1
|
Rismanbaf A. Improving targeted small molecule drugs to overcome chemotherapy resistance. Cancer Rep (Hoboken) 2024; 7:e1945. [PMID: 37994401 PMCID: PMC10809209 DOI: 10.1002/cnr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Conventional cancer treatments face the challenge of therapeutic resistance, which causes poor treatment outcomes. The use of combination therapies can improve treatment results in patients and is one of the solutions to overcome this challenge. Chemotherapy is one of the conventional treatments that, due to the non-targeted and lack of specificity in targeting cancer cells, can cause serious complications in the short and long-term for patients by damaging healthy cells. Also, the employment of a wide range of strategies for chemotherapy resistance by cancer cells, metastasis, and cancer recurrence create serious problems to achieve the desired results of chemotherapy. Accordingly, targeted therapies can be used as a combination treatment with chemotherapy to both cause less damage to healthy cells, which as a result, they reduce the side effects of chemotherapy, and by targeting the factors that cause therapeutic challenges, can improve the results of chemotherapy in patients. RECENT FINDINGS Small molecules are one of the main targeted therapies that can be used for diverse targets in cancer treatment due to their penetration ability and characteristics. However, small molecules in cancer treatment are facing obstacles that a better understanding of cancer biology, as well as the mechanisms and factors involved in chemotherapy resistance, can lead to the improvement of this type of major targeted therapy. CONCLUSION In this review article, at first, the challenges that lead to not achieving the desired results in chemotherapy and how cancer cells can be resistant to chemotherapy are examined, and at the end, research areas are suggested that more focusing on them, can lead to the improvement of the results of using targeted small molecules as an adjunctive treatment for chemotherapy in the conditions of chemotherapy resistance and metastasis of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Rismanbaf
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
2
|
Peng J, Yin X, Yun W, Meng X, Huang Z. Radiotherapy-induced tumor physical microenvironment remodeling to overcome immunotherapy resistance. Cancer Lett 2023; 559:216108. [PMID: 36863506 DOI: 10.1016/j.canlet.2023.216108] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The clinical benefits of immunotherapy are proven in many cancers, but a significant number of patients do not respond well to immunotherapy. The tumor physical microenvironment (TpME) has recently been shown to affect the growth, metastasis and treatment of solid tumors. The tumor microenvironment (TME) has unique physical hallmarks: 1) unique tissue microarchitecture, 2) increased stiffness, 3) elevated solid stress, and 4) elevated interstitial fluid pressure (IFP), which contribute to tumor progression and immunotherapy resistance in a variety of ways. Radiotherapy, a traditional and powerful treatment, can remodel the matrix and blood flow associated with the tumor to improve the response rate of immune checkpoint inhibitors (ICIs) to a certain extent. Herein, we first review the recent research advances on the physical properties of the TME and then explain how TpME is involved in immunotherapy resistance. Finally, we discuss how radiotherapy can remodel TpME to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Jianfeng Peng
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiaoyan Yin
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Wenhua Yun
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Zhaoqin Huang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
3
|
Azimi T, Loizidou M, Dwek MV. Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin. Sci Rep 2020; 10:12020. [PMID: 32694700 PMCID: PMC7374750 DOI: 10.1038/s41598-020-68999-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
3D laboratory models of cancer are designed to recapitulate the biochemical and biophysical characteristics of the tumour microenvironment and aim to enable studies of cancer, and new therapeutic modalities, in a physiologically-relevant manner. We have developed an in vitro 3D model comprising a central high-density mass of breast cancer cells surrounded by collagen type-1 and we incorporated fluid flow and pressure. We noted significant changes in cancer cell behaviour using this system. MDA-MB231 and SKBR3 breast cancer cells grown in 3D downregulated the proliferative marker Ki67 (P < 0.05) and exhibited decreased response to the chemotherapeutic agent doxorubicin (DOX) (P < 0.01). Mesenchymal markers snail and MMP14 were upregulated in cancer cells maintained in 3D (P < 0.001), cadherin-11 was downregulated (P < 0.001) and HER2 increased (P < 0.05). Cells maintained in 3D under fluid flow exhibited a further reduction in response to DOX (P < 0.05); HER2 and Ki67 levels were also attenuated. Fluid flow and pressure was associated with reduced cell viability and decreased expression levels of vimentin. In summary, aggressive cancer cell behaviour and reduced drug responsiveness was observed when breast cancer cells were maintained in 3D under fluid flow and pressure. These observations are relevant for future developments of 3D in vitro cancer models and organ-on-a-chip initiatives.
Collapse
Affiliation(s)
- Tayebeh Azimi
- School of Life Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, UCL Medical School Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Miriam V Dwek
- School of Life Sciences, University of Westminster, 115 New Cavendish St, London, W1W 6UW, UK.
| |
Collapse
|
4
|
Wei R, Liu S, Zhang S, Min L, Zhu S. Cellular and Extracellular Components in Tumor Microenvironment and Their Application in Early Diagnosis of Cancers. Anal Cell Pathol (Amst) 2020; 2020:6283796. [PMID: 32377504 PMCID: PMC7199555 DOI: 10.1155/2020/6283796] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/11/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Tumors are surrounded by complex environmental components, including blood and lymph vessels, fibroblasts, endothelial cells, immune cells, cytokines, extracellular vesicles, and extracellular matrix. All the stromal components together with the tumor cells form the tumor microenvironment (TME). In addition, extracellular physical and chemical factors, including extracellular pH, hypoxia, elevated interstitial fluid pressure, and fibrosis, are closely associated with tumor progression, metastasis, immunosuppression, and drug resistance. Cellular and extracellular components in TME contribute to nearly all procedures of carcinogenesis. By summarizing the recent work in this field, we make a comprehensive review on the role of cellular and extracellular components in the process of carcinogenesis and their potential application in early diagnosis of cancer. We hope that a systematic review of the diverse aspects of TME will help both research scientists and clinicians in this field.
Collapse
Affiliation(s)
- Rui Wei
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, China
| |
Collapse
|
5
|
Böckelmann LC, Schumacher U. Targeting tumor interstitial fluid pressure: will it yield novel successful therapies for solid tumors? Expert Opin Ther Targets 2019; 23:1005-1014. [DOI: 10.1080/14728222.2019.1702974] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lukas Clemens Böckelmann
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Zhang L, Su H, Liu Y, Pang N, Li J, Qi XR. Enhancing solid tumor therapy with sequential delivery of dexamethasone and docetaxel engineered in a single carrier to overcome stromal resistance to drug delivery. J Control Release 2018; 294:1-16. [PMID: 30527754 DOI: 10.1016/j.jconrel.2018.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
Nanomedicines are often designed to target and treat solid tumors. Unfortunately, tumor and stroma composed of dense extracellular matrix, abnormal vascular barriers, elevated interstitial fluid pressure, et al., which impede the access and accumulation of nanomedicines into tumors. Strategies to disrupt these deterministic obstacles require a unique combination of promoter drugs and cytotoxic agents to target stroma and tumor simultaneously. Here, we engineered a novel strategy by co-delivery dexamethasone (DEX) and docetaxel (DTX) in the 2-in-1 liposome, namely (DEX + DTX)-Lip, with sequential release property. We proved that the engineered liposomal therapy approach could potentially achieve two objectives in tumor drug delivery: modulate tumor stroma and promote drug penetration and accumulation in tumor. Thus more DTX tenured in intratumoral site to kill tumor cells in a strong way with minimize systemic toxicity. The sequentially released liposomes won excellent antitumor efficacy in multifarious models, including KB, multidrug resistant KBv and metastatic 4 T1 tumor models and low toxicities compared with the combination of free drugs in vivo. Moreover, they demonstrated the potential of prevention tumor cells colonization and anti-metastasis in vivo models. These findings give insights in overcoming the deterministic stroma obstacles and provide a rational strategy to increase antitumor efficacy of combination nanomedicines with practical value.
Collapse
Affiliation(s)
- Lu Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haitao Su
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yujie Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Pang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ji Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xian-Rong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
7
|
Hallmarks of Cancer-Related Newly Prognostic Factors of Oral Squamous Cell Carcinoma. Int J Mol Sci 2018; 19:ijms19082413. [PMID: 30115834 PMCID: PMC6121568 DOI: 10.3390/ijms19082413] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancer, including oral squamous cell carcinoma (OSCC), is the sixth leading malignancy worldwide. OSCC is an aggressive tumor and its prognosis has exhibited little improvement in the last three decades. Comprehensive elucidation of OSCC's molecular mechanism is imperative for early detection and treatment, improving patient survival. Based on broadly accepted notions, OSCC arises from multiple genetic alterations caused by chronic exposure to carcinogens. In 2011, research revealed 10 key alterations fundamental to cancer cell development: sustaining proliferative signaling, evading growth suppressors, avoiding immune destruction, activating invasion and metastasis, tumor-promoting inflammation, enabling replicative immortality, inducing angiogenesis, genome instability and mutation, resisting cell death, and deregulating energetics. This review describes molecular pathological findings on conventional and novel hallmarks of OSCC prognostic factors. In addition, the review summarizes the functions and roles of several molecules as novel OSCC prognosticators.
Collapse
|
8
|
Tracking the tumor invasion front using long-term fluidic tumoroid culture. Sci Rep 2017; 7:10784. [PMID: 28883652 PMCID: PMC5589910 DOI: 10.1038/s41598-017-10874-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
The analysis of invading leader cells at the tumor invasion front is of significant interest as these cells may possess a coordinated functional and molecular phenotype which can be targeted for therapy. However, such analyses are currently limited by available technologies. Here, we report a fluidic device for long-term three-dimensional tumoroid culture which recapitulated the tumor invasion front, allowing for both quantification of invasive potential and molecular characterization of invasive leader cells. Preliminary analysis of the invasion front indicated an association with cell proliferation and higher expression of growth differentiation factor 15 (GDF15). This device makes real-time tracking of invading leader cell phenotypes possible and has potential for use with patient material for clinical risk stratification and personalized medicine.
Collapse
|
9
|
Reynaud O, Winters KV, Hoang DM, Wadghiri YZ, Novikov DS, Kim SG. Pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (POMACE) in mouse gliomas. NMR IN BIOMEDICINE 2016; 29:1350-63. [PMID: 27448059 PMCID: PMC5035213 DOI: 10.1002/nbm.3577] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/30/2016] [Accepted: 06/07/2016] [Indexed: 05/10/2023]
Abstract
Solid tumor microstructure is related to the aggressiveness of the tumor, interstitial pressure and drug delivery pathways, which are closely associated with treatment response, metastatic spread and prognosis. In this study, we introduce a novel diffusion MRI data analysis framework, pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (POMACE), and demonstrate its feasibility in a mouse tumor model. In vivo and ex vivo POMACE experiments were performed on mice bearing the GL261 murine glioma model (n = 8). Since the complete diffusion time dependence is in general non-analytical, the tumor microstructure was modeled in an appropriate time/frequency regime by impermeable spheres (radius Rcell , intracellular diffusivity Dics ) surrounded by extracellular space (ECS) (approximated by constant apparent diffusivity Decs in volume fraction ECS). POMACE parametric maps (ECS, Rcell , Dics , Decs ) were compared with conventional diffusion-weighted imaging metrics, electron microscopy (EM), alternative ECS determination based on effective medium theory (EMT), and optical microscopy performed on the same samples. It was shown that Decs can be approximated by its long time tortuosity limit in the range [1/(88 Hz)-31 ms]. ECS estimations (44 ± 7% in vivo and 54 ± 11% ex vivo) were in agreement with EMT-based ECS and literature on brain gliomas. Ex vivo, ECS maps correlated well with optical microscopy. Cell sizes (Rcell = 4.8 ± 1.3 in vivo and 4.3 ± 1.4 µm ex vivo) were consistent with EM measurements (4.7 ± 1.8 µm). In conclusion, Rcell and ECS can be quantified and mapped in vivo and ex vivo in brain tumors using the proposed POMACE method. Our experimental results support the view that POMACE provides a way to interpret the frequency or time dependence of the diffusion coefficient in tumors in terms of objective biophysical parameters of neuronal tissue, which can be used for non-invasive monitoring of preclinical cancer studies and treatment efficacy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olivier Reynaud
- Center for Advanced Imaging Innovation and Research (CAI2R), New York, NY, USA.
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | - Kerryanne Veronica Winters
- Center for Advanced Imaging Innovation and Research (CAI2R), New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Dung Minh Hoang
- Center for Advanced Imaging Innovation and Research (CAI2R), New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Youssef Zaim Wadghiri
- Center for Advanced Imaging Innovation and Research (CAI2R), New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Center for Advanced Imaging Innovation and Research (CAI2R), New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Sungheon Gene Kim
- Center for Advanced Imaging Innovation and Research (CAI2R), New York, NY, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Zhang Y, Yang J, Ding M, Li L, Lu Z, Zhang Q, Zheng J. Tumor-penetration and antitumor efficacy of cetuximab are enhanced by co-administered iRGD in a murine model of human NSCLC. Oncol Lett 2016; 12:3241-3249. [PMID: 27899989 PMCID: PMC5103927 DOI: 10.3892/ol.2016.5081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/16/2016] [Indexed: 01/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality, worldwide. For this reason, novel therapies are required for the treatment of this devastating disease. Cetuximab is a monoclonal antibody against epidermal growth factor receptor (EGFR), which is overexpressed in a variety of solid tumors, including non-small cell lung cancer (NSCLC). The therapeutic efficacy of cetuximab for NSCLC is limited to use as a monotherapy or in combination with chemotherapy. The objective of the present study was to develop a novel strategy to enhance the therapeutic efficacy of cetuximab for NSCLC by a co-administration with the tumor-penetrating internalizing RGD peptide (iRGD). Human NSCLC subcutaneous xenograft models established with the A549 cell line in nude mice were treated with 30 mg/kg cetuximab, 4 mg/kg iRGD, cetuximab plus iRGD or phosphate-buffered saline. The tumor-penetration, in vivo therapeutic efficacy and involved mechanism were evaluated. The present study showed that the A549 xenograft model is sensitive to the co-administration of cetuximab and iRGD. Treatment with cetuximab plus iRGD resulted in a significant increase in the tumor-penetration of cetuximab and tumor reduction compared with cetuximab monotherapy. In conclusion, iRGD enhances the effects of co-administered cetuximab in an NSCLC model. The combined application of cetuximab and iRGD may be a novel strategy to enhance the clinical therapeutic efficacy of cetuximab for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yang Zhang
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China; Department of Oncology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Manhua Ding
- Department of Oncology, Xuzhou Tumor Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Liantao Li
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
11
|
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35 Suppl:S224-S243. [PMID: 25600295 PMCID: PMC4737670 DOI: 10.1016/j.semcancer.2015.01.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the "hallmarks" of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniele Generali
- Molecular Therapy and Pharmacogenomics Unit, AO Isituti Ospitalieri di Cremona, Cremona, Italy
| | - Ganji P Nagaraju
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, USA
| | - Kanya Honoki
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirate University, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirate University, United Arab Emirates
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guilford, Surrey, UK
| | | | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Asfar S Azmi
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lasse D Jensen
- Department of Medical, and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Ji L, Zheng Z, Shi L, Huang Y, Lu B, Wang Z. Andrographolide decreased VEGFD expression in hepatoma cancer cells by inducing ubiquitin/proteasome-mediated cFos protein degradation. Biochim Biophys Acta Gen Subj 2015; 1850:750-8. [DOI: 10.1016/j.bbagen.2015.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/24/2014] [Accepted: 01/07/2015] [Indexed: 01/11/2023]
|