1
|
Babes L, Yipp BG, Senger DL. Intravital Microscopy of the Metastatic Pulmonary Environment. Methods Mol Biol 2023; 2614:383-396. [PMID: 36587137 DOI: 10.1007/978-1-0716-2914-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Real-time in vivo imaging has become an integral tool for the investigation and understanding of cellular processes in health and disease at single-cell resolution. This includes the dynamic and complex cellular interactions that occur during cancer progression and the subsequent metastatic dissemination of tumor cells to sites distant from the primary tumor. Herein we outline the methodology for the establishment and intravital imaging of the pulmonary metastatic niche, a preferred site of metastasis for many cancers, and describe the implementation of a lung window to visualize and dissect the intricate behaviour of multiple cell types within this environment. We also address the advantages and limitations of this high-resolution technology.
Collapse
Affiliation(s)
- Liane Babes
- Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - Bryan George Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Donna Lorraine Senger
- Lady Davis Institute for Medical Research, Montreal, QC, Canada. .,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Chen N, Ritsma LMA, Vrisekoop N. In vivo characteristics of human and mouse breast tumor cell lines. Exp Cell Res 2019; 381:86-93. [PMID: 30980788 DOI: 10.1016/j.yexcr.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/30/2019] [Accepted: 04/07/2019] [Indexed: 11/29/2022]
Abstract
Although two- and three-dimensional in vitro studies of breast tumor cell lines have increased our knowledge on tumor growth and metastasis formation, the complex in vivo microenvironment is not taken into consideration. The goal of our study was to illustrate the in vivo morphology and motility of widely used breast tumor cell lines. Intravital microscopy allows real-time visualization of individual cells inside tissues of living animals. We used this technique to study breast cancer migration in the complex orthotopic microenvironment. More specifically, we characterized cell morphology, cell-cell interactions, polarity and motility of mouse tumor cell lines 4T1 and mILC-1 and human tumor cell lines MDA-MB-231 and T47D. Almost all measured parameters were remarkably heterogeneous even between positions within the same tumor. Migrating tumor cells were circular in all tumor models, indicating predominantly amoeboid motility. This overview of the in vivo characteristics of mouse and human breast tumor cell lines illustrates their heterogeneity and complexity in real life, and additionally exemplifies caution should be taken to extrapolate in vitro assays of tumor invasiveness.
Collapse
Affiliation(s)
- Na Chen
- Department of Respiratory Medicine, Laboratory of Translational Immunology, University Medical Center Utrecht, the Netherlands
| | - Laila M A Ritsma
- Department of Molecular Cell Biology, Leiden University Medical Center, the Netherlands
| | - Nienke Vrisekoop
- Department of Respiratory Medicine, Laboratory of Translational Immunology, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
3
|
Babes L, Kubes P. Visualizing the Tumor Microenvironment of Liver Metastasis by Spinning Disk Confocal Microscopy. Methods Mol Biol 2016; 1458:203-15. [PMID: 27581024 DOI: 10.1007/978-1-4939-3801-8_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Intravital microscopy has evolved into an invaluable technique to study the complexity of tumors by visualizing individual cells in live organisms. Here, we describe a method for employing intravital spinning disk confocal microscopy to picture high-resolution tumor-stroma interactions in real time. We depict in detail the surgical procedures to image various tumor microenvironments and different cellular components in the liver.
Collapse
Affiliation(s)
- Liane Babes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Ritsma L, Ponsioen B, van Rheenen J. Intravital imaging of cell signaling in mice. INTRAVITAL 2014. [DOI: 10.4161/intv.20802] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Alieva M, Ritsma L, Giedt RJ, Weissleder R, van Rheenen J. Imaging windows for long-term intravital imaging: General overview and technical insights. INTRAVITAL 2014; 3:e29917. [PMID: 28243510 PMCID: PMC5312719 DOI: 10.4161/intv.29917] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/11/2023]
Abstract
Intravital microscopy is increasingly used to visualize and quantitate dynamic biological processes at the (sub)cellular level in live animals. By visualizing tissues through imaging windows, individual cells (e.g., cancer, host, or stem cells) can be tracked and studied over a time-span of days to months. Several imaging windows have been developed to access tissues including the brain, superficial fascia, mammary glands, liver, kidney, pancreas, and small intestine among others. Here, we review the development of imaging windows and compare the most commonly used long-term imaging windows for cancer biology: the cranial imaging window, the dorsal skin fold chamber, the mammary imaging window, and the abdominal imaging window. Moreover, we provide technical details, considerations, and trouble-shooting tips on the surgical procedures and microscopy setups for each imaging window and explain different strategies to assure imaging of the same area over multiple imaging sessions. This review aims to be a useful resource for establishing the long-term intravital imaging procedure.
Collapse
Affiliation(s)
- Maria Alieva
- Cancer Genomics Netherlands; Hubrecht Institute-KNAW and University Medical Centre Utrecht; CT Utrecht, The Netherlands
| | - Laila Ritsma
- Center for Cancer Research and Center for Regenerative Medicine; Massachusetts General Hospital; Richard B. Simches Research Center; Harvard Medical School; Boston, MA USA; Broad Institute of Harvard and Massachusetts Institute for Technology; Cambridge, MA USA
| | - Randy J Giedt
- Center for Systems Biology; Massachusetts General Hospital; Richard B. Simches Research Center; Harvard Medical School; Boston, MA USA
| | - Ralph Weissleder
- Center for Systems Biology; Massachusetts General Hospital; Richard B. Simches Research Center; Harvard Medical School; Boston, MA USA; Department of Systems Biology; Harvard Medical School; Boston, MA USA
| | - Jacco van Rheenen
- Cancer Genomics Netherlands; Hubrecht Institute-KNAW and University Medical Centre Utrecht; CT Utrecht, The Netherlands
| |
Collapse
|
6
|
Tyrosine phosphatase SHP2 increases cell motility in triple-negative breast cancer through the activation of SRC-family kinases. Oncogene 2014; 34:2272-8. [PMID: 24931162 DOI: 10.1038/onc.2014.170] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/12/2014] [Accepted: 05/01/2014] [Indexed: 12/29/2022]
Abstract
Tumor cell migration has a fundamental role in early steps of metastasis, the fatal hallmark of cancer. In the present study, we investigated the effects of the tyrosine phosphatase, SRC-homology 2 domain-containing phosphatase 2 (SHP2), on cell migration in metastatic triple-negative breast cancer (TNBC), an aggressive disease associated with a poor prognosis for which a targeted therapy is not yet available. Using mouse models and multiphoton intravital imaging, we have identified a crucial effect of SHP2 on TNBC cell motility in vivo. Further, analysis of TNBC cells revealed that SHP2 also influences cell migration, chemotaxis and invasion in vitro. Unbiased phosphoproteomics and biochemical analysis showed that SHP2 activates several SRC-family kinases and downstream targets, most of which are inducers of migration and invasion. In particular, direct interaction between SHP2 and c-SRC was revealed by a fluorescence resonance energy transfer assay. These results suggest that SHP2 is a crucial factor during early steps of TNBC migration to distant organs.
Collapse
|
7
|
Ritsma L, Vrisekoop N, van Rheenen J. In vivo imaging and histochemistry are combined in the cryosection labelling and intravital microscopy technique. Nat Commun 2013; 4:2366. [DOI: 10.1038/ncomms3366] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023] Open
|
8
|
Janssen A, Beerling E, Medema R, van Rheenen J. Intravital FRET imaging of tumor cell viability and mitosis during chemotherapy. PLoS One 2013; 8:e64029. [PMID: 23691140 PMCID: PMC3654962 DOI: 10.1371/journal.pone.0064029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 04/10/2013] [Indexed: 11/18/2022] Open
Abstract
Taxanes, such as docetaxel, are microtubule-targeting chemotherapeutics that have been successfully used in the treatment of cancer. Based on data obtained from cell cultures, it is believed that taxanes induce tumor cell death by specifically perturbing mitotic progression. Here, we report on data that suggest that this generally accepted view may be too simplified. We describe a high-resolution intravital imaging method to simultaneously visualize mitotic progression and the onset of apoptosis. To directly compare in vitro and in vivo data, we have visualized the effect of docetaxel on mitotic progression in mouse and human colorectal tumor cell lines both in vitro and in isogenic tumors in mice. We show that docetaxel-induced apoptosis in vitro occurs via mitotic cell death, whereas the vast majority of tumor cells in their natural environment die independent of mitotic defects. This demonstrates that docetaxel exerts its anti-tumor effects in vivo through means other than mitotic perturbation. The differences between in vitro and in vivo mechanisms of action of chemotherapeutics may explain the limited response to many of the anti-mitotic agents that are currently validated in clinical trials. Our data illustrate the requirement and power of our intravital imaging technique to study and validate the mode of action of chemotherapeutic agents in vivo, which will be essential to understand and improve their clinical efficacy.
Collapse
Affiliation(s)
- Aniek Janssen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics University Medical Center Utrecht, Utrecht, The Netherlands
| | - Evelyne Beerling
- Cancer Genomics, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - René Medema
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (JvR); (RM)
| | - Jacco van Rheenen
- Cancer Genomics, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail: (JvR); (RM)
| |
Collapse
|
9
|
Gavins FNE. Intravital microscopy: new insights into cellular interactions. Curr Opin Pharmacol 2012; 12:601-7. [PMID: 22981814 DOI: 10.1016/j.coph.2012.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 12/30/2022]
Abstract
Inflammation is the body's way of combating invading pathogens or noxious stimuli. Under normal conditions, the complex host response of rubor, dolor, calor, tumor, and functio laesa is essential for survival and the return to homeostasis. However, unregulated inflammation is all too often observed in diseases such as rheumatoid arthritis, stroke, and cancer. The host inflammatory response is governed by a number of tightly regulated processes that enable cellular trafficking to occur at the sites of damage to ultimately ensure the resolution of inflammation. Intravital microscopy (IVM) provides quantitative, qualitative, and dynamic insights into cell biology and these cellular interactions. This review highlights the pros and cons of this specialized technique and how it has evolved to help understand the physiology and pathophysiology of inflammatory events in a number of different disease states, leading to a number of potential therapeutic targets for drug discovery.
Collapse
Affiliation(s)
- Felicity N E Gavins
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK.
| |
Collapse
|
10
|
Reyes-Aldasoro CC, Björndahl MA, Akerman S, Ibrahim J, Griffiths MK, Tozer GM. Online chromatic and scale-space microvessel-tracing analysis for transmitted light optical images. Microvasc Res 2012; 84:330-9. [PMID: 22982542 DOI: 10.1016/j.mvr.2012.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/31/2012] [Accepted: 09/01/2012] [Indexed: 02/08/2023]
Abstract
Limited contrast in transmitted light optical images from intravital microscopy is problematic for analysing tumour vascular morphology. Moreover, in some cases, changes in vasculature are visible to a human observer but are not easy to quantify. In this paper two online algorithms are presented: scale-space vessel tracing and chromatic decomposition for analysis of the vasculature of SW1222 human colorectal carcinoma xenografts growing in dorsal skin-fold "window" chambers in mice. Transmitted light optical images of tumours were obtained from mice treated with the tumour vascular disrupting agent, combretastatin-A-4-phosphate (CA4P), or saline. The tracing algorithm was validated against hand-traced vessels with accurate results. The measurements extracted with the algorithms confirmed the known effects of CA4P on tumour vascular topology. Furthermore, changes in the chromaticity suggest a deoxygenation of the blood with a recovery to initial levels in CA4P-treated tumours relative to the controls. The algorithms can be freely applied to other studies through the CAIMAN website (CAncer IMage ANalysis: http://www.caiman.org.uk).
Collapse
Affiliation(s)
- Constantino Carlos Reyes-Aldasoro
- Biomedical Engineering Research Group, Department of Engineering and Design, 2B10 Shawcross Building, University of Sussex, Falmer, Brighton, BN1 9QT, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Bonapace L, Wyckoff J, Oertner T, Van Rheenen J, Junt T, Bentires-Alj M. If you don't look, you won't see: intravital multiphoton imaging of primary and metastatic breast cancer. J Mammary Gland Biol Neoplasia 2012; 17:125-9. [PMID: 22581273 DOI: 10.1007/s10911-012-9250-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022] Open
Abstract
A fundamental hallmark of cancer is progression to metastasis and the growth of breast cancer metastases in lung, bone, liver and/or brain causes fatal complications. Unfortunately, the cellular and biochemical mechanisms of the metastatic process remain ill-defined. Recent application of intravital multiphoton microscopy (MP-IVM) to image fluorescently labeled cells in mouse models of cancer has allowed dynamic observation of this multi-step process at the cellular and subcellular levels. In this article, we discuss the use of MP-IVM in studies of breast cancer metastasis, as well as surgical techniques for exposing tumors prior to imaging. We also describe a versatile multiphoton microscope for imaging tumor-stroma interactions.
Collapse
Affiliation(s)
- Laura Bonapace
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|