1
|
Mmbando GS. The link between changing in host carbon allocation and resistance to Magnaporthe oryzae: a possible tactic for mitigating the rice blast fungus. PLANT SIGNALING & BEHAVIOR 2024; 19:2326870. [PMID: 38465846 PMCID: PMC10936674 DOI: 10.1080/15592324.2024.2326870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
One of the most destructive diseases affecting rice is rice blast, which is brought on by the rice blast fungus Magnaporthe oryzae. The preventive measures, however, are not well established. To effectively reduce the negative effects of rice blasts on crop yields, it is imperative to comprehend the dynamic interactions between pathogen resistance and patterns of host carbon allocation. This review explores the relationship between variations in carbon allocation and rice plants' ability to withstand the damaging effects of M. oryzae. The review highlights potential strategies for altering host carbon allocation including transgenic, selective breeding, crop rotation, and nutrient management practices as a promising avenue for enhancing rice blast resistance. This study advances our knowledge of the interaction between plants' carbon allocation and M. oryzae resistance and provides stakeholders and farmers with practical guidance on mitigating the adverse effects of the rice blast globally. This information may be used in the future to create varieties that are resistant to M. oryzae.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
2
|
Drake JE, Vårhammar A, Aspinwall MJ, Pfautsch S, Ghannoum O, Tissue DT, Tjoelker MG. Pushing the envelope: do narrowly and widely distributed Eucalyptus species differ in response to climate warming? THE NEW PHYTOLOGIST 2024; 243:82-97. [PMID: 38666344 DOI: 10.1111/nph.19774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/29/2024] [Indexed: 06/07/2024]
Abstract
Contemporary climate change will push many tree species into conditions that are outside their current climate envelopes. Using the Eucalyptus genus as a model, we addressed whether species with narrower geographical distributions show constrained ability to cope with warming relative to species with wider distributions, and whether this ability differs among species from tropical and temperate climates. We grew seedlings of widely and narrowly distributed Eucalyptus species from temperate and tropical Australia in a glasshouse under two temperature regimes: the summer temperature at seed origin and +3.5°C. We measured physical traits and leaf-level gas exchange to assess warming influences on growth rates, allocation patterns, and physiological acclimation capacity. Warming generally stimulated growth, such that higher relative growth rates early in development placed seedlings on a trajectory of greater mass accumulation. The growth enhancement under warming was larger among widely than narrowly distributed species and among temperate rather than tropical provenances. The differential growth enhancement was primarily attributable to leaf area production and adjustments of specific leaf area. Our results suggest that tree species, including those with climate envelopes that will be exceeded by contemporary climate warming, possess capacity to physiologically acclimate but may have varying ability to adjust morphology.
Collapse
Affiliation(s)
- John E Drake
- Department of Sustainable Resources Management, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Angelica Vårhammar
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Sebastian Pfautsch
- Urban Transformations Research Centre, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
3
|
Zhang-Zheng H, Adu-Bredu S, Duah-Gyamfi A, Moore S, Addo-Danso SD, Amissah L, Valentini R, Djagbletey G, Anim-Adjei K, Quansah J, Sarpong B, Owusu-Afriyie K, Gvozdevaite A, Tang M, Ruiz-Jaen MC, Ibrahim F, Girardin CAJ, Rifai S, Dahlsjö CAL, Riutta T, Deng X, Sun Y, Prentice IC, Oliveras Menor I, Malhi Y. Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia. Nat Commun 2024; 15:3158. [PMID: 38605006 PMCID: PMC11009382 DOI: 10.1038/s41467-024-47202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Tropical forests cover large areas of equatorial Africa and play a substantial role in the global carbon cycle. However, there has been a lack of biometric measurements to understand the forests' gross and net primary productivity (GPP, NPP) and their allocation. Here we present a detailed field assessment of the carbon budget of multiple forest sites in Africa, by monitoring 14 one-hectare plots along an aridity gradient in Ghana, West Africa. When compared with an equivalent aridity gradient in Amazonia, the studied West African forests generally had higher productivity and lower carbon use efficiency (CUE). The West African aridity gradient consistently shows the highest NPP, CUE, GPP, and autotrophic respiration at a medium-aridity site, Bobiri. Notably, NPP and GPP of the site are the highest yet reported anywhere for intact forests. Widely used data products substantially underestimate productivity when compared to biometric measurements in Amazonia and Africa. Our analysis suggests that the high productivity of the African forests is linked to their large GPP allocation to canopy and semi-deciduous characteristics.
Collapse
Affiliation(s)
- Huanyuan Zhang-Zheng
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom.
- Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, United Kingdom.
| | - Stephen Adu-Bredu
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
- Department of Natural Resources Management, CSIR College of Science and Technology, Kumasi, Ghana
| | - Akwasi Duah-Gyamfi
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
| | - Sam Moore
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Shalom D Addo-Danso
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
| | - Lucy Amissah
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
| | | | - Gloria Djagbletey
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
| | - Kelvin Anim-Adjei
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
| | - John Quansah
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
| | - Bernice Sarpong
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
| | - Kennedy Owusu-Afriyie
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
| | - Agne Gvozdevaite
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Minxue Tang
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, United Kingdom
| | - Maria C Ruiz-Jaen
- Forestry Division, Food and Agriculture Organization of the United Nations, Panama City, Panama
| | - Forzia Ibrahim
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Czech Republic
| | - Cécile A J Girardin
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Sami Rifai
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Cecilia A L Dahlsjö
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Terhi Riutta
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Xiongjie Deng
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Yuheng Sun
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC, Groningen, The Netherlands
| | - Iain Colin Prentice
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, United Kingdom
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China
| | - Imma Oliveras Menor
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
- AMAP (Botanique et Modelisation de l'Architecture des Plantes et des Végétations), CIRAD, CNRS, INRA, IRD,Université de Montpellier, Montpellier, France
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom.
- Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|