1
|
Kerek R, Sawma Awad J, Bassam M, Hajjar C, Ghantous F, Rizk K, Rima M. The multifunctional protein CCN1/CYR61: Bridging physiology and disease. Exp Mol Pathol 2025; 142:104969. [PMID: 40286773 DOI: 10.1016/j.yexmp.2025.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The matricellular protein CYR61/CCN1 is a member of the CCN protein family that plays significant roles in a broad range of physiological processes, including development, tissue repair, and inflammation, among others. CCN1 is also implicated in pathological conditions such as cancer and fibrosis. The diverse functions of CCN1 arise from its ability to bind different receptors located on many cell types, thereby activating diverse signaling pathways. The diverse, yet contradictory, functions mediated by CCN1 makes it a compelling target for investigation, as it offers the prospect of understanding fundamental cellular topics and their possible implications in various diseases. Recently, new cellular functions were attributed to CCN1, including senescence, pro-/anti- fibrosis, and rejuvenation. In this review, we discuss all these new findings along with the basic knowledge about CCN1 to provide an overall understanding of its conflicting roles and their potential corresponding mechanisms of action.
Collapse
Affiliation(s)
- Racha Kerek
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Joe Sawma Awad
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Mariam Bassam
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Carla Hajjar
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Fouad Ghantous
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Karelle Rizk
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon
| | - Mohamad Rima
- Department of Biological Sciences, Lebanese American University, Byblos, P.O. Box 36, Lebanon.
| |
Collapse
|
2
|
Neiens V, Hansbauer EM, Jaquin TJ, Peper-Gabriel JK, Mahavadi P, Snyder ME, Grill MJ, Wurzenberger C, Konitsiotis A, Estrada-Bernal A, Heinig K, Fysikopoulos A, Schwenck N, Grüner S, Bartoschek D, Mosebach T, Kerstan S, Wrennall J, Richter M, Noda K, Hoetzenecker K, Burgess JK, Tarran R, Wurzenberger C, Wichmann KR, Biehler J, Müller KW, Guenther A, Eickelberg O, Fitzgerald MF, Olwill SA, Matschiner G, Pavlidou M. Preclinical concept studies showing advantage of an inhaled anti-CTGF/CCN2 protein for pulmonary fibrosis treatment. Nat Commun 2025; 16:3251. [PMID: 40185752 PMCID: PMC11971276 DOI: 10.1038/s41467-025-58568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Inhaled therapeutics have high potential for the treatment of chronic respiratory diseases of high unmet medical need, such as idiopathic pulmonary fibrosis (IPF). Preclinical and early clinical evidence show that cellular communication network factor 2 (CCN2), previously called connective tissue growth factor (CTGF), is a promising target for the treatment of IPF. In recent phase 3 clinical trials, however, systemic CCN2 inhibition failed to demonstrate a clinically meaningful benefit. Here, we present the preclinical profile of the inhaled anti-CCN2 Anticalin® protein PRS-220. Our study demonstrates that efficient pulmonary delivery directly translates into superior efficacy in relevant models of pulmonary fibrosis when compared to systemic CCN2 inhibition. Moreover, we present a holistic approach for the preclinical characterization of inhaled PRS-220 from state-of-the art in vitro and in vivo models to novel human ex vivo and in silico models, highlighting the advantage of inhaled drug delivery for treatment of respiratory disease.
Collapse
Affiliation(s)
- Vanessa Neiens
- Pieris Pharmaceuticals GmbH, 85399, Hallbergmoos, Germany
| | | | | | | | - Poornima Mahavadi
- Department of Internal Medicine, Justus Liebig University (JLU) Giessen, 35392, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392, Giessen, Germany
| | - Mark E Snyder
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Starzl Transplantation Institute, Pittsburgh, PA, 15213, USA
| | | | | | | | - Adriana Estrada-Bernal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | | | | | - Stefan Grüner
- Pieris Pharmaceuticals GmbH, 85399, Hallbergmoos, Germany
| | | | | | - Sandra Kerstan
- Pieris Pharmaceuticals GmbH, 85399, Hallbergmoos, Germany
| | - Joe Wrennall
- University of North Carolina Department of Cell Biology & Physiology, Chapel Hill, NC, 27599, USA
| | | | - Kentaro Noda
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery Vienna, Medical University of Vienna, 1090, Vienna, Austria
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, 9713 GZ, Groningen, the Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), 9713 GZ, Groningen, the Netherlands
| | - Robert Tarran
- University of North Carolina Department of Cell Biology & Physiology, Chapel Hill, NC, 27599, USA
| | | | | | | | | | - Andreas Guenther
- Department of Internal Medicine, Justus Liebig University (JLU) Giessen, 35392, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392, Giessen, Germany
- Agaplesion Evangelisches Krankenhaus Mittelhessen, 35398, Giessen, Germany
- European IPF Network and European IPF Registry, 35392, Giessen, Germany
- Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Shane A Olwill
- Pieris Pharmaceuticals GmbH, 85399, Hallbergmoos, Germany
| | | | | |
Collapse
|
3
|
Larsen JH, Hegelund JS, Pedersen MK, Andersson CM, Lindegaard CA, Hansen DR, Stubbe J, Lindholt JS, Hansen CS, Grentzmann A, Bloksgaard M, Jensen BL, Rodriguez-Díez RR, Ruiz-Ortega M, Albinsson S, Pasterkamp G, Mokry M, Leask A, Goldschmeding R, Pilecki B, Sorensen GL, Pyke C, Overgaard M, Beck HC, Ketelhuth DFJ, Rasmussen LM, Steffensen LB. Smooth muscle-specific deletion of cellular communication network factor 2 causes severe aorta malformation and atherosclerosis. Cardiovasc Res 2024; 120:1851-1868. [PMID: 39167826 PMCID: PMC11630017 DOI: 10.1093/cvr/cvae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/10/2024] [Accepted: 06/22/2024] [Indexed: 08/23/2024] Open
Abstract
AIMS Cellular communication network factor 2 (CCN2) is a matricellular protein implicated in fibrotic diseases, with ongoing clinical trials evaluating anti-CCN2-based therapies. By uncovering CCN2 as abundantly expressed in non-diseased artery tissue, this study aimed to investigate the hypothesis that CCN2 plays a pivotal role in maintaining smooth muscle cell (SMC) phenotype and protection against atherosclerosis. METHODS AND RESULTS Global- and SMC-specific Ccn2 knockout mouse models were employed to demonstrate that Ccn2 deficiency leads to SMC de-differentiation, medial thickening, and aorta elongation under normolipidaemic conditions. Inducing hyperlipidaemia in both models resulted in severe aorta malformation and a 17-fold increase in atherosclerosis formation. Lipid-rich lesions developed at sites of the vasculature typically protected from atherosclerosis development by laminar blood flow, covering 90% of aortas and extending to other vessels, including coronary arteries. Evaluation at earlier time points revealed medial lipid accumulation as a lesion-initiating event. Fluorescently labelled LDL injection followed by confocal microscopy showed increased LDL retention in the medial layer of Ccn2 knockout aortas, likely attributed to marked proteoglycan enrichment of the medial extracellular matrix. Analyses leveraging data from the Athero-Express study cohort indicated the relevance of CCN2 in established human lesions, as CCN2 correlated with SMC marker transcripts across 654 transcriptomically profiled carotid plaques. These findings were substantiated through in situ hybridization showing CCN2 expression predominantly in the fibrous cap. CONCLUSION This study identifies CCN2 as a major constituent of the normal artery wall, critical in regulating SMC differentiation and aorta integrity and possessing a protective role against atherosclerosis development. These findings underscore the need for further investigation into the potential effects of anti-CCN2-based therapies on the vasculature.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Aorta/metabolism
- Aorta/pathology
- Disease Models, Animal
- Connective Tissue Growth Factor/metabolism
- Connective Tissue Growth Factor/genetics
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Humans
- Phenotype
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/prevention & control
- Vascular Malformations/genetics
- Vascular Malformations/metabolism
- Vascular Malformations/pathology
- Plaque, Atherosclerotic
- Mice, Inbred C57BL
- Genetic Predisposition to Disease
- Male
- Signal Transduction
- Lipoproteins, LDL/metabolism
Collapse
Affiliation(s)
- Jannik H Larsen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, J. B. Winsløws Vej 4, DK-5000 Odense C, Denmark
| | - Julie S Hegelund
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Matilde K Pedersen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Cecilie M Andersson
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Caroline A Lindegaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Didde R Hansen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jane Stubbe
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jes S Lindholt
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, J. B. Winsløws Vej 4, DK-5000 Odense C, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Camilla S Hansen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Andrietta Grentzmann
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Maria Bloksgaard
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Boye L Jensen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Raúl R Rodriguez-Díez
- Department of Cell Biology, Complutense University School of Medicine, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Sebastian Albinsson
- Department of Experimental Medical Science, Vascular Physiology Environment, Lund University, Lund, Sweden
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry and Haematology, University Medical Center, Heidelberglaan 100, Utrecht, The Netherlands
| | - Michal Mokry
- Laboratory of Clinical Chemistry and Haematology, University Medical Center, Heidelberglaan 100, Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| | - Andrew Leask
- College of Dentistry, University of Saskatoon, Saskatoon, SK, Canada
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bartosz Pilecki
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Grith L Sorensen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Charles Pyke
- Research and Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Martin Overgaard
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Hans C Beck
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Daniel F J Ketelhuth
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lars M Rasmussen
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, J. B. Winsløws Vej 4, DK-5000 Odense C, Denmark
- Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Lasse B Steffensen
- Department of Molecular Medicine, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, J. B. Winsløws Vej 4, DK-5000 Odense C, Denmark
| |
Collapse
|
4
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Singh K, Oladipupo SS. An overview of CCN4 (WISP1) role in human diseases. J Transl Med 2024; 22:601. [PMID: 38937782 PMCID: PMC11212430 DOI: 10.1186/s12967-024-05364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA
| | - Sunday S Oladipupo
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| |
Collapse
|
6
|
Christopoulou ME, Skandalis SS, Papakonstantinou E, Stolz D, Aletras AJ. WISP1 induces the expression of macrophage migration inhibitory factor in human lung fibroblasts through Src kinases and EGFR-activated signaling pathways. Am J Physiol Cell Physiol 2024; 326:C850-C865. [PMID: 38145300 PMCID: PMC11193488 DOI: 10.1152/ajpcell.00410.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Wnt1-inducible signaling protein 1 (WISP1/CCN4) is a secreted matricellular protein that is implicated in lung and airway remodeling. The macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been associated with chronic lung diseases. In this study, we aimed to investigate the WISP1 signaling pathway and its ability to induce the expression of MIF in primary cultures of fibroblasts from normal human lungs (HLFs). Our results showed that WISP1 significantly stimulated the expression of MIF in a concentration- and time-dependent fashion. In WISP1-induced expression of MIF, αvβ5-integrin and chondroitin sulfate proteoglycans as well as Src tyrosine kinases, MAP kinases, phosphatidylinositol 3-kinase/Akt, PKC, and NF-κB were involved. WISP1-induced expression of MIF was attenuated in the presence of the Src kinase inhibitor PP2 or the MIF tautomerase activity inhibitor ISO-1. Moreover, WISP1 significantly increased the phosphorylation and activation of EGF receptor (EGFR) through transactivation by Src kinases. WISP1 also induced the expression of MIF receptor CD74 and coreceptor CD44, through which MIF exerts its effects on HLFs. In addition, it was found that MIF induced its own expression, as well as its receptors CD74/CD44, acting in an autocrine manner. Finally, WISP1-induced MIF promoted the expression of cyclooxygenase 2, prostaglandin E2, IL-6, and matrix metalloproteinase-2 demonstrating the regulatory role of WISP1-MIF axis in lung inflammation and remodeling involving mainly integrin αvβ5, Src kinases, PKC, NF-κB, and EGFR. The specific signaling pathways involved in WISP1-induced expression of MIF may prove to be excellent candidates for novel targets to control inflammation in chronic lung diseases.NEW & NOTEWORTHY The present study demonstrates for the first time that Wnt1-inducible signaling protein 1 (WISP1) regulates migration inhibitory factor (MIF) expression and activity and identifies the main signaling pathways involved. The newly discovered WISP1-MIF axis may drive lung inflammation and could result in the design of novel targeted therapies in inflammatory lung diseases.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
7
|
Nørregaard R, Mutsaers HAM, Frøkiær J, Kwon TH. Obstructive nephropathy and molecular pathophysiology of renal interstitial fibrosis. Physiol Rev 2023; 103:2827-2872. [PMID: 37440209 PMCID: PMC10642920 DOI: 10.1152/physrev.00027.2022] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023] Open
Abstract
The kidneys play a key role in maintaining total body homeostasis. The complexity of this task is reflected in the unique architecture of the organ. Ureteral obstruction greatly affects renal physiology by altering hemodynamics, changing glomerular filtration and renal metabolism, and inducing architectural malformations of the kidney parenchyma, most importantly renal fibrosis. Persisting pathological changes lead to chronic kidney disease, which currently affects ∼10% of the global population and is one of the major causes of death worldwide. Studies on the consequences of ureteral obstruction date back to the 1800s. Even today, experimental unilateral ureteral obstruction (UUO) remains the standard model for tubulointerstitial fibrosis. However, the model has certain limitations when it comes to studying tubular injury and repair, as well as a limited potential for human translation. Nevertheless, ureteral obstruction has provided the scientific community with a wealth of knowledge on renal (patho)physiology. With the introduction of advanced omics techniques, the classical UUO model has remained relevant to this day and has been instrumental in understanding renal fibrosis at the molecular, genomic, and cellular levels. This review details key concepts and recent advances in the understanding of obstructive nephropathy, highlighting the pathophysiological hallmarks responsible for the functional and architectural changes induced by ureteral obstruction, with a special emphasis on renal fibrosis.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
8
|
Kato S, Kawata K, Nishida T, Mizukawa T, Takigawa M, Iida S, Kubota S. Expression and function of CCN2-derived circRNAs in chondrocytes. J Cell Commun Signal 2023:10.1007/s12079-023-00782-7. [PMID: 37695440 DOI: 10.1007/s12079-023-00782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
Cellular communication network factor 2 (CCN2) molecules promote endochondral ossification and articular cartilage regeneration, and circular RNAs (circRNAs), which arise from various genes and regulate gene expression by adsorbing miRNAs, are known to be synthesized from CCN2 in human vascular endothelial cells and other types of cells. However, in chondrocytes, not only the function but also the presence of CCN2-derived circRNA remains completely unknown. In the present study, we investigated the expression and function of CCN2-derived circRNAs in chondrocytes. Amplicons smaller than those from known CCN2-derived circRNAs were observed using RT-PCR analysis that could specifically amplify CCN2-derived circRNAs in human chondrocytic HCS-2/8 cells. The nucleotide sequences of the PCR products indicated novel circRNAs in the HCS-2/8 cells that were different from known CCN2-derived circRNAs. Moreover, the expression of several Ccn2-derived circRNAs in murine chondroblastic ATDC5 cells was confirmed and observed to change alongside chondrocytic differentiation. Next, one of these circRNAs was knocked down in HCS-2/8 cells to investigate the function of the human CCN2-derived circRNA. As a result, CCN2-derived circRNA knockdown significantly reduced the expression of aggrecan mRNA and proteoglycan synthesis. Our data suggest that CCN2-derived circRNAs are expressed in chondrocytes and play a role in chondrogenic differentiation. Production and role of CCN2-derived RNAs in chondrocytes.
Collapse
Affiliation(s)
- Soma Kato
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
- Department of Oral Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Tomomi Mizukawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiji Iida
- Department of Oral Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8525, Japan.
| |
Collapse
|
9
|
Li X, Chen R, Kemper S, Brigstock DR. Production, Exacerbating Effect, and EV-Mediated Transcription of Hepatic CCN2 in NASH: Implications for Diagnosis and Therapy of NASH Fibrosis. Int J Mol Sci 2023; 24:12823. [PMID: 37629004 PMCID: PMC10454308 DOI: 10.3390/ijms241612823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/05/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, hepatocyte ballooning, and inflammation and may progress to include increasingly severe fibrosis, which portends more serious disease and is predictive of patient mortality. Diagnostic and therapeutic options for NASH fibrosis are limited, and the underlying fibrogenic pathways are under-explored. Cell communication network factor 2 (CCN2) is a well-characterized pro-fibrotic molecule, but its production in and contribution to NASH fibrosis requires further study. Hepatic CCN2 expression was significantly induced in NASH patients with F3-F4 fibrosis and was positively correlated with hepatic Col1A1, Col1A2, Col3A1, or αSMA expression. When wild-type (WT) or transgenic (TG) Swiss mice expressing enhanced green fluorescent protein (EGFP) under the control of the CCN2 promoter were fed up to 7 weeks with control or choline-deficient, amino-acid-defined diet with high (60%) fat (CDAA-HF), the resulting NASH-like hepatic pathology included a profound increase in CCN2 or EGFP immunoreactivity in activated hepatic stellate cells (HSC) and in fibroblasts and smooth muscle cells of the vasculature, with little or no induction of CCN2 in other liver cell types. In the context of CDAA-HF diet-induced NASH, Balb/c TG mice expressing human CCN2 under the control of the albumin promoter exhibited exacerbated deposition of interstitial hepatic collagen and activated HSC compared to WT mice. In vitro, palmitic acid-treated hepatocytes produced extracellular vesicles (EVs) that induced CCN2, Col1A1, and αSMA in HSC. Hepatic CCN2 may aid the assessment of NASH fibrosis severity and, together with pro-fibrogenic EVs, is a therapeutic target for reducing NASH fibrosis.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - Ruju Chen
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - Sherri Kemper
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
| | - David R. Brigstock
- Center for Clinical and Translational Research, The Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.C.); (S.K.); (D.R.B.)
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43212, USA
| |
Collapse
|
10
|
Yin H, Liu N, Zhou X, Chen J, Duan L. The advance of CCN3 in fibrosis. J Cell Commun Signal 2023:10.1007/s12079-023-00778-3. [PMID: 37378812 DOI: 10.1007/s12079-023-00778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The extracellular matrix (ECM) is comprised of various extracellular macromolecules, including collagen, enzymes, and glycoproteins, which offer structural and biochemical support to neighboring cells. After tissue injury, extracellular matrix proteins deposit in the damaged tissue to promote tissue healing. However, an imbalance between ECM production and degradation can result in excessive deposition, leading to fibrosis and subsequent organ dysfunction. Acting as a regulatory protein within the extracellular matrix, CCN3 plays a crucial role in numerous biological processes, such as cell proliferation, angiogenesis, tumorigenesis, and wound healing. Many studies have demonstrated that CCN3 can reduce the production of ECM in tissues through diverse mechanisms thereby exerting an inhibitory effect on fibrosis. Consequently, CCN3 emerges as a promising therapeutic target for ameliorating fibrosis.
Collapse
Affiliation(s)
- Hui Yin
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China
| | - Na Liu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xianming Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, Nanchang, 330006, China.
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
- JXHC Key Laboratory of Rheumatology and Immunology, Nanchang, China.
| |
Collapse
|
11
|
Yeger H. CCN proteins: opportunities for clinical studies-a personal perspective. J Cell Commun Signal 2023:10.1007/s12079-023-00761-y. [PMID: 37195381 DOI: 10.1007/s12079-023-00761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
The diverse members of the CCN family now designated as CCN1(CYR61), CCN2 (CTGF), CCN3(NOV), CCN4(WISP1), CCN5(WISP2), CCN6(WISP3) are a conserved matricellular family of proteins exhibiting a spectrum of functional properties throughout all organs in the body. Interaction with cell membrane receptors such as integrins trigger intracellular signaling pathways. Proteolytically cleaved fragments (constituting the active domains) can be transported to the nucleus and perform transcriptional relevant functional activities. Notably, as also found in other protein families some members act opposite to others creating a system of functionally relevant checks and balances. It has become apparent that these proteins are secreted into the circulation, are quantifiable, and can serve as disease biomarkers. How they might also serve as homeostatic regulators is just becoming appreciated. In this review I have attempted to highlight the most recent evidence under the subcategories of cancer and non-cancer relevant that could lead to potential therapeutic approaches or ideas that can be factored into clinical advances. I have added my own personal perspective on feasibility.
Collapse
Affiliation(s)
- Herman Yeger
- Developmental and Stem Cell Biology, Research Institute, SickKids, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
12
|
Perbal B, Perbal M, Perbal A. Cooperation is the key: the CCN biological system as a gate to high complex protein superfamilies' signaling. J Cell Commun Signal 2023:10.1007/s12079-023-00749-8. [PMID: 37166690 DOI: 10.1007/s12079-023-00749-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Cellular signaling is generally understood as the support of communication between contiguous cells belonging to the same tissue or cells being far apart of each other, at a molecular scale, when the message emitted by the transmitters is traveling in liquid or solid matter to reach recipient targets. Subcellular signaling is also important to ensure the proper cell constitution and functioning. However cell signaling is mostly used in the first understanding, to describe how the message sent from one point to another one, will reach a target where it will be interpreted. The Cellular Communication Network (CCN) factors (Perbal et al. 2018) constitute a family of biological regulators thought to be responsible for signaling pathways coordination (Perbal 2018). Indeed, these proteins interact with a diverse group of cell receptors, such as integrins, low density lipoprotein receptors, heparan sulfate proteoglycan receptors (HSPG), and the immunoglobulin superfamily expressed exclusively in the nervous system, or with soluble factors such as bone morphogenetic proteins (BMPS) and other growth factors such as vascular endothelial growth factor, fibroblastic growth factor, and transforming growth factor (TGFbeta). Starting from the recapitulation of basic concepts in enzymology and protein-ligands interactions, we consider, in this manuscript, interpretations of the mechanistic interactions that have been put forward to explain the diversity of CCN proteins biological activities. We suggest that the cross-talks between superfamilies of proteins under the control of CCNs might play a central role in the coordination of developmental signaling pathways.
Collapse
Affiliation(s)
| | - Matthieu Perbal
- M2 Probabilités et Modèles Aléatoires, Sorbonne Université, Paris, France
| | | |
Collapse
|
13
|
Garrett EC, Bielawski AM, Ruchti E, Sherer LM, Waghmare I, Hess-Homeier D, McCabe BD, Stowers RS, Certel SJ. The matricellular protein Drosophila Cellular Communication Network Factor is required for synaptic transmission and female fertility. Genetics 2023; 223:iyac190. [PMID: 36602539 PMCID: PMC9991515 DOI: 10.1093/genetics/iyac190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 01/06/2023] Open
Abstract
Within the extracellular matrix, matricellular proteins are dynamically expressed nonstructural proteins that interact with cell surface receptors, growth factors, and proteases, as well as with structural matrix proteins. The cellular communication network factors family of matricellular proteins serve regulatory roles to regulate cell function and are defined by their conserved multimodular organization. Here, we characterize the expression and neuronal requirement for the Drosophila cellular communication network factor family member. Drosophila cellular communication network factor is expressed in the nervous system throughout development including in subsets of monoamine-expressing neurons. Drosophila cellular communication network factor-expressing abdominal ganglion neurons innervate the ovaries and uterus and the loss of Drosophila cellular communication network factor results in reduced female fertility. In addition, Drosophila cellular communication network factor accumulates at the synaptic cleft and is required for neurotransmission at the larval neuromuscular junction. Analyzing the function of the single Drosophila cellular communication network factor family member will enhance our potential to understand how the microenvironment impacts neurotransmitter release in distinct cellular contexts and in response to activity.
Collapse
Affiliation(s)
| | - Ashley M Bielawski
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Evelyne Ruchti
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Lewis M Sherer
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Indrayani Waghmare
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David Hess-Homeier
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Brian D McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - R Steven Stowers
- Department of Cell Biology and Microbiology, Montana State University, Bozeman, MT 59717, USA
| | - Sarah J Certel
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
14
|
Pi L, Sun C, Jn-Simon N, Basha S, Thomas H, Figueroa V, Zarrinpar A, Cao Q, Petersen B. CCN2/CTGF promotes liver fibrosis through crosstalk with the Slit2/Robo signaling. J Cell Commun Signal 2023; 17:137-150. [PMID: 36469291 PMCID: PMC10030765 DOI: 10.1007/s12079-022-00713-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is the common outcome of many chronic liver diseases, resulting from altered cell-cell and cell-matrix interactions that promote hepatic stellate cell (HSC) activation and excessive matrix production. This study aimed to investigate functions of cellular communication network factor 2 (CCN2)/Connective tissue growth factor (CTGF), an extracellular signaling modulator of the CYR61/CTGF/Nov (CCN) family, in liver fibrosis. Tamoxifen-inducible conditional knockouts in mice and hepatocyte-specific deletion of this gene in rats were generated using the Cre-lox system. These animals were subjected to peri-central hepatocyte damage caused by carbon tetrachloride. Potential crosstalk of this molecule with a new profibrotic pathway mediated by the Slit2 ligand and Roundabout (Robo) receptors was also examined. We found that Ccn2/Ctgf was highly upregulated in periportal hepatocytes during carbon tetrachloride-induced hepatocyte damage, liver fibrosis and cirrhosis in mice and rats. Overexpression of this molecule was observed in human hepatocellular carcinoma (HCC) that were surrounded with fibrotic cords. Deletion of the Ccn2/Ctgf gene significantly reduced expression of fibrosis-related genes including Slit2, a smooth muscle actin (SMA) and Collagen type I during carbon tetrachloride-induced liver fibrosis in mice and rats. In addition, Ccn2/Ctgf and its truncated mutant carrying the first three domains were able to interact with the 7th -9th epidermal growth factor (EGF) repeats and the C-terminal cysteine knot (CT) motif of Slit2 protein in cultured HSC and fibrotic murine livers. Ectopic expression of Ccn2/Ctgf protein upregulated Slit2, promoted HSC activation, and potentiated fibrotic responses following chronic intoxication by carbon tetrachloride. Moreover, Ccn2/Ctgf and Slit2 synergistically enhanced activation of phosphatidylinositol 3-kinase (PI3K) and AKT in primary HSC, whereas soluble Robo1-Fc chimera protein could inhibit these activities. These observations demonstrate conserved cross-species functions of Ccn2/Ctgf protein in rodent livers. This protein can be induced in hepatocytes and contribute to liver fibrosis. Its novel connection with the Slit2/Robo signaling may have therapeutic implications against fibrosis in chronic liver disease.
Collapse
Affiliation(s)
- Liya Pi
- Department of Pathology, Tulane University, New Orleans, LA, USA.
| | - Chunbao Sun
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Natacha Jn-Simon
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | | | - Haven Thomas
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | | | | | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bryon Petersen
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Perbal B. Time has come to address the spatiotemporal combinatorial model for CCN proteins biological activitites by spatial transcriptomics and genome wide association studies. J Cell Commun Signal 2023; 17:1-3. [PMID: 36752900 PMCID: PMC9906571 DOI: 10.1007/s12079-023-00729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
It is a renewed pleasure to wish our authors, editorial board members, and readership an excellent new year, full of professional and personal satisfactions. According to the Chinese Horoscope, 2023, the Year of Water Rabbit, is predicted to be quiet; a year to step back, assess the situation and make plans. It will be the time to carefully appraise, with the patience of the Water Rabbit, the future and scientific wealth of our Journal. Based on a few aspects of the CCN3 biology status that remain open questions, I am presenting below a short summary of a few CCN research directions that in my eyes, become necessary to undertake through wide-angle collaborative approaches.
Collapse
|
16
|
Kubota S, Kawaki H, Perbal B, Takigawa M, Kawata K, Hattori T, Nishida T. Do not overwork: cellular communication network factor 3 for life in cartilage. J Cell Commun Signal 2023:10.1007/s12079-023-00723-4. [PMID: 36745317 DOI: 10.1007/s12079-023-00723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 02/07/2023] Open
Abstract
Cellular communication network factor (CCN) 3, which is one of the founding members of the CCN family, displays diverse functions. However, this protein generally represses the proliferation of a variety of cells. Along with skeletal development, CCN3 is produced in cartilaginous anlagen, growth plate cartilage and epiphysial cartilage. Interestingly, CCN3 is drastically induced in the growth plates of mice lacking CCN2, which promotes endochondral ossification. Notably, chondrocytes in these mutant mice with elevated CCN3 production also suffer from impaired glycolysis and energy metabolism, suggesting a critical role of CCN3 in cartilage metabolism. Recently, CCN3 was found to be strongly induced by impaired glycolysis, and in our study, we located an enhancer that mediated CCN3 regulation via starvation. Subsequent investigations specified regulatory factor binding to the X-box 1 (RFX1) as a transcription factor mediating this CCN3 regulation. Impaired glycolysis is a serious problem, resulting in an energy shortage in cartilage without vasculature. CCN3 produced under such starved conditions restricts energy consumption by repressing cell proliferation, leading chondrocytes to quiescence and survival. This CCN3 regulatory system is indicated to play an important role in articular cartilage maintenance, as well as in skeletal development. Furthermore, CCN3 continues to regulate cartilage metabolism even during the aging process, probably utilizing this regulatory system. Altogether, CCN3 seems to prevent "overwork" by chondrocytes to ensure their sustainable life in cartilage by sensing energy metabolism. Similar roles are suspected to exist in relation to systemic metabolism, since CCN3 is found in the bloodstream.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences/Dental School, Okayama, Japan
| |
Collapse
|
17
|
Peidl A, Nguyen J, Chitturi P, Riser BL, Leask A. Using the Bleomycin-Induced Model of Fibrosis to Study the Contribution of CCN Proteins to Scleroderma Fibrosis. Methods Mol Biol 2023; 2582:309-321. [PMID: 36370359 DOI: 10.1007/978-1-0716-2744-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Approximately 45% of the deaths in the developed world result from conditions with a fibrotic component. Although no specific, focused anti-fibrotic therapies have been approved for clinical use, a long-standing concept is that targeting CCN proteins may be useful to treat fibrosis. Herein, we summarize current data supporting the concept that targeting CCN2 may be a viable anti-fibrotic approach to treat scleroderma. Testing this hypothesis has been made possible by using a mouse model of inflammation-driven skin and lung fibrosis.
Collapse
Affiliation(s)
- Alexander Peidl
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Bruce L Riser
- BLR Bio LLC, Kenosha, WI, USA
- Center for Cancer Cell Biology, Immunology and Infection, Department of Physiology and Biophysics, and Department of Medicine Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
18
|
Takigawa M. CCN Proteins (Cellular Communication Network Factors): Expanding Their Repertoire Toward a New Concept. Methods Mol Biol 2023; 2582:1-10. [PMID: 36370338 DOI: 10.1007/978-1-0716-2744-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
I herein report the general structures and functions of CCN proteins and possible molecular mechanisms involved in the unique biological actions of this family of intercellular signaling regulators, which are considered matricellular proteins and were once referred to as "signal conductors" but have recently been renamed "Cellular Communication Network Factors." Their repertoire of functions beyond their role as matricellular proteins is also described to aid in future studies. Advanced research concerning their relevance to pathology is briefly introduced as well. The information provided in this chapter is expected to be useful for readers of subsequent chapters.
Collapse
Affiliation(s)
- Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School/Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
19
|
Abstract
Classically, scientific research has been driven by hypotheses based on personal inspiration and intuition against the background of personal knowledge. In contrast, scientists have recently proposed that scientific research should basically be driven by data, meaning big data yielded by preliminary omic analyses in this context. A genuine hypothesis-driven strategy is usually exciting but occasionally ends up with negative conclusions, whereas a data-driven approach is less exciting and cost-consuming but produces significant outcomes in most cases. Here, we should be aware that a number of bioscientific resources provide a variety of big data free of charge. Therefore, one of the most effective research strategies is to construct a research question based on comprehensive knowledge derived not only from inside information, but also from the analysis of data available to everybody. However, a classical scientist without a sufficient bioinformatic background may hesitate in dealing with information supplied through the Internet. This chapter is aimed at CCN family researchers who do not possess specific bioinformatic knowledge and/or huge grants-in-aid, in order to assist them in developing their research by taking advantage of the scientific treasury open to the public.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
20
|
Tejera-Muñoz A, Rodríguez I, Del Río-García Á, Mohamedi Y, Martín M, Chiminazzo V, Suárez-Álvarez B, López-Larrea C, Ruiz-Ortega M, Rodrigues-Díez RR. The CCN2 Polymorphism rs12526196 Is a Risk Factor for Ascending Thoracic Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms232315406. [PMID: 36499730 PMCID: PMC9740045 DOI: 10.3390/ijms232315406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cellular communication network factor 2 (CCN2/CTGF) has been traditionally described as a downstream mediator of other profibrotic factors including transforming growth factor (TGF)-β and angiotensin II. However, recent evidence from our group demonstrated the direct role of CCN2 in maintaining aortic wall homeostasis and acute and lethal aortic aneurysm development induced by angiotensin II in the absence of CCN2 in mice. In order to translate these findings to humans, we evaluated the potential association between three polymorphisms in the CCN2 gene and the presence of a thoracic aortic aneurysm (TAA). Patients with and without TAA retrospectively selected were genotyped for rs6918698, rs9402373 and rs12526196 polymorphisms related to the CCN2 gene. Multivariable logistic regression models were performed. In our population of 366 patients (69 with TAA), no associations were found between rs6918698 and rs9402373 and TAA. However, the presence of one C allele from rs12526196 was associated with TAA comparing with the TT genotype, independently of risk factors such as sex, age, hypertension, type of valvulopathy and the presence of a bicuspid aortic valve (OR = 3.17; 95% CI = 1.30-7.88; p = 0.011). In conclusion, we demonstrated an association between the C allele of rs12526196 in the CCN2 gene and the presence of TAA. This study extrapolates to humans the relevance of CCN2 in aortic aneurysm observed in mice and postulates, for the first time, a potential protective role to CCN2 in aortic aneurysm pathology. Our results encourage future research to explore new variants in the CCN2 gene that could be predisposed to TAA development.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain
- Research Support Unit, Hospital General Mancha Centro, 13600 Alcázar de San Juan, Spain
| | - Isabel Rodríguez
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Álvaro Del Río-García
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Yamina Mohamedi
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - María Martín
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Cardiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Valentina Chiminazzo
- Biostatistics and Epidemiology Platform, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Beatriz Suárez-Álvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011 Oviedo, Spain
| | - Carlos López-Larrea
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011 Oviedo, Spain
- Servicio de Inmunología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain
- Correspondence: (M.R.-O.); (R.R.R.-D.)
| | - Raúl R. Rodrigues-Díez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011 Oviedo, Spain
- Correspondence: (M.R.-O.); (R.R.R.-D.)
| |
Collapse
|
21
|
Perbal B. Inception and establishment of the International CCN Society (ICCNS) and of the Journal of Cell Communication and Signaling (JCCS): A response to A. Leask's Editorial entitled "Modeling the microenvironment special issue". J Cell Commun Signal 2022; 16:627-629. [PMID: 36098895 PMCID: PMC9733759 DOI: 10.1007/s12079-022-00694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A little over a year ago, on January 25, 2021, the new Editor-in-Chief (EiC) of JCCS stated in his Editorial: "ICCNS and JCCS were the brainchildren of Bernard Perbal, and without his energy and drive, neither would exist, to the detriment of us who are driven to solve difficult problems in science, and not picking low-hanging fruit. All one has to do is examine all the editorials written in JCCS (and CCS!) to see evidence of this. It will be tough to fill those shoes."I disagree with the assertion in the Editorial published on March 29, 2022 that G. Martin contributed "to the initial growth of the International CCN Society, and, ultimately, to the establishment of this journal." My opinion is based on the evidence that the International CCN Society (ICCNS) and its official organ journal, the Journal of Cell Communication and Signaling (JCCS), were created by myself. Over a span of 21 years until the present, and in spite of his contribution to the early history of CTGF, we never heard from G. Martin being involved or interested in any aspect of the ICCNS and its biannual meetings, nor in any aspect in the growth of JCCS.In order to further clarify the confusion stemming from the Editorial in question and to give credit where it is due, I provide below detailed evidence that undoubtedly ascribes the true inception of both ICCNS and JCCS, and merit to the efforts of all those who trusted and supported us during the initial difficult creative moments.I am of the opinion that the Editorial, and the implications that it carries do not justice to the efforts of those who were really involved in the creation of both the ICCNS and JCCS.In the name of respectful scientific integrity, I will provide the evidence that correctly attributes the inception of ICCNS and JCCS.
Collapse
|
22
|
Perbal B. Another Step Forward to the understanding of Biological Signaling Networks. J Cell Commun Signal 2022; 16:311-312. [PMID: 35921026 PMCID: PMC9362433 DOI: 10.1007/s12079-022-00689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this editorial I briefly review the new JCCS scientific directions that have emerged from the complicated situations created by the pandemics of COVID- 19, and by the internal audit of both Journal of Cell Communication and Signaling and International CCN Society, that were initiated since my proposal at the 2019 International Workshop on the CCN family of genes. I also welcome the distinguished members of our renewed JCCS Editorial and congratulate all those who have in many different ways participated to the consolidation of the 2021 JCCS Impact Factor attaining 5.908.
Collapse
|
23
|
Fibroblast Growth Factors and Cellular Communication Network Factors: Intimate Interplay by the Founding Members in Cartilage. Int J Mol Sci 2022; 23:ijms23158592. [PMID: 35955724 PMCID: PMC9369280 DOI: 10.3390/ijms23158592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) constitute a large family of signaling molecules that act in an autocrine/paracrine, endocrine, or intracrine manner, whereas the cellular communication network factors (CCN) family is composed of six members that manipulate extracellular signaling networks. FGFs and CCNs are structurally and functionally distinct, except for the common characteristics as matricellular proteins. Both play significant roles in the development of a variety of tissues and organs, including the skeletal system. In vertebrates, most of the skeletal parts are formed and grow through a process designated endochondral ossification, in which chondrocytes play the central role. The growth plate cartilage is the place where endochondral ossification occurs, and articular cartilage is left to support the locomotive function of joints. Several FGFs, including FGF-2, one of the founding members of this family, and all of the CCNs represented by CCN2, which is required for proper skeletal development, can be found therein. Research over a decade has revealed direct binding of CCN2 to FGFs and FGF receptors (FGFRs), which occasionally affect the biological outcome via FGF signaling. Moreover, a recent study uncovered an integrated regulation of FGF and CCN genes by FGF signaling. In this review, after a brief introduction of these two families, molecular and genetic interactions between CCN and FGF family members in cartilage, and their biological effects, are summarized. The molecular interplay represents the mutual involvement of the other in their molecular functions, leading to collaboration between CCN2 and FGFs during skeletal development.
Collapse
|
24
|
Goulet MR, Hutchings D, Donahue J, Elder D, Tsang PCW. Regulation of cellular communication network factor 1 by Ras homolog family member A in bovine steroidogenic luteal cells. J Anim Sci 2022; 100:6620789. [PMID: 35772754 DOI: 10.1093/jas/skac124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Development of the corpus luteum (CL) requires the growth of a new capillary network from preexisting vasculature, a process known as angiogenesis. Successful building of this capillary network occurs through a sequence of cellular events-differentiation, proliferation, migration, and adhesion-which are regulated by a suite of angiogenic proteins that includes cellular communication network factor 1 (CCN1). We previously reported that the expression of CCN1 was highest in luteal tissue obtained from the early-cycle, 4-d-old bovine CL (i.e., corpus hemorrhagicum) compared to the mid- and late-cycle CL. In the present study, we treated steroidogenic bovine luteal cells from early-cycle CL with luteinizing hormone (LH), but it had no effect on CCN1 expression. Direct stimulation of the canonical LH pathway with forskolin and dibutyryl-cyclic adenosine monophosphate (cAMP), however, inhibited CCN1 mRNA expression. In endothelial cells, stimulation of Ras homolog family member A (RhoA) induces CCN1 expression, whereas RhoA inactivation inhibits it. Yet, it is unknown if regulation of CCN1 in steroidogenic luteal cells works likewise. We hypothesized that a similar mechanism of CCN1 regulation exists in bovine luteal cells and that thrombin, a known RhoA activator, may be a physiologic trigger for this mechanism in the early-cycle CL. To test this hypothesis, ovaries were collected from lactating dairy cows on days 3 or 4 of the estrous cycle, and corpora lutea were dissected and dissociated. Steroidogenic luteal cells were suspended in defined Ham's F12 medium, supplemented with insulin/transferrin/selenium and gentamicin, and seeded into 6-well plates. After 24 h, spent medium was replaced with fresh Ham's F12, and the cells were cultured for 24 to 48 h. Cells were treated for 2 h with defined medium, 10% fetal bovine serum (FBS), thrombin (1, 5, 10 U/mL), or Rho Activator II (0.25, 1, 2 μg/mL). Cells were then lysed for RNA extraction, followed by cDNA generation, and quantitative polymerase chain reaction (qPCR). Thrombin (1, 5, 10 U/mL; n = 3) and Rho Activator II (0.25, 1, 2 μg/mL; n = 6) increased (P < 0.05) CCN1 mRNA expression. In summary, CCN1 in bovine steroidogenic luteal cells was induced by thrombin and appeared to be regulated in a Rho-dependent manner. Future work will elucidate the signaling partners downstream of Rho which leads to CCN1 gene expression.
Collapse
Affiliation(s)
- Michael R Goulet
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Donnelly Hutchings
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Jacob Donahue
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Dean Elder
- Animal Resource Office, University of New Hampshire, Durham, NH 03824, USA
| | - Paul C W Tsang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
25
|
Kubota S, Kawata K, Hattori T, Nishida T. Molecular and Genetic Interactions between CCN2 and CCN3 behind Their Yin-Yang Collaboration. Int J Mol Sci 2022; 23:ijms23115887. [PMID: 35682564 PMCID: PMC9180607 DOI: 10.3390/ijms23115887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular communication network factor (CCN) 2 and 3 are the members of the CCN family that conduct the harmonized development of a variety of tissues and organs under interaction with multiple biomolecules in the microenvironment. Despite their striking structural similarities, these two members show contrastive molecular functions as well as temporospatial emergence in living tissues. Typically, CCN2 promotes cell growth, whereas CCN3 restrains it. Where CCN2 is produced, CCN3 disappears. Nevertheless, these two proteins collaborate together to execute their mission in a yin–yang fashion. The apparent functional counteractions of CCN2 and CCN3 can be ascribed to their direct molecular interaction and interference over the cofactors that are shared by the two. Recent studies have revealed the mutual negative regulation systems between CCN2 and CCN3. Moreover, the simultaneous and bidirectional regulatory system of CCN2 and CCN3 is also being clarified. It is of particular note that these regulations were found to be closely associated with glycolysis, a fundamental procedure of energy metabolism. Here, the molecular interplay and metabolic gene regulation that enable the yin–yang collaboration of CCN2 and CCN3 typically found in cartilage development/regeneration and fibrosis are described.
Collapse
|
26
|
Karaskova E, Kubickova V, Velganova-Veghova M, Geryk M, Foltenova H, Karasek D. Circulating Levels of WISP-1 (Wnt1-Inducible Signaling Pathway Protein 1) and Other Selected Adipokines in Children With Inflammatory Bowel Disease. Physiol Res 2022; 71:275-284. [DOI: 10.33549/physiolres.934854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Wnt1 inducible protein-1 signaling pathway (WISP-1) is a relatively new adipokine involved in many cellular processes, including epithelial mucosa healing. The aim of the study was to compare circulating levels of WISP-1 and other selected adipokines [adiponectin, resistin and retinol-binding protein 4 (RBP-4)] in children with inflammatory bowel disease (IBD) with healthy controls and to investigate possible differences between Crohn's disease patients. (CD) or ulcerative colitis (UC). The study was performed as a case-control study. In addition to adipokines, anthropometric, lipid parameters, markers of inflammation or disease activity were evaluated in all participants. Compared to healthy controls (n=20), significantly lower levels of adiponectin and higher levels of resistin and WISP-1 were found in patients with IBD (n=58). Elevation of WISP-1 was detected only in the CD group (n=31). There were no differences in RBP-4 levels between the groups. Adiponectin, WISP-1 and RBP-4 were independently associated with body mass index only, resistin levels were associated with C-reactive protein levels and leukocyte counts. Adverse adipokines production reflects presence of dysfunctional fat tissue in IBD patients. Higher levels of WISP-1 in CD compared to patients with UC may indicate a specific role for mesenteric adipose tissue in WISP-1 production.
Collapse
|
27
|
Rodrigues-Díez Raul R, Tejera-Muñoz A, Esteban V, Steffensen Lasse B, Rodrigues-Díez R, Orejudo M, Rayego-Mateos S, Falke Lucas L, Cannata-Ortiz P, Ortiz A, Egido J, Mallat Z, Briones Ana M, Bajo Maria A, Goldschmeding R, Ruiz-Ortega M. CCN2 (Cellular Communication Network Factor 2) Deletion Alters Vascular Integrity and Function Predisposing to Aneurysm Formation. Hypertension 2021; 79:e42-e55. [DOI: 10.1161/hypertensionaha.121.18201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background:
CCN2 (cellular communication network factor 2) is a matricellular protein involved in cell communication and microenvironmental signaling responses. CCN2 is known to be overexpressed in several cardiovascular diseases, but its role is not completely understood.
Methods:
Here, CCN2 involvement in aortic wall homeostasis and response to vascular injury was investigated in inducible
Ccn2
-deficient mice, with induction of vascular damage by infusion of Ang II (angiotensin II; 15 days), which is known to upregulate CCN2 expression in the aorta.
Results:
Ang II infusion in CCN2-silenced mice lead to 60% mortality within 10 days due to rapid development and rupture of aortic aneurysms, as evidenced by magnetic resonance imaging, echography, and histological examination.
Ccn2
deletion decreased systolic blood pressure and caused aortic structural and functional changes, including elastin layer disruption, smooth muscle cell alterations, augmented distensibility, and increased metalloproteinase activity, which were aggravated by Ang II administration. Gene ontology analysis of RNA sequencing data identified aldosterone biosynthesis as one of the most enriched terms in CCN2-deficient aortas. Consistently, treatment with the mineralocorticoid receptor antagonist spironolactone before and during Ang II infusion reduced aneurysm formation and mortality, underscoring the importance of the aldosterone pathway in Ang II–induced aorta pathology.
Conclusions:
CCN2 is critically involved in the functional and structural homeostasis of the aorta and in maintenance of its integrity under Ang II–induced stress, at least, in part, by disruption of the aldosterone pathway. Thus, this study opens new avenues to future studies in disorders associated to vascular pathologies.
Collapse
Affiliation(s)
- R. Rodrigues-Díez Raul
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (R.R.-D.R., A.T.-M., M.O., S.R.-M., M.R.-O.)
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
- Department of Pharmacology, UAM, Instituto de Investigación-Hospital Universitario La Paz, IdiPaz, Ciber Cardiovascular, Madrid, Spain (R.R.-D., M.B.A.)
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (R.R.-D.R., A.T.-M., M.O., S.R.-M., M.R.-O.)
| | - Vanesa Esteban
- Department of Allergy and Immunology, FIIS-Fundación Jiménez Díaz, UAM, Asma, Reacciones Adversas y Alérgicas Network. Madrid, Spain (V.E.)
| | - B. Steffensen Lasse
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense (B.S.L.)
| | | | - Macarena Orejudo
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (R.R.-D.R., A.T.-M., M.O., S.R.-M., M.R.-O.)
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (R.R.-D.R., A.T.-M., M.O., S.R.-M., M.R.-O.)
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
| | - L. Falke Lucas
- Department of Pathology, University Medical Center Utrecht, the Netherlands (L.F.L.)
| | - Pablo Cannata-Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (P.C.-O., A.O., J.E., R.G.)
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (P.C.-O., A.O., J.E., R.G.)
| | - Jesus Egido
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (P.C.-O., A.O., J.E., R.G.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain (J.E.)
| | - Ziad Mallat
- Department of Medicine, University of Cambridge, United Kingdom (Z.M.)
- Institut National de la Sante et de la Recherche Medicale, France, Cambridge, United Kingdom (Z.M.)
| | - M. Briones Ana
- Department of Pharmacology, UAM, Instituto de Investigación-Hospital Universitario La Paz, IdiPaz, Ciber Cardiovascular, Madrid, Spain (R.R.-D., M.B.A.)
| | - Auxiliadora Bajo Maria
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
- Department of Nephrology, Instituto de Investigación-Hospital Universitario La Paz, Madrid, Spain (A.B.M.)
| | - Roel Goldschmeding
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (P.C.-O., A.O., J.E., R.G.)
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain (R.R.-D.R., A.T.-M., M.O., S.R.-M., M.R.-O.)
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain (R.R.-D.R., M.O., S.R.-M., P.C.-O., A.O., A.B.M., M.R.-O.)
| |
Collapse
|
28
|
Tejera-Muñoz A, Marquez-Exposito L, Tejedor-Santamaría L, Rayego-Mateos S, Orejudo M, Suarez-Álvarez B, López-Larrea C, Ruíz-Ortega M, Rodrigues-Díez RR. CCN2 Increases TGF-β Receptor Type II Expression in Vascular Smooth Muscle Cells: Essential Role of CCN2 in the TGF-β Pathway Regulation. Int J Mol Sci 2021; 23:375. [PMID: 35008801 PMCID: PMC8745763 DOI: 10.3390/ijms23010375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular communication network factor 2 (CCN2/CTGF) has been traditionally described as a mediator of the fibrotic responses induced by other factors including the transforming growth factor β (TGF-β). However, several studies have defined a direct role of CCN2 acting as a growth factor inducing oxidative and proinflammatory responses. The presence of CCN2 and TGF-β together in the cellular context has been described as a requisite to induce a persistent fibrotic response, but the precise mechanisms implicated in this relation are not described yet. Considering the main role of TGF-β receptors (TβR) in the TGF-β pathway activation, our aim was to investigate the effects of CCN2 in the regulation of TβRI and TβRII levels in vascular smooth muscle cells (VSMCs). While no differences were observed in TβRI levels, an increase in TβRII expression at both gene and protein level were found 48 h after stimulation with the C-terminal fragment of CCN2 (CCN2(IV)). Cell pretreatment with a TβRI inhibitor did not modify TβRII increment induced by CCN2(VI), demonstrating a TGF-β-independent response. Secondly, CCN2(IV) rapidly activated the SMAD pathway in VSMCs, this being crucial in the upregulation of TβRII since the preincubation with an SMAD3 inhibitor prevented it. Similarly, pretreatment with the epidermal growth factor receptor (EGFR) inhibitor erlotinib abolished TβRII upregulation, indicating the participation of this receptor in the observed responses. Our findings suggest a direct role of CCN2 maintaining the TGF-β pathway activation by increasing TβRII expression in an EGFR-SMAD dependent manner activation.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Laura Marquez-Exposito
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Lucía Tejedor-Santamaría
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Macarena Orejudo
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
| | - Beatriz Suarez-Álvarez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos López-Larrea
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, 33011 Oviedo, Spain
| | - Marta Ruíz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Raúl R. Rodrigues-Díez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
29
|
Yeger H, Perbal B. The CCN axis in cancer development and progression. J Cell Commun Signal 2021; 15:491-517. [PMID: 33877533 PMCID: PMC8642525 DOI: 10.1007/s12079-021-00618-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Since the authors first reviewed this subject in 2016 significant progress has been documented in the CCN field with advances made in the understanding of how members of the CCN family of proteins, CCN1-6, contribute to the pathogenesis and progression, positive and negative, of a larger variety of cancers. As termed matricellular proteins, and more recently the connective communication network, it has become clearer that members of the CCN family interact complexly with other proteins in the extracellular microenvironment, membrane signaling proteins, and can also operate intracellularly at the transcriptional level. In this review we expand on this earlier information providing new detailed information and insights that appropriate a much greater involvement and importance of their role in multiple aspects of cancer. Despite all the new information many more questions have been raised and intriguing results generated that warrant greater investigation. In order to permit the reader to smoothly integrate the new information we discuss all relevant CCN members in the context of cancer subtypes. We have harmonized the nomenclature with CCN numbering for easier comparisons. Finally, we summarize what new has been learned and provide a perspective on how our knowledge about CCN1-6 is being used to drive new initiatives on cancer therapeutics.
Collapse
Affiliation(s)
- Herman Yeger
- Program in Developmental and Stem Cell Biology Research Institute, SickKids, Toronto, Canada
| | | |
Collapse
|
30
|
Kubota S, Kawaki H, Perbal B, Kawata K, Hattori T, Nishida T. Cellular communication network factor 3 in cartilage development and maintenance. J Cell Commun Signal 2021; 15:533-543. [PMID: 34125392 PMCID: PMC8642582 DOI: 10.1007/s12079-021-00629-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
31
|
Perbal B. The driving forces behind the impressive progression of the journal of cell communication and signaling (JCCS). J Cell Commun Signal 2021; 15:475-481. [PMID: 34495436 PMCID: PMC8642511 DOI: 10.1007/s12079-021-00641-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 11/25/2022] Open
Abstract
The recent increase of the Journal of Cell Signaling and Communication' 2020 Impact Factor to 5.782, and its growing audience in the scientific community, provides an opportunity to step back and look at different aspects of this indicator's value. The take home message is that the top-ten major contributions to the 2020 ranking originated from North America and Europe followed by India with a high percentage of CCN-related publications and an excellent proportion of Editorial Board members' contributions to the Top10 best citations for the 2018-2019 period.
Collapse
|
32
|
Yanagihara T, Scallan C, Ask K, Kolb MR. Emerging therapeutic targets for idiopathic pulmonary fibrosis: preclinical progress and therapeutic implications. Expert Opin Ther Targets 2021; 25:939-948. [PMID: 34784834 DOI: 10.1080/14728222.2021.2006186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with high associated morbidity and mortality. The therapeutic landscape has significantly changed in the last 20 years with two drugs currently approved that have demonstrated the ability to slow disease progression. Despite these developments, survival in IPF is limited, so there is a major interest in therapeutic targets which could serve to open up new therapeutic avenues. AREAS COVERED We review the most recent information regarding drug targets and therapies currently being investigated in preclinical and early-stage clinical trials. EXPERT OPINION The complex pathogenesis of IPF and variability in disease course and response to therapy highlights the importance of a precision approach to therapy. Novel technologies including transcriptomics and the use of serum biomarkers, will become essential tools to guide future drug development and therapeutic decision making particularly as it pertains to combination therapy.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Respiratory Medicine, Hamanomachi Hospital, Fukuoka, Japan
| | - Ciaran Scallan
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Rj Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
33
|
Klingenberg R, Aghlmandi S, Räber L, Akhmedov A, Gencer B, Carballo D, Nanchen D, Bucher HC, Rodondi N, Mach F, Windecker S, Landmesser U, von Eckardstein A, Hamm CW, Lüscher TF, Matter CM. Cysteine-Rich Angiogenic Inducer 61 Improves Prognostic Accuracy of GRACE (Global Registry of Acute Coronary Events) 2.0 Risk Score in Patients With Acute Coronary Syndromes. J Am Heart Assoc 2021; 10:e020488. [PMID: 34622666 PMCID: PMC8751861 DOI: 10.1161/jaha.120.020488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background It remains unclear whether the novel biomarker cysteine‐rich angiogenic inducer 61 (CCN1) adds incremental prognostic value to the GRACE 2.0 (Global Registry of Acute Coronary Events) risk score and biomarkers high‐sensitivity Troponin T, hsCRP (high‐sensitivity C‐reactive protein), and NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide) in patients with acute coronary syndromes. Methods and Results Patients referred for coronary angiography with a primary diagnosis of acute coronary syndromes were enrolled in the Special Program University Medicine – Acute Coronary Syndromes and Inflammation cohort. The primary/secondary end points were 30‐day/1‐year all‐cause mortality and the composite of all‐cause mortality or myocardial infarction as used in the GRACE risk score. Associations between biomarkers and outcome were assessed using log‐transformed biomarker values and the GRACE risk score (versions 1.0 and 2.0). The incremental value of CCN1 beyond a reference model was assessed using Harrell’s C‐statistics calculated from a Cox proportional‐hazard model. The P value of the C‐statistics was derived from a likelihood ratio test. Among 2168 patients recruited, 1732 could be analyzed. CCN1 was the strongest single predictor of all‐cause mortality at 30 days (hazard ratio [HR], 1.77 [1.31, 2.40]) and 1 year (HR, 1.81 [1.47, 2.22]). Adding CCN1 alone to the GRACE 2.0 risk score improved C‐statistics for prognostic accuracy of all‐cause mortality at 30 days (0.87–0.88) and 1 year (0.81–0.82) and when combined with high‐sensitivity Troponin T, hsCRP, NT‐proBNP for 30 days (0.87–0.91), and for 1‐year follow‐up (0.81–0.84). CCN1 also increased the prognostic value for the composite of all‐cause mortality or myocardial infarction. Conclusions CCN1 predicts adverse outcomes in patients with acute coronary syndromes adding incremental information to the GRACE risk score, suggesting distinct underlying molecular mechanisms. Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT01000701.
Collapse
Affiliation(s)
- Roland Klingenberg
- Department of Cardiology University Heart CenterUniversity Hospital Zurich Zurich Switzerland.,Department of Cardiology Kerckhoff Heart and Thorax Center Kerckhoff-Klinik Campus of the Justus Liebig University of Giessen Bad Nauheim Germany.,DZHK (German Center for Cardiovascular Research) partner site Rhine-Main Bad Nauheim Germany
| | - Soheila Aghlmandi
- Basel Institute for Clinical Epidemiology and BiostatisticsUniversity Hospital BaselUniversity of Basel Basel Switzerland
| | - Lorenz Räber
- Department of Cardiology Cardiovascular Center University Hospital Bern Bern Switzerland
| | | | - Baris Gencer
- Department of Cardiology Cardiovascular Center University Hospital Geneva Geneva Switzerland
| | - David Carballo
- Department of Cardiology Cardiovascular Center University Hospital Geneva Geneva Switzerland
| | - David Nanchen
- Department of Ambulatory Care and Community Medicine University of Lausanne Lausanne Switzerland
| | - Heiner C Bucher
- Basel Institute for Clinical Epidemiology and BiostatisticsUniversity Hospital BaselUniversity of Basel Basel Switzerland
| | - Nicolas Rodondi
- Institute of Primary Health Care (BIHAM) University of Bern Bern Switzerland.,Department of General Internal Medicine University Hospital Bern Bern Switzerland
| | - François Mach
- Department of Cardiology Cardiovascular Center University Hospital Geneva Geneva Switzerland
| | - Stephan Windecker
- Department of Cardiology Cardiovascular Center University Hospital Bern Bern Switzerland
| | - Ulf Landmesser
- Department of Cardiology University Heart CenterUniversity Hospital Zurich Zurich Switzerland.,Department of Cardiology Charité Campus Benjamin-Franklin Berlin Germany
| | | | - Christian W Hamm
- Department of Cardiology Kerckhoff Heart and Thorax Center Kerckhoff-Klinik Campus of the Justus Liebig University of Giessen Bad Nauheim Germany.,DZHK (German Center for Cardiovascular Research) partner site Rhine-Main Bad Nauheim Germany
| | - Thomas F Lüscher
- Center for Molecular Cardiology University of Zurich Zurich Switzerland.,Heart Division Imperial College National Heart and Lung Institute and Royal Brompton and Harefield Hospitals London United Kingdom
| | - Christian M Matter
- Department of Cardiology University Heart CenterUniversity Hospital Zurich Zurich Switzerland.,Center for Molecular Cardiology University of Zurich Zurich Switzerland
| |
Collapse
|
34
|
Mizukawa T, Nishida T, Akashi S, Kawata K, Kikuchi S, Kawaki H, Takigawa M, Kamioka H, Kubota S. RFX1-mediated CCN3 induction that may support chondrocyte survival under starved conditions. J Cell Physiol 2021; 236:6884-6896. [PMID: 33655492 DOI: 10.1002/jcp.30348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Cellular communication network factor (CCN) family members are multifunctional matricellular proteins that manipulate and integrate extracellular signals. In our previous studies investigating the role of CCN family members in cellular metabolism, we found three members that might be under the regulation of energy metabolism. In this study, we confirmed that CCN2 and CCN3 are the only members that are tightly regulated by glycolysis in human chondrocytic cells. Interestingly, CCN3 was induced under a variety of impaired glycolytic conditions. This CCN3 induction was also observed in two breast cancer cell lines with a distinct phenotype, suggesting a basic role of CCN3 in cellular metabolism. Reporter gene assays indicated a transcriptional regulation mediated by an enhancer in the proximal promoter region. As a result of analyses in silico, we specified regulatory factor binding to the X-box 1 (RFX1) as a candidate that mediated the transcriptional activation by impaired glycolysis. Indeed, the inhibition of glycolysis induced the expression of RFX1, and RFX1 silencing nullified the CCN3 induction by impaired glycolysis. Subsequent experiments with an anti-CCN3 antibody indicated that CCN3 supported the survival of chondrocytes under impaired glycolysis. Consistent with these findings in vitro, abundant CCN3 production by chondrocytes in the deep zones of developing epiphysial cartilage, which are located far away from the synovial fluid, was confirmed in vivo. Our present study uncovered that RFX1 is the mediator that enables CCN3 induction upon cellular starvation, which may eventually assist chondrocytes in retaining their viability, even when there is an energy supply shortage.
Collapse
Affiliation(s)
- Tomomi Mizukawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Sho Akashi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sumire Kikuchi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
35
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
36
|
Sawant M, Hinz B, Schönborn K, Zeinert I, Eckes B, Krieg T, Schuster R. A story of fibers and stress: Matrix-embedded signals for fibroblast activation in the skin. Wound Repair Regen 2021; 29:515-530. [PMID: 34081361 DOI: 10.1111/wrr.12950] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Our skin is continuously exposed to mechanical challenge, including shear, stretch, and compression. The extracellular matrix of the dermis is perfectly suited to resist these challenges and maintain integrity of normal skin even upon large strains. Fibroblasts are the key cells that interpret mechanical and chemical cues in their environment to turnover matrix and maintain homeostasis in the skin of healthy adults. Upon tissue injury, fibroblasts and an exclusive selection of other cells become activated into myofibroblasts with the task to restore skin integrity by forming structurally imperfect but mechanically stable scar tissue. Failure of myofibroblasts to terminate their actions after successful repair or upon chronic inflammation results in dysregulated myofibroblast activities which can lead to hypertrophic scarring and/or skin fibrosis. After providing an overview on the major fibrillar matrix components in normal skin, we will interrogate the various origins of fibroblasts and myofibroblasts in the skin. We then examine the role of the matrix as signaling hub and how fibroblasts respond to mechanical matrix cues to restore order in the confusing environment of a healing wound.
Collapse
Affiliation(s)
- Mugdha Sawant
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Katrin Schönborn
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Isabel Zeinert
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Canada.,PhenomicAI, MaRS Centre, 661 University Avenue, Toronto, Canada
| |
Collapse
|
37
|
Rebolledo DL, Acuña MJ, Brandan E. Role of Matricellular CCN Proteins in Skeletal Muscle: Focus on CCN2/CTGF and Its Regulation by Vasoactive Peptides. Int J Mol Sci 2021; 22:5234. [PMID: 34063397 PMCID: PMC8156781 DOI: 10.3390/ijms22105234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 02/08/2023] Open
Abstract
The Cellular Communication Network (CCN) family of matricellular proteins comprises six proteins that share conserved structural features and play numerous biological roles. These proteins can interact with several receptors or soluble proteins, regulating cell signaling pathways in various tissues under physiological and pathological conditions. In the skeletal muscle of mammals, most of the six CCN family members are expressed during embryonic development or in adulthood. Their roles during the adult stage are related to the regulation of muscle mass and regeneration, maintaining vascularization, and the modulation of skeletal muscle fibrosis. This work reviews the CCNs proteins' role in skeletal muscle physiology and disease, focusing on skeletal muscle fibrosis and its regulation by Connective Tissue Growth factor (CCN2/CTGF). Furthermore, we review evidence on the modulation of fibrosis and CCN2/CTGF by the renin-angiotensin system and the kallikrein-kinin system of vasoactive peptides.
Collapse
Affiliation(s)
- Daniela L. Rebolledo
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - María José Acuña
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, Santiago 8370854, Chile
| | - Enrique Brandan
- Centro de Envejecimiento y Regeneración, CARE Chile UC, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Fundación Ciencia & Vida, Santiago 7810000, Chile
| |
Collapse
|
38
|
Yamamoto Y, Okano T, Yamada H, Akashi K, Sendo S, Ueda Y, Morinobu A, Saegusa J. Soluble guanylate cyclase stimulator reduced the gastrointestinal fibrosis in bleomycin-induced mouse model of systemic sclerosis. Arthritis Res Ther 2021; 23:133. [PMID: 33941248 PMCID: PMC8091711 DOI: 10.1186/s13075-021-02513-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a chronic autoimmune-mediated connective tissue disorder. Although the etiology of the disease remains undetermined, SSc is characterized by fibrosis and proliferative vascular lesions of the skin and internal organs. SSc involves the gastrointestinal tract in more than 90 % of patients. Soluble guanylate cyclase (sGC) stimulator is used to treat pulmonary artery hypertension (PAH) and has been shown to inhibit experimental skin fibrosis. METHODS Female C57BL/6J mice were treated with BLM or normal saline by subcutaneous implantation of osmotic minipump. These mice were sacrificed on day 28 or day 42. Gastrointestinal pathologies were examined by Masson Trichrome staining. The expression of fibrosis-related genes in gastrointestinal tract was analyzed by real-time PCR, and the levels of collagen in the tissue were measured by Sircol collagen assay. To evaluate peristaltic movement, the small intestinal transport (ITR%) was calculated as [dyeing distance × (duodenum - appendix)] - 1 × 100 (%). We treated BLM-treated mice with sGC stimulator or DMSO orally and analyzed them on day 42. RESULTS Histological examination revealed that fibrosis from lamina propria to muscularis mucosa in the esophagus was significantly increased in BLM-treated mice, suggesting that BLM induces esophageal hyperproliferative and prefibrotic response in C57BL/6J mice. In addition, the gene expression levels of Col3a1, CCN2, MMP-2, MMP-9, TIMP-1, and TIMP-2 in the esophagus were significantly increased in BLM-treated mice. More severe hyperproliferative and prefibrotic response was observed in the mice sacrificed on day 42 than the mice sacrificed on day 28. The ITR% was found to be significantly lower in BLM-treated mice, suggesting that gastrointestinal peristaltic movement was reduced in BLM-treated mice. Furthermore, we demonstrated that sGC stimulator treatment significantly reduced hyperproliferative and prefibrotic response of esophagus and intestine in BLM-treated mice, by histological examination and Sircol collagen assay. CONCLUSIONS These findings suggest that BLM induces gastrointestinal hyperproliferative and prefibrotic response in C57BL/6J mice, and treatment with sGC stimulator improves the BLM-induced gastrointestinal lesion.
Collapse
Affiliation(s)
- Yuzuru Yamamoto
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaichi Okano
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Hirotaka Yamada
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kengo Akashi
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sho Sendo
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yo Ueda
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan.
| |
Collapse
|
39
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
40
|
Perbal B. 2021: a new turn for JCCS. J Cell Commun Signal 2021; 15:1-3. [PMID: 33538964 DOI: 10.1007/s12079-021-00604-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
|
41
|
Sharma N, Hans CP. Interleukin 12p40 Deficiency Promotes Abdominal Aortic Aneurysm by Activating CCN2/MMP2 Pathways. J Am Heart Assoc 2021; 10:e017633. [PMID: 33470127 PMCID: PMC7955443 DOI: 10.1161/jaha.120.017633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Background Development of abdominal aortic aneurysm (AAA) is associated with proinflammatory cytokines including interleukin-12 (IL12). Deficiency of interleukin 12p40 (IL12p40) increases localized fibrotic events by promoting TGFβ2 (transforming growth factor β)-dependent anti-inflammatory response. Here, we determined whether IL12p40 deficiency in apolipoprotein E-/- mice attenuates the development of AAA by antagonizing proinflammatory response. Methods and Results Double knockout (DKO) mice were generated by crossbreeding IL12p40-/- mice with apolipoprotein E-/- mice (n=12). Aneurysmal studies were performed using angiotensin II (1 µg/kg/min; subcutaneous). Surprisingly, DKO mice did not prevent the development of AAA with angiotensin II infusion. Immunohistological analysis, however, showed distinct pathological features between apolipoprotein E-/- and DKO mice. Polymerase chain reaction (7 day) and cytokine arrays (28 day) of the aortic tissues from DKO mice showed significantly increased expression of cytokines related to anti-inflammatory response (interleukin 5 and interleukin 13), synthetic vascular smooth muscle cell phenotype (Activin receptor-like kinase-1 (ALK-1), artemin, and betacellulin) and T helper 17-associated response (4-1BB, interleukin-17e (Il17e) and Cd40 ligand (Cd-40L)). Indeed, DKO mice exhibited increased expression of the fibro-proteolytic pathway in the medial layer of aortae induced by cellular communication network factor 2 (CCN2) and Cd3+IL17+ cells compared with apolipoprotein E-/- mice. Laser capture microdissection showed predominant expression of CCN2/TGFβ2 in the medial layer of human AAA. Finally, Ccn2 haploinsufficiency in the mice showed decreased AAA incidence in response to elastase infusion, associated with decreased matrix metalloproteinase-2 expression. Conclusions Our study reveals novel roles for IL12p40 deficiency in inducing fibro-proteolytic activities in the aneurysmal mouse model. Mechanistically, these effects of IL12p40 deficiency are mediated by CCN2/matrix metalloproteinase-2 crosstalk in the medial layer of aneurysmal aortae.
Collapse
MESH Headings
- Aged
- Animals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/physiopathology
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Blotting, Western
- Cells, Cultured
- Connective Tissue Growth Factor/biosynthesis
- Connective Tissue Growth Factor/genetics
- Disease Models, Animal
- Electrocardiography
- Female
- Gene Expression Regulation
- Humans
- Interleukin-12 Subunit p40/blood
- Interleukin-12 Subunit p40/deficiency
- Male
- Matrix Metalloproteinase 2/biosynthesis
- Matrix Metalloproteinase 2/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- RNA/genetics
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Ultrasonography
- Vascular Stiffness/physiology
Collapse
Affiliation(s)
- Neekun Sharma
- Department of Cardiovascular MedicineUniversity of MissouriColumbiaMO
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMO
| | - Chetan P. Hans
- Department of Cardiovascular MedicineUniversity of MissouriColumbiaMO
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMO
- Department of Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMO
| |
Collapse
|
42
|
Dillinger AE, Kuespert S, Froemel F, Tamm ER, Fuchshofer R. CCN2/CTGF promotor activity in the developing and adult mouse eye. Cell Tissue Res 2021; 384:625-641. [PMID: 33512643 PMCID: PMC8211604 DOI: 10.1007/s00441-020-03332-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022]
Abstract
CCN2/CTGF is a matricellular protein that is known to enhance transforming growth factor-β signaling and to induce a myofibroblast-like phenotype in a variety of cell types. Here, we investigated Ccn2/Ctgf promotor activity during development and in the adult mouse eye, using CTGFLacZ/+ mice in which the β-galactosidase reporter gene LacZ had been inserted into the open reading frame of Ccn2/Ctgf. Promotor activity was assessed by staining for β-galactosidase activity and by immunolabeling using antibodies against β-galactosidase. Co-immunostaining using antibodies against glutamine synthetase, glial fibrillary acidic protein, choline acetyltransferase, and CD31 was applied to identify specific cell types. Ccn2/Ctgf promotor activity was intense in neural crest-derived cells differentiating to corneal stroma and endothelium, and to the stroma of choroid, iris, ciliary body, and the trabecular meshwork during development. In the adult eye, a persistent and very strong promotor activity was present in the trabecular meshwork outflow pathways. In addition, endothelial cells of Schlemm’s canal, and of retinal and choroidal vessels, retinal astrocytes, Müller glia, and starburst amacrine cells were stained. Very strong promoter activity was seen in the astrocytes of the glial lamina at the optic nerve head. We conclude that CCN2/CTGF signaling is involved in the processes that govern neural crest morphogenesis during ocular development. In the adult eye, CCN2/CTGF likely plays an important role for the trabecular meshwork outflow pathways and the glial lamina of the optic nerve head.
Collapse
Affiliation(s)
- Andrea E Dillinger
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Sabrina Kuespert
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Franziska Froemel
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
43
|
Mechanical Ventilation with Moderate Tidal Volume Exacerbates Extrapulmonary Sepsis-Induced Lung Injury via IL33-WISP1 Signaling Pathway. Shock 2020; 56:461-472. [PMID: 33394970 DOI: 10.1097/shk.0000000000001714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT IL-33 and WNT1-inducible secreted protein (WISP1) play central roles in acute lung injury (ALI) induced by mechanical ventilation with moderate tidal volume (MTV) in the setting of sepsis. Here, we sought to determine the inter-relationship between IL-33 and WISP1 and the associated signaling pathways in this process.We used a two-hit model of cecal ligation puncture (CLP) followed by MTV ventilation (4 h 10 mL/kg) in wild-type, IL-33-/- or ST2-/- mice or wild-type mice treated with intratracheal antibodies to WISP1. Macrophages (Raw 264.7 and alveolar macrophages from wild-type or ST2-/- mice) were used to identify specific signaling components.CLP + MTV resulted in ALI that was partially sensitive to genetic ablation of IL-33 or ST2 or antibody neutralization of WISP1. Genetic ablation of IL-33 or ST2 significantly prevented ALI after CLP + MTV and reduced levels of WISP1 in the circulation and bronchoalveolar lung fluid. rIL-33 increased WISP1 in alveolar macrophages in an ST2, PI3K/AKT, and ERK dependent manner. This WISP1 upregulation and WNT β-catenin activation were sensitive to inhibition of the β-catenin/TCF/CBP/P300 nuclear pathway.We show that IL-33 drives WISP1 upregulation and ALI during MTV in CLP sepsis. The identification of this relationship and the associated signaling pathways reveals a number of possible therapeutic targets to prevent ALI in ventilated sepsis patients.
Collapse
|
44
|
Nishida T, Nagao Y, Hashitani S, Yamanaka N, Takigawa M, Kubota S. Suppression of adipocyte differentiation by low-intensity pulsed ultrasound via inhibition of insulin signaling and promotion of CCN family protein 2. J Cell Biochem 2020; 121:4724-4740. [PMID: 32065439 DOI: 10.1002/jcb.29680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Adipocyte differentiation is regulated by several transcription factors such as the CCAAT/enhancer-binding proteins (C/EBPs) and peroxisome proliferator-activated receptor-γ (PPARγ). Here, we demonstrate that low-intensity pulsed ultrasound (LIPUS) suppressed differentiation into mature adipocytes via multiple signaling pathways. When C3H10T1/2, a mesenchymal stem cell line, was treated with LIPUS (3.0 MHz, 60 mW/cm2 ) for 20 minutes once a day for 4 days during adipogenesis, and both the number of lipid droplets and the gene expression of PPARγ and C/EBPα were significantly decreased. Furthermore, LIPUS treatment decreased the phosphorylation of the insulin receptor and also that of Akt and ERK1/2, which are located downstream of this receptor. Next, we showed that LIPUS suppressed the gene expression of angiotensinogen (AGT), which is an adipokine produced by mature adipocytes, as well as that of angiotensin-converting enzyme 1 (ACE1) and angiotensin receptor type 1 (AT1 R) during adipogenesis of pre-adipogenic 3T3-L1 cells. Next, the translocation of Yes-associated protein (YAP) into the nucleus of 3T3-L1 cells was promoted by LIPUS, leading to upregulation of CCN family protein 2 (CCN2), a cellular communication network factor. Moreover, forced expression of CCN2 in 3T3-L1 cells decreased PPARγ gene expression, but it did not increase alkaline phosphatase and osterix gene expression. Finally, gene silencing of CCN2 in C3H10T1/2 cells diminished the effect of LIPUS on the gene expression of PPARγ and C/EBPα. These findings suggest that LIPUS suppressed adipogenesis through inhibition of insulin signaling and decreased PPARγ expression via increased CCN2 production, resulting in a possible decrease of mature adipocytes.
Collapse
Affiliation(s)
- Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yurika Nagao
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoko Hashitani
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
45
|
Naughton M, Moffat J, Eleftheriadis G, de la Vega Gallardo N, Young A, Falconer J, Hawkins K, Pearson B, Perbal B, Hogan A, Moynagh P, Loveless S, Robertson NP, Gran B, Kee R, Hughes S, McDonnell G, Howell O, Fitzgerald DC. CCN3 is dynamically regulated by treatment and disease state in multiple sclerosis. J Neuroinflammation 2020; 17:349. [PMID: 33222687 PMCID: PMC7681974 DOI: 10.1186/s12974-020-02025-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/04/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated disease that damages myelin in the central nervous system (CNS). We investigated the profile of CCN3, a known regulator of immune function and a potential mediator of myelin regeneration, in multiple sclerosis in the context of disease state and disease-modifying treatment. METHODS CCN3 expression was analysed in plasma, immune cells, CSF and brain tissue of MS patient groups and control subjects by ELISA, western blot, qPCR, histology and in situ hybridization. RESULTS Plasma CCN3 levels were comparable between collective MS cohorts and controls but were significantly higher in progressive versus relapsing-remitting MS and between patients on interferon-β versus natalizumab. Higher body mass index was associated with higher CCN3 levels in controls as reported previously, but this correlation was absent in MS patients. A significant positive correlation was found between CCN3 levels in matched plasma and CSF of MS patients which was absent in a comparator group of idiopathic intracranial hypertension patients. PBMCs and CD4+ T cells significantly upregulated CCN3 mRNA in MS patients versus controls. In the CNS, CCN3 was detected in neurons, astrocytes and blood vessels. Although overall levels of area immunoreactivity were comparable between non-affected, demyelinated and remyelinated tissue, the profile of expression varied dramatically. CONCLUSIONS This investigation provides the first comprehensive profile of CCN3 expression in MS and provides rationale to determine if CCN3 contributes to neuroimmunological functions in the CNS.
Collapse
Affiliation(s)
- Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Jill Moffat
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - George Eleftheriadis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Nira de la Vega Gallardo
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Andrew Young
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - John Falconer
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
| | - Kristen Hawkins
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Ben Pearson
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | | | - Andrew Hogan
- Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Paul Moynagh
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK
- Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | - Sam Loveless
- Department of Neurology, University Hospital of Wales and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Neil P Robertson
- Department of Neurology, University Hospital of Wales and Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Bruno Gran
- Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham School of Medicine, Nottingham, UK/Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rachael Kee
- Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Stella Hughes
- Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Gavin McDonnell
- Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | - Owain Howell
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK.
| |
Collapse
|
46
|
Dynamic CCN3 expression in the murine CNS does not confer essential roles in myelination or remyelination. Proc Natl Acad Sci U S A 2020; 117:18018-18028. [PMID: 32651278 PMCID: PMC7395501 DOI: 10.1073/pnas.1922089117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Remyelination is a natural regenerative process driven by oligodendrocytes that occurs following myelin damage. Understanding this process holds therapeutic value for demyelinating diseases such as multiple sclerosis, in which remyelination can fail. CCN3 is a matricellular protein previously reported to enhance oligodendrocyte progenitor differentiation and myelination in vitro and ex vivo. Here, we show that despite extensive and dynamic expression in the murine CNS in homeostasis and following toxin-induced myelin damage, CCN3 is not required for myelination or remyelination in vivo. Yet, the anatomically distinct expression pattern suggests unidentified roles of CCN3 in a range of neurological processes. This investigation provides a framework for future investigations of the expression and role of CCN proteins in the CNS. CCN3 is a matricellular protein that promotes oligodendrocyte progenitor cell differentiation and myelination in vitro and ex vivo. CCN3 is therefore a candidate of interest in central nervous system (CNS) myelination and remyelination, and we sought to investigate the expression and role of CCN3 during these processes. We found CCN3 to be expressed predominantly by neurons in distinct areas of the CNS, primarily the cerebral cortex, hippocampus, amygdala, suprachiasmatic nuclei, anterior olfactory nuclei, and spinal cord gray matter. CCN3 was transiently up-regulated following demyelination in the brain of cuprizone-fed mice and spinal cord lesions of mice injected with lysolecithin. However, CCN3−/− mice did not exhibit significantly different numbers of oligodendroglia or differentiated oligodendrocytes in the healthy or remyelinating CNS, compared to WT controls. These results suggest that despite robust and dynamic expression in the CNS, CCN3 is not required for efficient myelination or remyelination in the murine CNS in vivo.
Collapse
|
47
|
Leask A. Conjunction junction, what's the function? CCN proteins as targets in fibrosis and cancers. Am J Physiol Cell Physiol 2020; 318:C1046-C1054. [PMID: 32130070 PMCID: PMC7311738 DOI: 10.1152/ajpcell.00028.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Cellular communication network (CCN) proteins are matricellular proteins that coordinate signaling among extracellular matrix, secreted proteins, and cell surface receptors. Their specific in vivo function is context-dependent, but they play profound roles in pathological conditions, such as fibrosis and cancers. Anti-CCN therapies are in clinical consideration. Only recently, however, has the function of these complex molecules begun to emerge. This review summarizes and interprets our current knowledge regarding these fascinating molecules and provides experimental evidence for their utility as therapeutic targets.
Collapse
Affiliation(s)
- Andrew Leask
- School of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
48
|
Moon S, Lee S, Caesar JA, Pruchenko S, Leask A, Knowles JA, Sinon J, Chaqour B. A CTGF-YAP Regulatory Pathway Is Essential for Angiogenesis and Barriergenesis in the Retina. iScience 2020; 23:101184. [PMID: 32502964 PMCID: PMC7270711 DOI: 10.1016/j.isci.2020.101184] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF) or cellular communication network 2 (CCN2) is a matricellular protein essential for normal embryonic development and tissue repair. CTGF exhibits cell- and context-dependent activities, but CTGF function in vascular development and barrier function is unknown. We show that endothelial cells (ECs) are one of the major cellular sources of CTGF in the developing and adult retinal vasculature. Mice lacking CTGF expression either globally or specifically in ECs exhibit impaired vascular cell growth and morphogenesis and blood barrier breakdown. The global molecular signature of CTGF includes cytoskeletal and extracellular matrix protein, growth factor, and transcriptional co-regulator genes such as yes-associated protein (YAP). YAP, itself a transcriptional activator of CTGF, mediates several CTGF-controlled angiogenic and barriergenic transcriptional programs. Re-expression of YAP rescues, at least partially, angiogenesis and barriergenesis in CTGF mutant mouse retinas. Thus, the CTGF-YAP regulatory loop is integral to retinal vascular development and barrier function. CTGF has a strong and persistent expression in the retinal vasculature Mice lacking CTGF exhibit defects in angiogenesis and blood barrier integrity CTGF-targeted genes include matrix, growth, and transcription co-factors like YAP YAP re-expression partly rescues angiogenic and barriergenic defects of CTGF loss
Collapse
Affiliation(s)
- Sohyun Moon
- State University of New York, Downstate Health Science University, Department of Cell Biology, 450 Clarkson Avenue, MSC 5, Brooklyn, NY 11203, USA
| | - Sangmi Lee
- State University of New York, Downstate Health Science University, Department of Cell Biology, 450 Clarkson Avenue, MSC 5, Brooklyn, NY 11203, USA
| | - Joy Ann Caesar
- State University of New York, Downstate Health Science University, Department of Cell Biology, 450 Clarkson Avenue, MSC 5, Brooklyn, NY 11203, USA
| | - Sarah Pruchenko
- State University of New York, Downstate Health Science University, Department of Cell Biology, 450 Clarkson Avenue, MSC 5, Brooklyn, NY 11203, USA
| | - Andrew Leask
- University of Saskatchewan, College of Dentistry, E3338 HS - 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - James A Knowles
- State University of New York, Downstate Health Science University, Department of Cell Biology, 450 Clarkson Avenue, MSC 5, Brooklyn, NY 11203, USA
| | - Jose Sinon
- State University of New York, Downstate Health Science University, Department of Cell Biology, 450 Clarkson Avenue, MSC 5, Brooklyn, NY 11203, USA
| | - Brahim Chaqour
- State University of New York, Downstate Health Science University, Department of Cell Biology, 450 Clarkson Avenue, MSC 5, Brooklyn, NY 11203, USA; State University of New York, Downstate Health Science University, Department of Ophthalmology, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; SUNY Eye Institute, SUNY Downstate Health Science University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
49
|
Eyeing the Extracellular Matrix in Vascular Development and Microvascular Diseases and Bridging the Divide between Vascular Mechanics and Function. Int J Mol Sci 2020; 21:ijms21103487. [PMID: 32429045 PMCID: PMC7278940 DOI: 10.3390/ijms21103487] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
The extracellular matrix (ECM) is critical in all aspects of vascular development and health: supporting cell anchorage, providing structure, organization and mechanical stability, and serving as a sink for growth factors and sustained survival signals. Abnormal changes in ECM protein expression, organization, and/or properties, and the ensuing changes in vascular compliance affect vasodilator responses, microvascular pressure transmission, and collateral perfusion. The changes in microvascular compliance are independent factors initiating, driving, and/or exacerbating a plethora of microvascular diseases of the eye including diabetic retinopathy (DR) and vitreoretinopathy, retinopathy of prematurity (ROP), wet age-related macular degeneration (AMD), and neovascular glaucoma. Congruently, one of the major challenges with most vascular regenerative therapies utilizing localized growth factor, endothelial progenitor, or genetically engineered cell delivery, is the regeneration of blood vessels with physiological compliance properties. Interestingly, vascular cells sense physical forces, including the stiffness of their ECM, through mechanosensitive integrins, their associated proteins and the actomyosin cytoskeleton, which generates biochemical signals that culminate in a rapid expression of matricellular proteins such as cellular communication network 1 (CCN1) and CCN2 (aka connective tissue growth factor or CTGF). Loss or gain of function of these proteins alters genetic programs of cell growth, ECM biosynthesis, and intercellular signaling, that culminate in changes in cell behavior, polarization, and barrier function. In particular, the function of the matricellular protein CCN2/CTGF is critical during retinal vessel development and regeneration wherein new blood vessels form and invest a preformed avascular neural retina following putative gradients of matrix stiffness. These observations underscore the need for further in-depth characterization of the ECM-derived cues that dictate structural and functional properties of the microvasculature, along with the development of new therapeutic strategies addressing the ECM-dependent regulation of pathophysiological stiffening of blood vessels in ischemic retinopathies.
Collapse
|
50
|
Slow train coming: an anti-CCN2 strategy reverses a model of chronic overuse muscle fibrosis. J Cell Commun Signal 2020; 14:349-350. [PMID: 32410169 PMCID: PMC7511481 DOI: 10.1007/s12079-020-00568-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the first targets proposed as an anti-fibrotic therapy was CCN2. Proof of its involvement in fibrosis was initially difficult, due to the lack of appropriate reagents and general understanding of the molecular mechanisms responsible for persistent fibrosis. As these issues have been progressively resolved over the last twenty-five years, it has become clear that CCN2 is a bone fide target for anti-fibrotic intervention. An anti-CCN2 antibody (FG-3019) is in Phase III clinical trials for idiopathic pulmonary fibrosis and pancreatic cancer, and in Phase II for Duschenne’s muscular dystrophy. An exciting paper recently published by Mary Barbe and the Popoff group has shown that FG-3019 reduces established muscle fibrosis (Barbe et al., FASEB J 34:6554–6569, 2020). Intriguingly, FG-3019 blocked the decreased expression of the anti-fibrotic protein CCN3, caused by the injury model. These important data support the notion that targeting CCN2 in the fibrotic microenvironment may reverse established fibrosis, making it the first agent currently in development to do so.
Collapse
|