kleisin subunits of cohesin (RAD21 and REC8) in the maintenance of the balance between these two stem-cell processes. By knocking down REC8, RAD21, or the non-kleisin cohesin subunit SMC3 in mouse embryonic stem cells, we show that reduction in cohesin level impairs their self-renewal. Interestingly, the transcriptomic analysis revealed that knocking down each cohesin subunit enables the differentiation of embryonic stem cells into specific lineages. Specifically, embryonic stem cells in which cohesin subunit RAD21 were knocked down differentiated into cells expressing neural alongside germline lineage markers. Thus, we conclude that cohesin appears to control the fate determination of embryonic stem cells.
Collapse
Affiliation(s)
- Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- Genexine Inc., Bio Innovation Park, Seoul 07789, Korea
| | - Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Jung-Woong Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| | - Keun Pil Kim
- Department of Life Sciences, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
17
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
18
|
CTGF Promotes the Osteoblast Differentiation of Human Periodontal Ligament Stem Cells by Positively Regulating BMP2/Smad Signal Transduction. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2938015. [PMID: 36158888 PMCID: PMC9499771 DOI: 10.1155/2022/2938015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022]
Abstract
Objective This work is aimed at revealing the role and the molecular mechanism of connective tissue growth factor 2 (CTGF) in the osteoblast differentiation of periodontal ligament stem cells (PDLSCs). Methods The osteogenic differentiation of PDLSCs was induced by osteogenic induction medium (OM), and the expression level of osteogenic related proteins ALP, RUNX2, OCN, and CTGF was estimated using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analysis. We constructed cell lines with CTGF overexpression or knockdown to verify the role of CTGF in the osteoblast differentiation of PDLSCs. Alkaline phosphatase (ALP) staining was introduced to measure the osteoblasts activity, and alizarin red S (ARS) staining was employed to test matrix mineralization. The interaction between CTGF and bone morphogenetic protein-2 (BMP-2) was determined by endogenous coimmunoprecipitation (Co-IP). Results The expression level of CTGF was increased during the osteogenic induction of PDLSCs. Additionally, CTGF overexpression effectively maintained the stemness and facilitated the osteoblast differentiation in PDLSCs, and CTGF knockdown exerted opposite effects. Moreover, at molecular mechanism, CTGF increased the activity of BMP-2/Smad signaling pathway. Conclusion This investigation verified that CTGF promotes the osteoblast differentiation in PDLSCs at least partly by activating BMP-2/Smad cascade signal.
Collapse
|
19
|
Yang Y, Chen D, Li Y, Zou J, Han R, Li H, Zhang J. Effect of Puerarin on Osteogenic Differentiation in vitro and on New Bone Formation in vivo. Drug Des Devel Ther 2022; 16:2885-2900. [PMID: 36060929 PMCID: PMC9433167 DOI: 10.2147/dddt.s379794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Puerarin (C21H20O10) is a phytoestrogen that possesses various pharmacological effect, and several researches have revealed the relationship between puerarin and bone metabolism. This study was aimed to evaluate the potential influence of puerarin on the proliferation and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) as well as on new bone formation following rapid maxillary expansion (RME) model in rats. Methods Rat BMSCs were adopted, and the cell proliferation was detected by cell-counting kit-8 (CCK-8) assay in vitro experiments. Alkaline phosphatase (ALP) activity and alizarin red staining were analyzed quantitatively to show extracellular matrix mineralization. The mRNA and protein expression levels were used to detect osteogenic differentiation of BMSCs. In vivo bone regeneration was analyzed in a rat RME model. Eighteen 6-week-old male Wistar rats were divided into 3 groups: group 1 without any treatment, group 2 received RME and saline solution (15mg/kg), group 3 received RME and puerarin solution (15mg/kg). After 2 weeks, micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) staining, and Masson staining were used to detect the new bone formation and morphological changes. Besides, ALP and bone morphogenetic protein 2 (BMP2) expression levels in mid-palatal suture were evaluated by immunohistochemical staining. Results The results showed that puerarin upregulates cell proliferation dose-dependently. ALP activity and mineralized matrix generation were clearly enhanced at certain specific concentrations (10−5 and 10−6 mol/L); the expression levels of the osteoblast-related genes and proteins were increased. The measurement of micro-CT imaging revealed that puerarin significantly promoted new bone formation. Concomitantly, the histological examinations showed that puerarin solution enhanced osteogenesis in mid-palatal suture. Conclusion Those works indicated that puerarin regulates osteogenesis in vitro and exerts a beneficial impact on bone regeneration in vivo, revealing that puerarin treatment may become one of the potential keys for improving the stability and preventing relapse of RME.
Collapse
Affiliation(s)
- Yanran Yang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Daiyun Chen
- Department of Orthodontics, School of Stomatology, Shandong First Medical University, Jinan, People’s Republic of China
| | - Yilin Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jinghua Zou
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Ruiqi Han
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Hongkun Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jun Zhang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Jun Zhang, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China, Tel +86 13953109816, Fax +86 53188382923, Email
| |
Collapse
|
20
|
Yan CP, Wang XK, Jiang K, Yin C, Xiang C, Wang Y, Pu C, Chen L, Li YL. β-Ecdysterone Enhanced Bone Regeneration Through the BMP-2/SMAD/RUNX2/Osterix Signaling Pathway. Front Cell Dev Biol 2022; 10:883228. [PMID: 35669516 PMCID: PMC9164109 DOI: 10.3389/fcell.2022.883228] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Bone defects are a global public health problem. However, the available methods for inducing bone regeneration are limited. The application of traditional Chinese herbs for bone regeneration has gained popularity in recent years. β-ecdysterone is a plant sterol similar to estrogen, that promotes protein synthesis in cells; however, its function in bone regeneration remains unclear. In this study, we investigated the function of β-ecdysterone on osteoblast differentiation and bone regeneration in vitro and in vivo. MC3T3-E1 cells were used to test the function of β-ecdysterone on osteoblast differentiation and bone regeneration in vitro. The results of the Cell Counting Kit-8 assay suggested that the proliferation of MC3T3-E1 cells was promoted by β-ecdysterone. Furthermore, β-ecdysterone influenced the expression of osteogenesis-related genes, and the bone regeneration capacity of MC3T3-E1 cells was detected by polymerase chain reaction, the alkaline phosphatase (ALP) test, and the alizarin red test. β-ecdysterone could upregulate the expression of osteoblastic-related genes, and promoted ALP activity and the formation of calcium nodules. We also determined that β-ecdysterone increased the mRNA and protein levels of components of the BMP-2/Smad/Runx2/Osterix pathway. DNA sequencing further confirmed these target effects. β-ecdysterone promoted bone formation by enhancing gene expression of the BMP-2/Smad/Runx2/Osterix signaling pathway and by enrichment biological processes. For in vivo experiments, a femoral condyle defect model was constructed by drilling a bone defect measuring 3 mm in diameter and 4 mm in depth in the femoral condyle of 8-week-old Sprague Dawley male rats. This model was used to further assess the bone regenerative functions of β-ecdysterone. The results of micro-computed tomography showed that β-ecdysterone could accelerate bone regeneration, exhibiting higher bone volume, bone surface, and bone mineral density at each observation time point. Immunohistochemistry confirmed that the β-ecdysterone also increased the expression of collagen, osteocalcin, and bone morphogenetic protein-2 in the experiment group at 4 and 8 weeks. In conclusion, β-ecdysterone is a new bone regeneration regulator that can stimulate MC3T3-E1 cell proliferation and induce bone regeneration through the BMP-2/Smad/Runx2/Osterix pathway. This newly discovered function of β-ecdysterone has revealed a new direction of osteogenic differentiation and has provided novel therapeutic strategies for treating bone defects.
Collapse
Affiliation(s)
- Cai-Ping Yan
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xing-Kuan Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ke Jiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chao Xiang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Wang
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Chaoyu Pu
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lu Chen
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu-Ling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.,Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
21
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
22
|
Nowaczyk A, Szwedowski D, Dallo I, Nowaczyk J. Overview of First-Line and Second-Line Pharmacotherapies for Osteoarthritis with Special Focus on Intra-Articular Treatment. Int J Mol Sci 2022; 23:1566. [PMID: 35163488 PMCID: PMC8835883 DOI: 10.3390/ijms23031566] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) can be defined as the result of pathological processes of various etiologies leading to damage to the articular structures. Although the mechanism of degenerative changes has become better understood due to the plethora of biochemical and genetic studies, the drug that could stop the degenerative cascade is still unknown. All available forms of OA therapy are based on symptomatic treatment. According to actual guidelines, comprehensive treatment of OA should always include a combination of various therapeutic options aimed at common goals, which are pain relief in the first place, and then the improvement of function. Local treatment has become more common practice, which takes place between rehabilitation and pharmacological treatment in the hierarchy of procedures. Only in the case of no improvement and the presence of advanced lesions visible in imaging tests, should surgery be considered. Currently, an increasing number of studies are being published suggesting that intra-articular injections may be as effective or even more effective than non-steroidal anti-inflammatory drugs (NSAIDs) and result in fewer systemic adverse events. The most commonly used preparations are hyaluronic acid (HA), glucocorticosteroids (GS), and also platelet-rich plasma (PRP) in recent years. This review aims to present the mechanism of action and clinical effectiveness of different pharmacological options in relieving pain and improving functions in OA as well as the emerging approach in intra-articular treatment with PRP.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, LudwikRydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Dawid Szwedowski
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87-100 Toruń, Poland;
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy
| | - Ignacio Dallo
- Unit of Biological Therapies, SportMe Medical Center, Department of Orthopaedic Surgery and Sports Medicine, 41013 Seville, Spain;
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
23
|
Kubota S, Kawaki H, Perbal B, Kawata K, Hattori T, Nishida T. Cellular communication network factor 3 in cartilage development and maintenance. J Cell Commun Signal 2021; 15:533-543. [PMID: 34125392 PMCID: PMC8642582 DOI: 10.1007/s12079-021-00629-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
24
|
Bai Y, Yu T, Deng J, Yang Y, Tan J, Dai Q, Zhang Z, Dong S, Xu J. Connective Tissue Growth Factor From Periosteal Tartrate Acid Phosphatase-Positive Monocytes Direct Skeletal Stem Cell Renewal and Fate During Bone Healing. Front Cell Dev Biol 2021; 9:730095. [PMID: 34595178 PMCID: PMC8476870 DOI: 10.3389/fcell.2021.730095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022] Open
Abstract
The periosteum is critical for bone healing. Studies have shown that the periosteum contains periosteal stem cells (PSCs) with multidirectional differentiation potential and self-renewal ability. PSCs are activated in early fracture healing and are committed to the chondrocyte lineage, which is the basis of callus formation. However, the mechanism by which PSCs are activated and committed to chondrocytes in bone regeneration remains unclear. Here, we show that tartrate acid phosphatase (TRAP)-positive monocytes secrete CTGF to activate PSCs during bone regeneration. The loss function of TRAP-positive monocytes identifies their specific role during bone healing. Then, the secreted CTGF promotes endochondral ossification and activates PSCs in mouse bone fracture models. The secreted CTGF enhances PSC renewal by upregulating the expression of multiple pluripotent genes. CTGF upregulates c-Jun expression through αVβ5 integrin. Then, c-Jun transcription activates the transcription of the pluripotent genes Sox2, Oct4, and Nanog. Simultaneously, CTGF also activates the transcription and phosphorylation of Smad3 through αVβ5 integrin, which is the central gene in chondrogenesis. Our study indicates that TRAP-positive monocyte-derived CTGF promotes bone healing by activating PSCs and directing lineage commitment and that targeting PSCs may be an effective strategy for preventing bone non-union.
Collapse
Affiliation(s)
- Yun Bai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiezhong Deng
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yusheng Yang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiulin Tan
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zehua Zhang
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Mizukawa T, Nishida T, Akashi S, Kawata K, Kikuchi S, Kawaki H, Takigawa M, Kamioka H, Kubota S. RFX1-mediated CCN3 induction that may support chondrocyte survival under starved conditions. J Cell Physiol 2021; 236:6884-6896. [PMID: 33655492 DOI: 10.1002/jcp.30348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Cellular communication network factor (CCN) family members are multifunctional matricellular proteins that manipulate and integrate extracellular signals. In our previous studies investigating the role of CCN family members in cellular metabolism, we found three members that might be under the regulation of energy metabolism. In this study, we confirmed that CCN2 and CCN3 are the only members that are tightly regulated by glycolysis in human chondrocytic cells. Interestingly, CCN3 was induced under a variety of impaired glycolytic conditions. This CCN3 induction was also observed in two breast cancer cell lines with a distinct phenotype, suggesting a basic role of CCN3 in cellular metabolism. Reporter gene assays indicated a transcriptional regulation mediated by an enhancer in the proximal promoter region. As a result of analyses in silico, we specified regulatory factor binding to the X-box 1 (RFX1) as a candidate that mediated the transcriptional activation by impaired glycolysis. Indeed, the inhibition of glycolysis induced the expression of RFX1, and RFX1 silencing nullified the CCN3 induction by impaired glycolysis. Subsequent experiments with an anti-CCN3 antibody indicated that CCN3 supported the survival of chondrocytes under impaired glycolysis. Consistent with these findings in vitro, abundant CCN3 production by chondrocytes in the deep zones of developing epiphysial cartilage, which are located far away from the synovial fluid, was confirmed in vivo. Our present study uncovered that RFX1 is the mediator that enables CCN3 induction upon cellular starvation, which may eventually assist chondrocytes in retaining their viability, even when there is an energy supply shortage.
Collapse
Affiliation(s)
- Tomomi Mizukawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Sho Akashi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sumire Kikuchi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
26
|
Effect of Angiotensin II on Chondrocyte Degeneration and Protection via Differential Usage of Angiotensin II Receptors. Int J Mol Sci 2021; 22:ijms22179204. [PMID: 34502113 PMCID: PMC8430521 DOI: 10.3390/ijms22179204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
The renin–angiotensin system (RAS) controls not only systemic functions, such as blood pressure, but also local tissue-specific events. Previous studies have shown that angiotensin II receptor type 1 (AT1R) and type 2 (AT2R), two RAS components, are expressed in chondrocytes. However, the angiotensin II (ANG II) effects exerted through these receptors on chondrocyte metabolism are not fully understood. In this study, we investigated the effects of ANG II and AT1R blockade on chondrocyte proliferation and differentiation. Firstly, we observed that ANG II significantly suppressed cell proliferation and glycosaminoglycan content in rat chondrocytic RCS cells. Additionally, ANG II decreased CCN2, which is an anabolic factor for chondrocytes, via increased MMP9. In Agtr1a-deficient RCS cells generated by the CRISPR-Cas9 system, Ccn2 and Aggrecan (Acan) expression increased. Losartan, an AT1R antagonist, blocked the ANG II-induced decrease in CCN2 production and Acan expression in RCS cells. These findings suggest that AT1R blockade reduces ANG II-induced chondrocyte degeneration. Interestingly, AT1R-positive cells, which were localized on the surface of the articular cartilage of 7-month-old mice expanded throughout the articular cartilage with aging. These findings suggest that ANG II regulates age-related cartilage degeneration through the ANG II–AT1R axis.
Collapse
|
27
|
Fu J, Wang Y, Jiang Y, Du J, Xu J, Liu Y. Systemic therapy of MSCs in bone regeneration: a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:377. [PMID: 34215342 PMCID: PMC8254211 DOI: 10.1186/s13287-021-02456-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives Over the past decades, many studies focused on mesenchymal stem cells (MSCs) therapy for bone regeneration. Due to the efficiency of topical application has been widely dicussed and systemic application was also a feasible way for new bone formation, the aim of this study was to systematically review systemic therapy of MSCs for bone regeneration in pre-clinical studies. Methods The article search was conducted in PubMed and Embase databases. Original research articles that assessed potential effect of systemic application of MSCs for bone regeneration in vivo were selected and evaluated in this review, according to eligibility criteria. The efficacy of MSC systemic treatment was analyzed by random effects meta-analysis, and the outcomes were expressed in standard mean difference (SMD) and its 95% confidence interval. Subgroup analyses were conducted on animal species and gender, MSCs types, frequency and time of injection, and bone diseases. Results Twenty-three articles were selected in this review, of which 21 were included in meta-analysis. The results showed that systemic therapy increased bone mineral density (SMD 3.02 [1.84, 4.20]), bone volume to tissue volume ratio (2.10 [1.16, 3.03]), and the percentage of new bone area (7.03 [2.10, 11.96]). Bone loss caused by systemic disease tended to produce a better response to systemic treatment (p=0.05 in BMD, p=0.03 in BV/TV). Conclusion This study concluded that systemic therapy of MSCs promotes bone regeneration in preclinical experiments. These results provided important information for the systemic application of MSCs as a potential application of bone formation in further animal experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02456-w.
Collapse
Affiliation(s)
- Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yanxue Wang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, People's Republic of China.
| |
Collapse
|
28
|
Rebolledo DL, Acuña MJ, Brandan E. Role of Matricellular CCN Proteins in Skeletal Muscle: Focus on CCN2/CTGF and Its Regulation by Vasoactive Peptides. Int J Mol Sci 2021; 22:5234. [PMID: 34063397 PMCID: PMC8156781 DOI: 10.3390/ijms22105234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
The Cellular Communication Network (CCN) family of matricellular proteins comprises six proteins that share conserved structural features and play numerous biological roles. These proteins can interact with several receptors or soluble proteins, regulating cell signaling pathways in various tissues under physiological and pathological conditions. In the skeletal muscle of mammals, most of the six CCN family members are expressed during embryonic development or in adulthood. Their roles during the adult stage are related to the regulation of muscle mass and regeneration, maintaining vascularization, and the modulation of skeletal muscle fibrosis. This work reviews the CCNs proteins' role in skeletal muscle physiology and disease, focusing on skeletal muscle fibrosis and its regulation by Connective Tissue Growth factor (CCN2/CTGF). Furthermore, we review evidence on the modulation of fibrosis and CCN2/CTGF by the renin-angiotensin system and the kallikrein-kinin system of vasoactive peptides.
Collapse
Affiliation(s)
- Daniela L. Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago 8370854, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Fundación Ciencia & Vida, Santiago 7810000, Chile
| |
Collapse
|
29
|
Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. Int J Mol Sci 2021; 22:ijms22063279. [PMID: 33807043 PMCID: PMC8004672 DOI: 10.3390/ijms22063279] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Numerous studies have assembled a complex picture, in which extracellular stimuli and intracellular signaling pathways modulate the chondrocyte phenotype. Because many diseases are mechanobiology-related, this review asked to what extent phenotype regulators control chondrocyte function through the cytoskeleton and cytoskeleton-regulating signaling processes. Such information would generate leverage for advanced articular cartilage repair. Serial passaging, pro-inflammatory cytokine signaling (TNF-α, IL-1α, IL-1β, IL-6, and IL-8), growth factors (TGF-α), and osteoarthritis not only induce dedifferentiation but also converge on RhoA/ROCK/Rac1/mDia1/mDia2/Cdc42 to promote actin polymerization/crosslinking for stress fiber (SF) formation. SF formation takes center stage in phenotype control, as both SF formation and SOX9 phosphorylation for COL2 expression are ROCK activity-dependent. Explaining how it is molecularly possible that dedifferentiation induces low COL2 expression but high SF formation, this review theorized that, in chondrocyte SOX9, phosphorylation by ROCK might effectively be sidelined in favor of other SF-promoting ROCK substrates, based on a differential ROCK affinity. In turn, actin depolymerization for redifferentiation would “free-up” ROCK to increase COL2 expression. Moreover, the actin cytoskeleton regulates COL1 expression, modulates COL2/aggrecan fragment generation, and mediates a fibrogenic/catabolic expression profile, highlighting that actin dynamics-regulating processes decisively control the chondrocyte phenotype. This suggests modulating the balance between actin polymerization/depolymerization for therapeutically controlling the chondrocyte phenotype.
Collapse
|
30
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
31
|
Hinz N, Baranowsky A, Horn M, Kriegs M, Sibbertsen F, Smit DJ, Clezardin P, Lange T, Schinke T, Jücker M. Knockdown of AKT3 Activates HER2 and DDR Kinases in Bone-Seeking Breast Cancer Cells, Promotes Metastasis In Vivo and Attenuates the TGFβ/CTGF Axis. Cells 2021; 10:cells10020430. [PMID: 33670586 PMCID: PMC7922044 DOI: 10.3390/cells10020430] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bone metastases frequently occur in breast cancer patients and lack appropriate treatment options. Hence, understanding the molecular mechanisms involved in the multistep process of breast cancer bone metastasis and tumor-induced osteolysis is of paramount interest. The serine/threonine kinase AKT plays a crucial role in breast cancer bone metastasis but the effect of individual AKT isoforms remains unclear. Therefore, AKT isoform-specific knockdowns were generated on the bone-seeking MDA-MB-231 BO subline and the effect on proliferation, migration, invasion, and chemotaxis was analyzed by live-cell imaging. Kinome profiling and Western blot analysis of the TGFβ/CTGF axis were conducted and metastasis was evaluated by intracardiac inoculation of tumor cells into NOD scid gamma (NSG) mice. MDA-MB-231 BO cells exhibited an elevated AKT3 kinase activity in vitro and responded to combined treatment with AKT- and mTOR-inhibitors. Knockdown of AKT3 significantly increased migration, invasion, and chemotaxis in vitro and metastasis to bone but did not significantly enhance osteolysis. Furthermore, knockdown of AKT3 increased the activity and phosphorylation of pro-metastatic HER2 and DDR1/2 but lowered protein levels of CTGF after TGFβ-stimulation, an axis involved in tumor-induced osteolysis. We demonstrated that AKT3 plays a crucial role in bone-seeking breast cancer cells by promoting metastatic potential without facilitating tumor-induced osteolysis.
Collapse
Affiliation(s)
- Nico Hinz
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Anke Baranowsky
- Center for Experimental Medicine, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.B.); (T.S.)
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Horn
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- Mildred Scheel Cancer Career Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
- UCCH Kinomics Core Facility, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Freya Sibbertsen
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Daniel J. Smit
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
| | - Philippe Clezardin
- INSERM, Research Unit UMR S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, 69372 Lyon, France;
| | - Tobias Lange
- Center for Experimental Medicine, Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Thorsten Schinke
- Center for Experimental Medicine, Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (A.B.); (T.S.)
| | - Manfred Jücker
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.H.); (F.S.); (D.J.S.)
- Correspondence: ; Tel.: +49-(0)-40-7410-56339
| |
Collapse
|
32
|
Wu Z, Zhou C, Yuan Q, Zhang D, Xie J, Zou S. CTGF facilitates cell-cell communication in chondrocytes via PI3K/Akt signalling pathway. Cell Prolif 2021; 54:e13001. [PMID: 33522639 PMCID: PMC7941231 DOI: 10.1111/cpr.13001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 02/05/2023] Open
Abstract
Purposes Gap junction intercellular communication (GJIC) is essential for articular cartilage to respond appropriately to physical or biological stimuli and maintain homeostasis. Connective tissue growth factor (CTGF), identified as an endochondral ossification genetic factor, plays a vital role in cell proliferation, migration and adhesion. However, how CTGF regulates GJIC in chondrocytes is still unknown. This study aims to explore the effects of CTGF on GJIC in chondrocytes and its potential biomechanism. Materials and methods qPCR was performed to determine the expression of gene profile in the CCN family in chondrocytes. After CTGF treatment, CCK‐8 assay and scratch assay were performed to explore cell proliferation and migration. A scrape loading/dye transfer assay was adopted to visualize GJIC in living chondrocytes. Western blot analysis was done to detect the expression of Cx43 and PI3K/Akt signalling. Immunofluorescence staining was used to show protein distribution. siRNA targeting CTGF was used to detect the influence on cell‐cell communication. Results The CTGF (CCN2) was shown to be the highest expressed member of the CCN family in chondrocytes. CTGF facilitated functional gap junction intercellular communication in chondrocytes through up‐regulation of Cx43 expressions. CTGF activated PI3K/Akt signalling to promote Akt phosphorylation and translocation. Suppressing CTGF also reduced the expression of Cx43. The inhibition of PI3K/Akt signalling decreased the expressions of Cx43 and thus impaired gap junction intercellular communication enhanced by CTGF. Conclusions For the first time, we provide evidence to show CTGF facilitates cell communication in chondrocytes via PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Zuping Wu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Jiang W, Takeshita N, Maeda T, Sogi C, Oyanagi T, Kimura S, Yoshida M, Sasaki K, Ito A, Takano-Yamamoto T. Connective tissue growth factor promotes chemotaxis of preosteoblasts through integrin α5 and Ras during tensile force-induced intramembranous osteogenesis. Sci Rep 2021; 11:2368. [PMID: 33504916 PMCID: PMC7841149 DOI: 10.1038/s41598-021-82246-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
In vertebrates, new bone formation via intramembranous osteogenesis is a critical biological event for development, remodeling, and fracture healing of bones. Chemotaxis of osteoblast lineage cells is an essential cellular process in new bone formation. Connective tissue growth factor (CTGF) is known to exert chemotactic properties on various cells; however, details of CTGF function in the chemotaxis of osteoblast lineage cells and underlying molecular biological mechanisms have not been clarified. The aim of the present study was to evaluate the chemotactic properties of CTGF and its underlying mechanisms during active bone formation through intramembranous osteogenesis. In our mouse tensile force-induced bone formation model, preosteoblasts were aggregated at the osteogenic front of calvarial bones. CTGF was expressed at the osteogenic front, and functional inhibition of CTGF using a neutralizing antibody suppressed the aggregation of preosteoblasts. In vitro experiments using μ-slide chemotaxis chambers showed that a gradient of CTGF induced chemotaxis of preosteoblastic MC3T3-E1 cells, while a neutralizing integrin α5 antibody and a Ras inhibitor inhibited the CTGF-induced chemotaxis of MC3T3-E1 cells. These findings suggest that the CTGF-integrin α5-Ras axis is an essential molecular mechanism to promote chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis.
Collapse
Affiliation(s)
- Wei Jiang
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Toshihiro Maeda
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Chisumi Sogi
- Department of Pediatrics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8574, Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Seiji Kimura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Michiko Yoshida
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Arata Ito
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan. .,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8586, Japan.
| |
Collapse
|
34
|
Nishida T, Nagao Y, Hashitani S, Yamanaka N, Takigawa M, Kubota S. Suppression of adipocyte differentiation by low-intensity pulsed ultrasound via inhibition of insulin signaling and promotion of CCN family protein 2. J Cell Biochem 2020; 121:4724-4740. [PMID: 32065439 DOI: 10.1002/jcb.29680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Adipocyte differentiation is regulated by several transcription factors such as the CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome proliferator-activated receptor-γ (PPARγ). Here, we demonstrate that low-intensity pulsed ultrasound (LIPUS) suppressed differentiation into mature adipocytes via multiple signaling pathways. When C3H10T1/2, a mesenchymal stem cell line, was treated with LIPUS (3.0 MHz, 60 mW/cm2 ) for 20 minutes once a day for 4 days during adipogenesis, and both the number of lipid droplets and the gene expression of PPARγ and C/EBPα were significantly decreased. Furthermore, LIPUS treatment decreased the phosphorylation of the insulin receptor and also that of Akt and ERK1/2, which are located downstream of this receptor. Next, we showed that LIPUS suppressed the gene expression of angiotensinogen (AGT), which is an adipokine produced by mature adipocytes, as well as that of angiotensin-converting enzyme 1 (ACE1) and angiotensin receptor type 1 (AT1 R) during adipogenesis of pre-adipogenic 3T3-L1 cells. Next, the translocation of Yes-associated protein (YAP) into the nucleus of 3T3-L1 cells was promoted by LIPUS, leading to upregulation of CCN family protein 2 (CCN2), a cellular communication network factor. Moreover, forced expression of CCN2 in 3T3-L1 cells decreased PPARγ gene expression, but it did not increase alkaline phosphatase and osterix gene expression. Finally, gene silencing of CCN2 in C3H10T1/2 cells diminished the effect of LIPUS on the gene expression of PPARγ and C/EBPα. These findings suggest that LIPUS suppressed adipogenesis through inhibition of insulin signaling and decreased PPARγ expression via increased CCN2 production, resulting in a possible decrease of mature adipocytes.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yurika Nagao
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoko Hashitani
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
35
|
Chen Z, Zhang N, Chu HY, Yu Y, Zhang ZK, Zhang G, Zhang BT. Connective Tissue Growth Factor: From Molecular Understandings to Drug Discovery. Front Cell Dev Biol 2020; 8:593269. [PMID: 33195264 PMCID: PMC7658337 DOI: 10.3389/fcell.2020.593269] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/09/2020] [Indexed: 01/18/2023] Open
Abstract
Connective tissue growth factor (CTGF) is a key signaling and regulatory molecule involved in different biological processes, such as cell proliferation, angiogenesis, and wound healing, as well as multiple pathologies, such as tumor development and tissue fibrosis. Although the underlying mechanisms of CTGF remain incompletely understood, a commonly accepted theory is that the interactions between different protein domains in CTGF and other various regulatory proteins and ligands contribute to its variety of functions. Here, we highlight the structure of each domain of CTGF and its biology functions in physiological conditions. We further summarized main diseases that are deeply influenced by CTGF domains and the potential targets of these diseases. Finally, we address the advantages and disadvantages of current drugs targeting CTGF and provide the perspective for the drug discovery of the next generation of CTGF inhibitors based on aptamers.
Collapse
Affiliation(s)
- Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hang Yin Chu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Ahmadzadeh E, Bayin NS, Qu X, Singh A, Madisen L, Stephen D, Zeng H, Joyner AL, Rosello-Diez A. A collection of genetic mouse lines and related tools for inducible and reversible intersectional mis-expression. Development 2020; 147:dev.186650. [PMID: 32366677 DOI: 10.1242/dev.186650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Thanks to many advances in genetic manipulation, mouse models have become very powerful in their ability to interrogate biological processes. In order to precisely target expression of a gene of interest to particular cell types, intersectional genetic approaches using two promoter/enhancers unique to a cell type are ideal. Within these methodologies, variants that add temporal control of gene expression are the most powerful. We describe the development, validation and application of an intersectional approach that involves three transgenes, requiring the intersection of two promoter/enhancers to target gene expression to precise cell types. Furthermore, the approach uses available lines expressing tTA/rTA to control the timing of gene expression based on whether doxycycline is absent or present, respectively. We also show that the approach can be extended to other animal models, using chicken embryos. We generated three mouse lines targeted at the Tigre (Igs7) locus with TRE-loxP-tdTomato-loxP upstream of three genes (p21, DTA and Ctgf), and combined them with Cre and tTA/rtTA lines that target expression to the cerebellum and limbs. Our tools will facilitate unraveling biological questions in multiple fields and organisms.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800. Australia
| | - N Sumru Bayin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Xinli Qu
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800. Australia
| | - Aditi Singh
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800. Australia
| | - Linda Madisen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Daniel Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800. Australia
| |
Collapse
|
37
|
Roles of Interaction between CCN2 and Rab14 in Aggrecan Production by Chondrocytes. Int J Mol Sci 2020; 21:ijms21082769. [PMID: 32316324 PMCID: PMC7215643 DOI: 10.3390/ijms21082769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
To identify proteins that cooperate with cellular communication network factor 2 (CCN2), we carried out GAL4-based yeast two-hybrid screening using a cDNA library derived from the chondrocytic cell line HCS-2/8. Rab14 GTPase (Rab14) polypeptide was selected as a CCN2-interactive protein. The interaction between CCN2 and Rab14 in HCS-2/8 cells was confirmed using the in situ proximity ligation assay. We also found that CCN2 interacted with Rab14 through its IGFBP-like domain among the four domains in CCN2 protein. To detect the colocalization between CCN2 and Rab14 in the cells in detail, CCN2, wild-type Rab14 (Rab14WT), a constitutive active form (Rab14CA), and a dominant negative form (Rab14DN) of Rab14 were overexpressed in monkey kidney-tissue derived COS7 cells. Ectopically overexpressed Rab14 showed a diffuse cytosolic distribution in COS7 cells; however, when Rab14WT was overexpressed with CCN2, the Rab14WT distribution changed to dots that were evenly distributed within the cytosol, and both Rab14 and CCN2 showed clear colocalization. When Rab14CA was overexpressed with CCN2, Rab14CA and CCN2 also showed good localization as dots, but their distribution was more widespread within cytosol. The coexpression of Rab14DN and CCN2 also showed a dotted codistribution but was more concentrated in the perinuclear area. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis revealed that the reduction in RAB14 or CCN2 mRNA by their respective siRNA significantly enhanced the expression of ER stress markers, BIP and CHOP mRNA in HCS-2/8 chondrocytic cells, suggesting that ER and Golgi stress were induced by the inhibition of membrane vesicle transfer via the suppression of CCN2 or Rab14. Moreover, to study the effect of the interaction between CCN2 and its interactive protein Rab14 on proteoglycan synthesis, we overexpressed Rab14WT or Rab14CA or Rab14DN in HCS-2/8 cells and found that the overexpression of Rab14DN decreased the extracellular proteoglycan accumulation more than the overexpression of Rab14WT/CA did in the chondrocytic cells. These results suggest that intracellular CCN2 is associated with Rab14 on proteoglycan-containing vesicles during their transport from the Golgi apparatus to endosomes in chondrocytes and that this association may play a role in proteoglycan secretion by chondrocytes.
Collapse
|
38
|
Choi Y, Yoo JH, Lee JH, Lee Y, Bae MK, Kim YD, Kim HJ. Connective tissue growth factor (CTGF) regulates the fusion of osteoclast precursors by inhibiting Bcl6 in periodontitis. Int J Med Sci 2020; 17:647-656. [PMID: 32210715 PMCID: PMC7085216 DOI: 10.7150/ijms.41075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/11/2020] [Indexed: 11/28/2022] Open
Abstract
Connective tissue growth factor (CTGF), an extracellular matrix protein with various biological functions, is known to be upregulated in multiple chronic diseases such as liver fibrosis and congestive heart failure, but the mechanism it undertakes to cause alveolar bone loss in periodontitis remains elusive. The present study therefore investigates the pathways involving CTGF in chronic periodontitis. RNA sequencing revealed a notable increase in the expression of CTGF in chronic periodontitis tissues. Also, TRAP staining, TRAP activity and bone resorption assays showed that osteoclast formation and function is significantly facilitated in CTGF-treated bone marrow-derived macrophages (BMMs). Interestingly, western blotting and immunofluorescence staining results displayed that CTGF had little effect on the osteoclastogenic differentiation mediated by the positive regulators of osteoclastogenesis such as nuclear factor of activated T cells 1 (NFATc1). However, following results showed that both the mRNA and protein expressions of B cell lymphoma 6 (Bcl6), a transcriptional repressor of "osteoclastic" genes, were significantly downregulated by CTGF treatment. Moreover, CTGF upregulated the expressions of v-ATPase V0 subunit d2 (ATP6v0d2) and Dendritic cell-specific transmembrane protein (DC-STAMP) which are osteoclastic genes specifically required for osteoclast cell-cell fusion in pre-osteoclasts. Findings from this study suggest that CTGF promotes the fusion of pre-osteoclasts by downregulating Bcl6 and subsequently increasing the expression of DC-STAMP in periodontitis. Understanding this novel mechanism that leads to increased osteoclastogenesis in periodontitis may be employed for the development of new therapeutic targets for preventing periodontitis-associated alveolar bone resorption.
Collapse
Affiliation(s)
- YunJeong Choi
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Ji Hyun Yoo
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Jae-Hyung Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Department of Life and Nanopharmaceutical Sciences, Kyung Hee Medical Science Institute, Kyung Hee University, Seoul, Republic of Korea, 02447
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea, 41940
| | - Moon-Kyoung Bae
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Yong-Deok Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Hyung Joon Kim
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| |
Collapse
|
39
|
Nishida T, Kubota S, Yokoi H, Mukoyama M, Takigawa M. Roles of matricellular CCN2 deposited by osteocytes in osteoclastogenesis and osteoblast differentiation. Sci Rep 2019; 9:10913. [PMID: 31358778 PMCID: PMC6662664 DOI: 10.1038/s41598-019-47285-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/08/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, we investigated the effect of CCN2 (cellular communication network factor 2), previously termed connective tissue growth factor, deposited in bone matrix on osteoclastogenesis and osteoblast differentiation. To mimic the bone matrix environment, osteocytic MLO-Y4 cells had been embedded in collagen-gel with recombinant CCN2 (rCCN2), and mouse macrophage-like RAW264.7 cells were inoculated on the gel and treated with receptor activator of NF-κB ligand (RANKL). NFATc1 and cathepsin K (CTSK) productions were more increased in the combination of RAW264.7 and MLO-Y4 cells treated with rCCN2 than the combination without rCCN2. Next, we isolated an osteocyte-enriched population of cells and osteoclast progenitor cells from wild type and tamoxifen-inducible Ccn2-deficient (KO) mice and performed similar analysis. NFATc1 and CTSK productions were decreased in the KO osteocyte-enriched population at 6 months after the tamoxifen injection, regardless of the origin of the osteoclast progenitor cells. Interestingly, CTSK production was rather increased in KO osteocytes at 1 year after the injection. Finally, the combination of osteoblastic MC3T3-E1 and MLO-Y4 cells in rCCN2-containing bone matrix revealed the up-regulation of osteoblastic marker genes. These findings suggest that CCN2 supplied by osteocytes regulates both osteoclastogenesis and osteoblast differentiation.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan. .,Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Science, Kumamoto, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
40
|
Honda M, Hariya R, Matsumoto M, Aizawa M. Acceleration of Osteogenesis via Stimulation of Angiogenesis by Combination with Scaffold and Connective Tissue Growth Factor. MATERIALS 2019; 12:ma12132068. [PMID: 31252589 PMCID: PMC6651084 DOI: 10.3390/ma12132068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/16/2019] [Accepted: 06/21/2019] [Indexed: 11/22/2022]
Abstract
In bone regeneration, there are some important cellular biological processes, such as mineralization, cell organization, and differentiation. In particular, vascularization into regenerative tissues is a key step for the survival of cells and tissues. In this study, to fabricate biomimetic-engineered bone, including vascular networks, we focused on connective tissue growth factor (CTGF), a multifunctional protein which could regulate the extracellular matrix remodeling. By combination with CTGF and hydroxyapatite (HAp) ceramics (2D) or apatite-fiber scaffold (AFS, 3D), we have fabricated bioactive materials. The CTGF-loaded HAp ceramics could enhance the cellular attachment through interaction with integrin and promote actin cytoskeletal reorganization. CTGF-loaded HAp also enhanced the differentiation of osteoblasts by integrin-mediated activation of the signaling pathway. Under co-culture conditions, both osteoblasts and endothelial cells in the CTGF-loaded AFS were stimulated by CTGF, and each cell could penetrate the central region of the scaffold in vitro and in vivo. Direct cell-cell interaction would also improve the functionality of cells in bone formation. These results suggest that coupling between effective optimized scaffold and CTGF with multifunction could provide better mimicking natural bone by stimulation of angiogenesis.
Collapse
Affiliation(s)
- Michiyo Honda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| | - Ryo Hariya
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Morio Matsumoto
- Department of Orthopedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
41
|
Yu IS, Chang HC, Chen KC, Lu YL, Shy HT, Chen CY, Lee KY, Lee LJ. Genetic Elimination of Connective Tissue Growth Factor in the Forebrain Affects Subplate Neurons in the Cortex and Oligodendrocytes in the Underlying White Matter. Front Neuroanat 2019; 13:16. [PMID: 30842729 PMCID: PMC6391576 DOI: 10.3389/fnana.2019.00016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/01/2019] [Indexed: 12/23/2022] Open
Abstract
Connective tissue growth factor (CTGF) is a secreted extracellular matrix-associated protein, which play a role in regulating various cellular functions. Although the expression of CTGF has been reported in the cortical subplate, its function is still not clear. Thus, to explore the significance of CTGF in the brain, we created a forebrain-specific Ctgf knockout (FbCtgf KO) mouse model. By crossing Ctgffl/fl mice with Emx1-Cre transgenic mice, in which the expression of Cre is prenatally initiated, the full length Ctgf is removed in the forebrain structures. In young adult (2–3 months old) FbCtgf KO mice, subplate markers such as Nurr1 and Cplx3 are still expressed in the cortical layer VIb; however, the density of the subplate neurons is increased. Interestingly, in these mutants, we found a reduced structural complexity in the subplate neurons. The distribution patterns of neurons and glial cells, examined by immunohistochemistry, are comparable between genotypes in the somatosensory cortex. However, increased densities of mature oligodendrocytes, but not immature ones, were noticed in the external capsule underneath the cortical layer VIb in young adult FbCtgf KO mice. The features of myelinated axons in the external capsule were then examined using electron microscopy. Unexpectedly, the thickness of the myelin sheath was reduced in middle-aged (>12 months old), but not young adult FbCtgf KO mice. Our results suggest a secretory function of the subplate neurons, through the release of CTGF, which regulates the density and dendritic branching of subplate neurons as well as the maturation and function of nearby oligodendrocytes in the white matter.
Collapse
Affiliation(s)
- I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ho-Ching Chang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ko-Chien Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Lu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chwen-Yu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Kamatsuki Y, Aoyama E, Furumatsu T, Miyazawa S, Maehara A, Yamanaka N, Nishida T, Kubota S, Ozaki T, Takigawa M. Possible reparative effect of low-intensity pulsed ultrasound (LIPUS) on injured meniscus. J Cell Commun Signal 2018; 13:193-207. [PMID: 30460593 DOI: 10.1007/s12079-018-0496-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
Menisci are a pair of crescent-shaped fibrocartilages, particularly of which their inner region of meniscus is an avascular tissue. It has characteristics similar to those of articular cartilage, and hence is inferior in healing. We previously reported that low-intensity pulsed ultrasound (LIPUS) treatment stimulates the production of CCN2/CTGF, a protein involved in repairing articular cartilage, and the gene expression of major cartilage matrices such as type II collagen and aggrecan in cultured chondrocytes. Therefore, in this present study, we investigated whether LIPUS has also favorable effect on meniscus cells and tissues. LIPUS applied with a 60 mW/cm2 intensity for 20 min stimulated the gene expression and protein production of CCN2 via ERK and p38 signaling pathways, as well as gene expression of SOX9, aggrecan, and collagen type II in human inner meniscus cells in culture, and slightly stimulated the gene expression of CCN2 and promoted the migration in human outer meniscus cells in culture. LIPUS also induced the expression of Ccn2, Sox9, Col2a1, and Vegf in rat intact meniscus. Furthermore, histological evaluations showed that LIPUS treatment for 1 to 4 weeks promoted healing of rat injured lateral meniscus, as evidenced by better and earlier angiogenesis and extracellular matrix synthesis. The data presented indicate that LIPUS treatment might prevent meniscus from degenerative change and exert a reparative effect on injured meniscus via up-regulation of repairing factors such as CCN2 and that it might thus be useful for treatment of an injured meniscus as a non-invasive therapy.
Collapse
Affiliation(s)
- Yusuke Kamatsuki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan.,Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Shinichi Miyazawa
- Department of Intelligent Orthopedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| | - Ami Maehara
- Department of Intelligent Orthopedic System, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, Japan
| | | | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.,Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama, 700-8558, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
43
|
Ohta K, Aoyama E, Ahmad SAI, Ito N, Anam MB, Kubota S, Takigawa M. CCN2/CTGF binds the small leucine rich proteoglycan protein Tsukushi. J Cell Commun Signal 2018; 13:113-118. [PMID: 30232710 DOI: 10.1007/s12079-018-0487-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022] Open
Abstract
Extracellular molecules coordinate the multiple signaling pathways spatiotemporally to exchange information between cells during development. Understanding the regulation of these signal molecule-dependent pathways elucidates the mechanism of intercellular crosstalks. CCN2/CTGF is one of the CCN family members that binds BMP2, fibronectin, aggrecan, FGFR2 - regulating cartilage and bone formation, angiogenesis, wound repair etc. Tsukushi (TSK), which belongs to the Small Leucine-Rich Proteoglycan (SLRP) family, binds nodal/Vg1/TGF-β1, BMP4/chordin, Delta, FGF8, Frizzled4, and is involved in the early body formation, bone growth, wound healing, retinal stem cell regulation etc. These two secreted molecules are expressed in similar tissues and involved in several biological events by functioning as extracellular signaling modulators. Here, we examine the molecular interaction between CCN2 and TSK biochemically. Co-precipitation assay and Surface Plasmon Resonance measurement showed their direct binding with the Kd value 15.3 nM. Further, the Solid-phase Binding Assay indicated that TSK binds to IGFBP and CT domains of CCN2. Our data suggest that CCN2 and TSK exert their function together in the body formation.
Collapse
Affiliation(s)
- Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan. .,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan. .,Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0881, Japan. .,Japan Agency for Medical Research and Development (AMED), Tokyo, 100-0004, Japan.
| | - Eriko Aoyama
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan
| | - Shah Adil Ishtiyaq Ahmad
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mohammad Badrul Anam
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Satoshi Kubota
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan.
| |
Collapse
|
44
|
Tang X, Muhammad H, McLean C, Miotla-Zarebska J, Fleming J, Didangelos A, Önnerfjord P, Leask A, Saklatvala J, Vincent TL. Connective tissue growth factor contributes to joint homeostasis and osteoarthritis severity by controlling the matrix sequestration and activation of latent TGFβ. Ann Rheum Dis 2018; 77:1372-1380. [PMID: 29925506 PMCID: PMC6104679 DOI: 10.1136/annrheumdis-2018-212964] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/14/2018] [Accepted: 05/26/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVES One mechanism by which cartilage responds to mechanical load is by releasing heparin-bound growth factors from the pericellular matrix (PCM). By proteomic analysis of the PCM, we identified connective tissue growth factor (CTGF) and here investigate its function and mechanism of action. METHODS Recombinant CTGF (rCTGF) was used to stimulate human chondrocytes for microarray analysis. Endogenous CTGF was investigated by in vitro binding assays and confocal microscopy. Its release from cut cartilage (injury CM) was analysed by Western blot under reducing and non-reducing conditions. A postnatal, conditional CtgfcKO mouse was generated for cartilage injury experiments and to explore the course of osteoarthritis (OA) by destabilisation of the medial meniscus. siRNA knockdown was performed on isolated human chondrocytes. RESULTS The biological responses of rCTGF were TGFβ dependent. CTGF displaced latent TGFβ from cartilage and both were released on cartilage injury. CTGF and latent TGFβ migrated as a single high molecular weight band under non-reducing conditions, suggesting that they were in a covalent (disulfide) complex. This was confirmed by immunoprecipitation. Using CtgfcKO mice, CTGF was required for sequestration of latent TGFβ in the matrix and activation of the latent complex at the cell surface through TGFβR3. In vivo deletion of CTGF increased the thickness of the articular cartilage and protected mice from OA. CONCLUSIONS CTGF is a latent TGFβ binding protein that controls the matrix sequestration and activation of TGFβ in cartilage. Deletion of CTGF in vivo caused a paradoxical increase in Smad2 phosphorylation resulting in thicker cartilage that was protected from OA.
Collapse
Affiliation(s)
- Xiaodi Tang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Hayat Muhammad
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Celia McLean
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Jacob Fleming
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | | | - Andrew Leask
- Department of Dentistry, University of Western Ontario, London, Ontario, Canada
| | | | - Tonia L Vincent
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Simunovic F, Winninger O, Strassburg S, Koch HG, Finkenzeller G, Stark GB, Lampert FM. Increased differentiation and production of extracellular matrix components of primary human osteoblasts after cocultivation with endothelial cells: A quantitative proteomics approach. J Cell Biochem 2018; 120:396-404. [PMID: 30126049 DOI: 10.1002/jcb.27394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022]
Abstract
Coculturing of bone-forming and blood vessel-forming cells is a strategy aimed at increasing vascularity of implanted bone constructs in tissue-engineering applications. We previously described that the coculture of primary human osteoblasts (hOBs) and human umbilical vein endothelial cells (HUVECs) improves the differentiation of both cell types, leading to the formation of functional blood vessels and enhanced bone regeneration. The objective of this study was to further delineate the multifaceted interactions between both cell types. To investigate the proteome of hOBs after cocultivation with HUVECs we used stable isotope labeling by amino acids in cell culture, revealing 49 significantly upregulated, and 54 significantly downregulated proteins. Amongst the highest regulated proteins, we found the proteins important for osteoblast differentiation, cellular adhesion, and extracellular matrix function, notably: connective tissue growth factor, desmoplakin, galectin-3, and cyclin-dependent kinase 6. The findings were confirmed by enzyme-linked immunosorbent assays. We also investigated whether the mRNA transcripts correlate with the changes in protein levels by quantitative real-time reverse transcription polymerase chain reaction. In addition, the data was compared to our previous microarray analysis of hOB transcriptome. Taken together, this in-depth analysis delivers reliable data suggesting the importance of coculturing of hOBs and HUVECs in tissue engineering.
Collapse
Affiliation(s)
- F Simunovic
- Department of Plastic and Hand Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - O Winninger
- Department of Plastic and Hand Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - S Strassburg
- Department of Plastic and Hand Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - H G Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - G Finkenzeller
- Department of Plastic and Hand Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - G B Stark
- Department of Plastic and Hand Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - F M Lampert
- Department of Plastic and Hand Surgery, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
The in vitro effects of CCN2 on odontoblast-like cells. Arch Oral Biol 2018; 94:54-61. [PMID: 30168419 DOI: 10.1016/j.archoralbio.2018.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/30/2018] [Accepted: 06/18/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the in vitro effects of CCN2 on odontoblast-like cells proliferation and differentiation. DESIGN MDPC-23 cells were cultured in DMEM supplemented with 5% FBS. CCN2 was either added to culture media or coated onto culture polystyrene, addition or coating of dH2O was served as control. In the addition group, CCN2 (100 ng/mL) was added into culture media. In the coating group, CCN2 at the concentration of 1000 ng/mL was employed. Cell proliferation was performed using CCK-8 assay. Cell differentiation and mineralization were analyzed by ALPase activity assay, real time RT-PCR and alizarin red staining. One-way ANOVA with post-hoc tukey HSD test was used for statistical analysis. RESULTS MDPC-23 cells exhibited robust proliferative activity upon exposure to either soluble or immobilized CCN2. ALP activity of cells cultured on CCN2-modified surface was continuously strengthened from day six (0.831 ± 0.024 units/μg protein versus 0.563 ± 0.006 units/μg protein of control) till day eight (1.035 ± 0.139 units/μg protein versus 0.704 ± 0.061 units/μg protein of control). Gene expression of BSP, OCN and OPN were promoted by soluble CCN2 after 48 h exposure. Moreover, gene expression of BSP, OCN, OPN, ALP, COL1 A1, Runx-2, DSPP and DMP-1 was significantly enhanced by immobilized CCN2. Finally, mineralization of MDPC-23 cells was accelerated by both soluble and immobilized CCN2 to different extent. CONCLUSIONS The findings indicate that CCN2 promoted proliferation, odontogenic gene expression and mineralization of MDPC-23 cells. It is proposed that CCN2 may be a promising adjunctive formula for dentin regeneration.
Collapse
|
47
|
Fahmy-Garcia S, van Driel M, Witte-Buoma J, Walles H, van Leeuwen JPTM, van Osch GJVM, Farrell E. NELL-1, HMGB1, and CCN2 Enhance Migration and Vasculogenesis, But Not Osteogenic Differentiation Compared to BMP2. Tissue Eng Part A 2017; 24:207-218. [PMID: 28463604 DOI: 10.1089/ten.tea.2016.0537] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Currently, autografts still represent the gold standard treatment for the repair of large bone defects. However, these are associated with donor-site morbidity and increased pain, cost, and recovery time. The ideal therapy would use biomaterials combined with bone growth factors to induce and instruct bone defect repair without the need to harvest patient tissue. In this line, bone morphogenetic proteins (BMPs) have been the most extensively used agents for clinical bone repair, but at supraphysiological doses that are not without risk. Because of the need to eliminate the risks of BMP2 use in vivo, we assessed the ability of three putative osteogenic factors, nel-like molecule type 1 (NELL-1), high mobility group box 1 (HMGB1), and CCN2, to enhance the essential processes for bone defect repair in vitro and compared them to BMP2. Although it has been reported that NELL-1, HMGB1, and CCN2 play a role in bone formation, less is known about the contribution of these proteins to the different events involved, such as cell migration, osteogenesis, and vasculogenesis. In this study, we investigated the effects of different doses of NELL-1, HMGB, CCN2, and BMP2 on these three processes as a model for the recruitment and differentiation of resident cells in the in vivo bone defect repair situation, using cells of human origin. Our data demonstrated that NELL-1, HMGB1, and CCN2 significantly induced mesenchymal stem cell migration (from 1.58-fold increase compared to control), but BMP2 did not. Interestingly, only BMP2 increased osteogenesis in marrow stromal cells, whereas it inhibited osteogenesis in preosteoblasts. Moreover, the four proteins studied promoted significantly endothelial cell migration, reaching a maximum of 2.4-fold increase compared to control, and induced formation of tube-like structures. NELL-1, HMGB1, and CCN2 had these effects at relatively low doses compared to BMP2. This work indicates that NELL-1, HMGB1, and CCN2 might enhance bone defect healing via the recruitment of endogenous cells and induction of vascularization and act via different processes than BMP2.
Collapse
Affiliation(s)
| | | | - Janneke Witte-Buoma
- 3 Department of Oral and Maxillofacial Surgery, Erasmus MC , Rotterdam, The Netherlands
| | - Heike Walles
- 4 Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg , Würzburg, Germany
| | | | - Gerjo J V M van Osch
- 1 Department of Orthopaedics, Erasmus MC , Rotterdam, The Netherlands .,5 Otorhinolaryngology Department, Erasmus MC, Rotterdam, The Netherlands
| | - Eric Farrell
- 3 Department of Oral and Maxillofacial Surgery, Erasmus MC , Rotterdam, The Netherlands
| |
Collapse
|
48
|
Effects of connective tissue growth factor (CTGF/CCN2) on condylar chondrocyte proliferation, migration, maturation, differentiation and signalling pathway. Biochem Biophys Res Commun 2017; 495:1447-1453. [PMID: 29198711 DOI: 10.1016/j.bbrc.2017.11.190] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
CCN2, also known as connective tissue growth factor (CTGF), is a 38 kDa cysteine-rich extracellular matrix protein that regulates a sequence of cellular functions and participates in multiple complex biological processes, such as chondrogenesis and osteogenesis. In the present study, we provided the first evidence describing the physiological role of CCN2 in condylar chondrocyte proliferation, migration, maturation and differentiation. CCN2 was widely expressed throughout the whole layers of condylar cartilage and predominantly distributed in the proliferative zone. Recombinant CCN2 promoted the proliferation, migration, proteoglycan synthesis and differentiation capacity of isolated condylar chondrocytes. The stimulatory effect of CCN2 on chondrocyte proliferation was associated with the activation of phosphatidylinositol 3-kinase/Akt signalling pathway. The blocking of this pathway by its inhibitor LY294002 impaired the proliferative effect of CCN2 on chondrocytes. These results suggested a novel physiological role of CCN2 in the development of condylar cartilage.
Collapse
|
49
|
Takigawa M. An early history of CCN2/CTGF research: the road to CCN2 via hcs24, ctgf, ecogenin, and regenerin. J Cell Commun Signal 2017; 12:253-264. [PMID: 29076115 DOI: 10.1007/s12079-017-0414-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
The principal aim of this historical review is to present the processes by which the different aspects of CCN2/CTGF/Hcs24 were discovered by different groups and how much CCN2/CTGF, by being integrated into CCN family, has contributed to the establishment of the basic concepts regarding the role and functions of this new class of proteins. This review should be particularly useful to new investigators who have recently entered this exciting field of study and also provides a good opportunity to acknowledge the input of those individuals who participated in the development of this scientific field.
Collapse
Affiliation(s)
- Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences (ARCOCS), Okayama University Dental School/Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama, 700-8525, Japan.
| |
Collapse
|
50
|
Morales MG, Acuña MJ, Cabrera D, Goldschmeding R, Brandan E. The pro-fibrotic connective tissue growth factor (CTGF/CCN2) correlates with the number of necrotic-regenerative foci in dystrophic muscle. J Cell Commun Signal 2017; 12:413-421. [PMID: 28887614 DOI: 10.1007/s12079-017-0409-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
Connective tissue growth factor (CTGF/CCN2) has strong inflammatory and profibrotic activities. Its expression is enhanced in skeletal muscular dystrophies such as Duchenne muscular dystrophy (DMD), a myopathy characterized by exacerbated inflammation and fibrosis. In dystrophic tissue, necrotic-regenerative foci, myofibroblasts, newly-regenerated muscle fibers and necrosis all occur simultaneously. To determine if CCN2 is involved in the appearance of the foci, we studied their presence and characteristics in mdx mice (DMD mouse model) compared to mdx mice hemizygous for CCN2 (mdx-Ccn2+/-). We used laser capture microdissection followed by gene expression and immunofluorescence analyses to investigate fibrotic, inflammation and regeneration markers in damaged and non-damaged areas in mdx and mdx-Ccn2+/- skeletal muscle. Mdx mice foci express elevated mRNAs levels of transforming growth factor type beta, collagen, fibronectin, the myofribroblast marker α-SMA, and the myogenic transcription factor myogenin. Mdx foci also show elevated levels of MCP-1 and CD-68 positive cells, indicating that CCN2 could be inducing an inflammatory response. We found a significant reduction in the number of foci in mdx-Ccn2+/- mice muscle. Fibrotic and inflammatory markers were also decreased in these foci. We did not observe any difference in Pax7 mRNA levels, a marker for satellite cells, in mdx mice compared to mdx-Ccn2+/- mice. Thus, CCN2 appears to be involved in the fibrotic response as well as in the inflammatory response in the dystrophic skeletal muscle.
Collapse
Affiliation(s)
- María Gabriela Morales
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Cabrera
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC y Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|