1
|
Zhao Y, Zhang Z, Hao X, Zhang Y, Si X, Yan C. Architecture and stability of tripartite ecological networks with two interaction types. Ecology 2025; 106:e70098. [PMID: 40342013 DOI: 10.1002/ecy.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/05/2025] [Accepted: 02/25/2025] [Indexed: 05/11/2025]
Abstract
Over the past few decades, studies on empirical ecological networks have primarily focused on single antagonistic or mutualistic interactions. However, many species engage in multiple interactions that support distinct ecosystem functions. The architecture of networks integrating these interactions, along with their cascading effects on community dynamics, remains underexplored in ecological research. In this study, we compiled two datasets of empirical plant-herbivore/host-parasitoid (PHP) and pollinator-plant-herbivore (PPH) networks, representing two common types of tripartite networks in terrestrial ecosystems: antagonism-antagonism and mutualism-antagonism. We identified the patterns of subnetwork structures and interconnection properties in these networks and examined their relationships with community stability. Our findings revealed distinct pathway effects of network architecture on persistence and local stability in both PHP and PPH networks, with subnetwork modularity and nestedness showing a few strong direct effects and mediating the indirect effects of subnetwork size and connectance. In PHP networks, subnetwork modularity enhanced persistence and local stability, whereas subnetwork nestedness directly undermined them. However, both subnetwork topologies consistently mediated the destabilizing effects of subnetwork size and connectance on the entire network. In PPH networks, persistence was primarily affected by the plant-herbivore subnetwork, while the size, connectance, and modularity of different subnetworks had opposing effects on local stability. Regarding interconnection properties, the correlation of interaction similarity destabilized PHP networks, whereas the correlation of interaction degree promoted local stability in PPH networks. Further analysis indicated that structure-persistence relationships vary significantly across guilds, and the network-level effects of network architecture can be reversed, negligible, or biased in specific guilds. These findings advance our understanding of how network architecture influences ecosystem stability and underscore the importance of considering multiple interaction types when predicting community dynamics.
Collapse
Affiliation(s)
- Yangyang Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhicheng Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiyang Hao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, China
| | - Yongjun Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, China
| | - Xingfeng Si
- Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Chuan Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems & College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Su M, Ma Q, Hui C. Adaptive rewiring shapes structure and stability in a three-guild herbivore-plant-pollinator network. Commun Biol 2024; 7:103. [PMID: 38228754 PMCID: PMC10791747 DOI: 10.1038/s42003-024-05784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Animal species, encompassing both pollinators and herbivores, exhibit a preference for plants based on optimal foraging theory. Understanding the intricacies of these adaptive plant-animal interactions in the context of community assembly poses a main challenge in ecology. This study delves into the impact of adaptive interaction rewiring between species belonging to different guilds on the structure and stability of a 3-guild ecological network, incorporating both mutualistic and antagonistic interactions. Our findings reveal that adaptive rewiring results in sub-networks becoming more nested and compartmentalized. Furthermore, the rewiring of interactions uncovers a positive correlation between a plant's generalism concerning both pollinators and herbivores. Additionally, there is a positive correlation between a plant's degree centrality and its energy budget. Although network stability does not exhibit a clear relationship with non-random structures, it is primarily influenced by the balance of multiple interaction strengths. In summary, our results underscore the significance of adaptive interaction rewiring in shaping the structure of 3-guild networks. They emphasize the importance of considering the balance of multiple interactions for the stability of adaptive networks, providing valuable insights into the complex dynamics of ecological communities.
Collapse
Affiliation(s)
- Min Su
- School of Mathematics, Hefei University of Technology, Hefei, 230009, China.
| | - Qi Ma
- School of Mathematics, Hefei University of Technology, Hefei, 230009, China
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, 7602, South Africa.
- Mathematical Biosciences Unit, African Institute for Mathematical Sciences, Cape Town, 7945, South Africa.
- International Initiative for Theoretical Ecology, London, N1 2EE, UK.
| |
Collapse
|
3
|
Camacho LA, de Andreazzi CS, Medeiros LP, Birskis‐Barros I, Emer C, Reigada C, Guimarães PR. Cheating interactions favor modularity in mutualistic networks. OIKOS 2022. [DOI: 10.1111/oik.09176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Lucas A. Camacho
- Programa de Pós‐graduação em Ecologia, Depto de Ecologia – Inst. de Biociências, USP São Paulo SP Brasil
| | - Cecilia Siliansky de Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Inst. Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos Rio de Janeiro RJ Brasil
| | | | | | - Carine Emer
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro. Rua Pacheco Leão, 915. Jardim Botânico Rio de Janeiro CEP 22460‐000 RJ Brasil
| | - Carolina Reigada
- Centro de Ciências Biológicas e da Saúde, Depto de Ecologia e Biologia Evolutiva, Univ. Federal de São Carlos, UFSCAR São Carlos SP Brasil
| | - Paulo R. Guimarães
- Depto de Ecologia – Inst. de Biociências, USP, Rua do Matão São Paulo SP Brasil
| |
Collapse
|
4
|
Yacine Y, Loeuille N. Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Yan C. Nestedness interacts with subnetwork structures and interconnection patterns to affect community dynamics in ecological multilayer networks. J Anim Ecol 2022; 91:738-751. [DOI: 10.1111/1365-2656.13665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Chuan Yan
- State Key Laboratory of Grassland Agro‐ecosystems Institute of Innovation Ecology & College of Life Sciences Lanzhou University Lanzhou 730000 China
- Yuzhong Mountain Ecosystems Observation and Research Station Lanzhou University Lanzhou 730000 China
| |
Collapse
|
6
|
Revilla TA, Marcou T, Křivan V. Plant competition under simultaneous adaptation by herbivores and pollinators. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Johnson CA. How mutualisms influence the coexistence of competing species. Ecology 2021; 102:e03346. [PMID: 33742453 DOI: 10.1002/ecy.3346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 11/09/2022]
Abstract
Mutualisms are ubiquitous in nature and are thought to play important roles in the maintenance of biodiversity. For biodiversity to be maintained, however, species must coexist in the face of competitive exclusion. Chesson's coexistence theory provides a mechanistic framework for evaluating coexistence, yet mutualisms are conspicuously absent from coexistence theory and there are no comparable frameworks for evaluating how mutualisms affect the coexistence of competiting species. To address this conceptual gap, I develop theory predicting how multitrophic mutualisms mediate the coexistence of species competing for mutualistic commodities and other limiting resources using the niche and fitness difference concepts of coexistence theory. I demonstrate that failing to account for mutualisms can lead to erroneous conclusions. For example, species might appear to coexist on resources alone, when the simultaneous incorporation of mutualisms actually drives competitive exclusion, or competitive exclusion might occur under resource competition, when in fact, the incorporation of mutualisms generates coexistence. Existing coexistence theory cannot therefore be applied to mutualisms without explicitly considering the underlying biology of the interactions. By discussing how the metrics derived from coexistence theory can be quantified empirically, I show how this theory can be operationalized to evaluate the coexistence consequences of mutualism in natural communities.
Collapse
Affiliation(s)
- Christopher A Johnson
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, New Jersey, 08544, USA.,Institute of Integrative Biology, Swiss Federal Institute of Technology (ETH) Zürich, Universitäetstrasse 16, Zürich, 8092, Switzerland
| |
Collapse
|
8
|
Zhang H, Chen D, Ying Z, Zhang F, Liao J. Robustness of the pollination-herbivory system with high-order interactions to habitat loss. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Křivan V, Revilla TA. Plant coexistence mediated by adaptive foraging preferences of exploiters or mutualists. J Theor Biol 2019; 480:112-128. [PMID: 31401058 DOI: 10.1016/j.jtbi.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 11/19/2022]
Abstract
Coexistence of plants depends on their competition for common resources and indirect interactions mediated by shared exploiters or mutualists. These interactions are driven either by changes in animal abundance (density-mediated interactions, e.g., apparent competition), or by changes in animal preferences for plants (behaviorally-mediated interactions). This article studies effects of behaviorally-mediated interactions on two plant population dynamics and animal preference dynamics when animal densities are fixed. Animals can be either adaptive exploiters or adaptive mutualists (e.g., herbivores or pollinators) that maximize their fitness. Analysis of the model shows that adaptive animal preferences for plants can lead to multiple outcomes of plant coexistence with different levels of specialization or generalism for the mediator animal species. In particular, exploiter generalism promotes plant coexistence even when inter-specific competition is too strong to make plant coexistence possible without exploiters, and mutualist specialization promotes plant coexistence at alternative stable states when plant inter-specific competition is weak. Introducing a new concept of generalized isoclines allows us to fully analyze the model with respect to the strength of competitive interactions between plants (weak or strong), and the type of interaction between plants and animals (exploitation or mutualism).
Collapse
Affiliation(s)
- Vlastimil Křivan
- Department of Mathematics, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, České Budějovice 370 05, Czech Republic.
| | - Tomás A Revilla
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branišovská 31, České Budějovice 370 05, Czech Republic; Department of Mathematics, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
10
|
Gillespie MAK, Jacometti M, Tylianakis JM, Wratten SD. Community dynamics can modify the direction of simulated warming effects on crop yield. PLoS One 2018; 13:e0207796. [PMID: 30452464 PMCID: PMC6242358 DOI: 10.1371/journal.pone.0207796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 11/19/2022] Open
Abstract
Climate change affects agriculture through a range of direct and indirect pathways. These include direct changes to impacts of pests and diseases on crops and indirect effects produced by interactions between organisms. It remains unclear whether the net effects of these biotic influences will be beneficial or detrimental to crop yield because few studies consider multiple interactions within communities and the net effects of these on community structure and yield. In this study, we created two experimental grapevine communities in field cages, and quantified direct and indirect effects of key pest and disease species under simulated climate change conditions (elevated temperature and reduced humidity). We found that the net impact of simulated climate change on total yield differed for the two communities, with increased yield in one community and no effect in the other. These effects, and the interactions between pests and pathogens, may also have been affected by the prevailing abiotic conditions, and we discuss how these may contribute to our findings. These results demonstrate that future research should consider more of the interactions between key organisms affecting crops under varying abiotic conditions to help generate future recommendations for adapting to the effects of climate change.
Collapse
Affiliation(s)
- Mark A. K. Gillespie
- Department of Engineering and Natural Science, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Marco Jacometti
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Jason M. Tylianakis
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Steve D. Wratten
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
11
|
Picot A, Georgelin E, Loeuille N. From antagonistic larvae to mutualistic adults: coevolution of diet niches within life cycles. OIKOS 2018. [DOI: 10.1111/oik.05128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aurore Picot
- Sorbonne Univ., UPMC Univ Paris 06, Univ Paris Diderot, Univ Paris-Est Créteil, CNRS, INRA, IRD, Inst. of Ecology and Environmental Sciences of Paris (iEES Paris); 7 quai Saint-Bernard FR-75252 Paris France
| | - Ewen Georgelin
- Sorbonne Univ., UPMC Univ Paris 06, Univ Paris Diderot, Univ Paris-Est Créteil, CNRS, INRA, IRD, Inst. of Ecology and Environmental Sciences of Paris (iEES Paris); 7 quai Saint-Bernard FR-75252 Paris France
| | - Nicolas Loeuille
- Sorbonne Univ., UPMC Univ Paris 06, Univ Paris Diderot, Univ Paris-Est Créteil, CNRS, INRA, IRD, Inst. of Ecology and Environmental Sciences of Paris (iEES Paris); 7 quai Saint-Bernard FR-75252 Paris France
| |
Collapse
|
12
|
Pattern of functional extinctions in ecological networks with a variety of interaction types. THEOR ECOL-NETH 2015. [DOI: 10.1007/s12080-015-0275-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|