1
|
Meier C, Brieger A. The role of IL-8 in cancer development and its impact on immunotherapy resistance. Eur J Cancer 2025; 218:115267. [PMID: 39899909 DOI: 10.1016/j.ejca.2025.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Tumors are structures of high complexity. Plurality of their structural and functional components - heterogeneity, diversity, directionality, interdependence and integration of signaling pathways - seem to follow isolated local rules, whereby a superordinate structure remains largely unknown. Understanding the complexity of cancer is the mainstay in finding determinants and developing effective therapies. Interleukin 8 (IL-8) is a potent pro-inflammatory chemokine that is significantly elevated in many different tumor entities. In contrast to its initially postulated anti-tumor properties, an increasing number of studies have been published in recent years linking this chemokine with tumor-promoting features and poor prognosis. This review summarizes the current state and diversity of the role of IL-8 in the development of cancer.
Collapse
Affiliation(s)
- Clara Meier
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Frankfurt am Main, Germany
| | - Angela Brieger
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Reddy SU, Sadia FZ, Vancura A, Vancurova I. IFNγ-Induced Bcl3, PD-L1 and IL-8 Signaling in Ovarian Cancer: Mechanisms and Clinical Significance. Cancers (Basel) 2024; 16:2676. [PMID: 39123403 PMCID: PMC11311860 DOI: 10.3390/cancers16152676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
IFNγ, a pleiotropic cytokine produced not only by activated lymphocytes but also in response to cancer immunotherapies, has both antitumor and tumor-promoting functions. In ovarian cancer (OC) cells, the tumor-promoting functions of IFNγ are mediated by IFNγ-induced expression of Bcl3, PD-L1 and IL-8/CXCL8, which have long been known to have critical cellular functions as a proto-oncogene, an immune checkpoint ligand and a chemoattractant, respectively. However, overwhelming evidence has demonstrated that these three genes have tumor-promoting roles far beyond their originally identified functions. These tumor-promoting mechanisms include increased cancer cell proliferation, invasion, angiogenesis, metastasis, resistance to chemotherapy and immune escape. Recent studies have shown that IFNγ-induced Bcl3, PD-L1 and IL-8 expression is regulated by the same JAK1/STAT1 signaling pathway: IFNγ induces the expression of Bcl3, which then promotes the expression of PD-L1 and IL-8 in OC cells, resulting in their increased proliferation and migration. In this review, we summarize the recent findings on how IFNγ affects the tumor microenvironment and promotes tumor progression, with a special focus on ovarian cancer and on Bcl3, PD-L1 and IL-8/CXCL8 signaling. We also discuss promising novel combinatorial strategies in clinical trials targeting Bcl3, PD-L1 and IL-8 to increase the effectiveness of cancer immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Ivana Vancurova
- Department of Biological Sciences, St. John’s University, New York, NY 11439, USA; (S.U.R.); (F.Z.S.); (A.V.)
| |
Collapse
|
3
|
Huldani H, Abdul-Jabbar Ali S, Al-Dolaimy F, Hjazi A, Denis Andreevich N, Oudaha KH, Almulla AF, Alsaalamy A, Kareem Oudah S, Mustafa YF. The potential role of interleukins and interferons in ovarian cancer. Cytokine 2023; 171:156379. [PMID: 37757536 DOI: 10.1016/j.cyto.2023.156379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer poses significant challenges and remains a highly lethal disease with limited treatment options. In the context of ovarian cancer, interleukins (ILs) and interferons (IFNs), important cytokines that play crucial roles in regulating the immune system, have emerged as significant factors influencing its development. This article provides a comprehensive review of the involvement of various ILs, including those from the IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family, and IL-17 family, in ovarian cancer. The focus is on their impact on tumor growth, metastasis, and their role in evading immune responses within the tumor microenvironment. Additionally, the article conducts an in-depth examination of the oncogenic or antitumor roles of each IL in the context of ovarian cancer pathogenesis and progression. Besides, we elucidated the enhancements in the treatment of ovarian cancer through the utilization of type-I IFN and type-II IFN. Recent research has shed light on the intricate mechanisms through which specific ILs and IFNs contribute to the advancement of the disease. By incorporating recent findings, this review also seeks to inspire further investigations into unexplored mechanisms, fostering ongoing research to develop more effective therapeutic strategies for ovarian cancer. Moreover, through an in-depth analysis of IL- and IFN-associated clinical trials, we have highlighted their promising potential of in the treatment of ovarian cancer. These clinical trials serve to reinforce the significant outlook for utilizing ILs and IFNs as therapeutic agents in combating this disease.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
4
|
Lampropoulou DI, Papadimitriou M, Papadimitriou C, Filippou D, Kourlaba G, Aravantinos G, Gazouli M. The Role of EMT-Related lncRNAs in Ovarian Cancer. Int J Mol Sci 2023; 24:10079. [PMID: 37373222 PMCID: PMC10298523 DOI: 10.3390/ijms241210079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers worldwide; late diagnosis and drug resistance are two major factors often responsible for high morbidity and treatment failure. Epithelial-to-mesenchymal transition (EMT) is a dynamic process that has been closely linked with cancer. Long non-coding RNAs (lncRNAs) have been also associated with several cancer-related mechanisms, including EMT. We conducted a literature search in the PubMed database in order to sum up and discuss the role of lncRNAs in regulating OC-related EMT and their underlying mechanisms. Seventy (70) original research articles were identified, as of 23 April 2023. Our review concluded that the dysregulation of lncRNAs is highly associated with EMT-mediated OC progression. A comprehensive understanding of lncRNAs' mechanisms in OC will help in identifying novel and sensitive biomarkers and therapeutic targets for this malignancy.
Collapse
Affiliation(s)
| | - Marios Papadimitriou
- Myeloma Division, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Papadimitriou
- Second Department of Surgery, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- National Organization for Medicines (EOF), 15562 Athens, Greece
| | - Georgia Kourlaba
- Department of Nursing, University of Peloponnese, 22100 Tripoli, Greece;
| | | | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
5
|
Joshi S, Pandey R, Kumar A, Gupta V, Arya N. Targeted blockade of interleukin-8 negates metastasis and chemoresistance via Akt/Erk-NFκB axis in oral cancer. Cytokine 2023; 166:156155. [PMID: 37088002 DOI: 10.1016/j.cyto.2023.156155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/18/2023] [Accepted: 02/11/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND The tumor microenvironment plays a significant role in tumor growth, metastasis and chemoresistance via dysregulated signaling pathways. Toward this, an inflammatory chemokine, interleukin-8 (IL-8), is overexpressed in various cancers and is involved in tumor progression and chemoresistance. However, the mechanistic role of IL-8 in mediating metastasis and chemoresistance in oral squamous cell carcinoma (OSCC) is not known. METHODS AND RESULTS In the present study, we evaluated the effect of IL-8 in regulating metastasis as well as chemoresistance in OSCC cell lines. For this, IL-8 was blocked exogenously using neutralizing IL-8 monoclonal antibody and IL-8 levels were enhanced by exogenous supply of recombinant human IL-8 (rhIL-8) to OSCC cells. The epithelial-to-mesenchymal transition (EMT) was evaluated using qPCR, migration by scratch/wound healing assay and invasion ability using transwell assay. rIL-8 induced chemoresistance was studied by apoptosis assay and the nuclear localization of NFκB using immunocytochemistry. IL-8 was significantly overexpressed in OSCC patients and cell lines. While exogenous blockade of IL-8 significantly reduced EMT, migration and invasion potential in OSCC cells, IL-8 overexpression upregulated these cellular traits thereby confirming the role of IL-8 in OSCC metastasis. Exogenous blockade of IL-8 also reversed chemoresistance in cisplatin resistant OSCC subline via NFκB signaling. CONCLUSION IL-8 plays a crucial role in OSCC metastasis and its targeted blockade can help in management of cisplatin resistance.
Collapse
Affiliation(s)
- Swarali Joshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Ritu Pandey
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Vikas Gupta
- Department of Otorhinolaryngology (ENT) - Head & Neck Surgery, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Neha Arya
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India; Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
6
|
The Role of Cytokines in Epithelial-Mesenchymal Transition in Gynaecological Cancers: A Systematic Review. Cells 2023; 12:cells12030416. [PMID: 36766756 PMCID: PMC9913821 DOI: 10.3390/cells12030416] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Chronic inflammation has been closely linked to the development and progression of various cancers. The epithelial-mesenchymal transition (EMT) is a process involving the acquisition of mesenchymal features by carcinoma cells and is an important link between inflammation and cancer development. Inflammatory mediators in the tumour micro-environment, such as cytokines and chemokines, can promote EMT changes in cancer cells. The aim of this systematic review is to analyse the effect of cytokines on EMT in gynaecological cancers and discuss their possible therapeutic implications. A search of the databases CINAHL, Cochrane, Embase, Medline, PubMed, TRIP, and Web of Science was performed using the keywords: "cytokines" AND "epithelial mesenchymal transition OR transformation" AND "gynaecological cancer". Seventy-one articles reported that various cytokines, such as TGF-β, TNF-α, IL-6, etc., promoted EMT changes in ovarian, cervical, and endometrial cancers. The EMT changes included from epithelial to mesenchymal morphological change, downregulation of the epithelial markers E-cadherin/β-catenin, upregulation of the mesenchymal markers N-cadherin/vimentin/fibronectin, and upregulation of the EMT-transformation factors (EMT-TF) SNAI1/SNAI2/TWIST/ZEB. Cytokine-induced EMT can lead to gynaecological cancer development and metastasis and hence novel therapies targeting the cytokines or their EMT signalling pathways could possibly prevent cancer progression, reduce cancer recurrence, and prevent drug-resistance.
Collapse
|
7
|
Liu G, Chen XT, Zhang H, Chen X. Expression analysis of cytokines IL-5, IL-6, IL-8, IL-17 and VEGF in breast cancer patients. Front Oncol 2022; 12:1019247. [PMID: 36531035 PMCID: PMC9753904 DOI: 10.3389/fonc.2022.1019247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/17/2022] [Indexed: 12/30/2023] Open
Abstract
OBJECTIVE To investigate the relationship between changes in peripheral blood vascular endothelial growth factor (VEGF), interleukin-5 (IL-5), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-17 (IL-17) concentrations in breast cancer patients and their significance and clinical value in breast cancer staging and invasive metastasis. METHODS From September 2021 to April 2022, 60 breast cancer patients from Chongqing Medical University Hospital No. 2022 were enrolled in the breast breast cancer surgery group, while 30 patients with benign breast disease were enrolled in the control group during the same period. Venous blood samples were collected at admission and 1 week after surgery to determine the expression of these factors in serum. Statistical methods such as Wilcoxon test and Spearman correlation analysis were used to analyze the relationship between the above factors and the clinicopathological characteristics of the patients. RESULTS By analyzing data from patients with benign and malignant breast tumors, an association was found with serum levels of IL-6, IL-17 and VEGF. Their respective areas under the operating characteristic curve were 0.649, 0.734 and 0.656 (P < 0.05). There were significant differences in the cytokine expression levels of IL-17 and VEGF in different molecular typing (P values were 0.008 and 0.040, respectively). The expression levels of IL-17 and VEGF were higher in HER-2 receptor-positive and triple-negative patients than in hormone receptor-positive patients (P < 0.05). Also, no significant correlation was found between the various cytokines mentioned in the article and breast cancer lymph node metastasis and Tumor Node Metastasis stage (TNM stage). In addition, in the breast cancer surgery group, postoperative VEGF levels were lower (P < 0.05) and IL-6 levels were higher (P < 0.05) compared to preoperative levels. CONCLUSIONS Serum IL-6, IL-17, and VEGF are strongly associated with breast cancer development and can be used as a reference indicators for breast cancer diagnosis. In addition, post-operative VEGF levels decreases and IL-6 levels increases compared to pre-operative levels, which can also be used as an a postoperative follow-up indicator. In contrast, IL-5 and IL-8 have not found to be significantly associated with breast cancer patients in this study, which requires further study.
Collapse
Affiliation(s)
- Gang Liu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang-Ting Chen
- Department of Neurology, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Zhang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Chen
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Dansonka-Mieszkowska A, Szafron LA, Kulesza M, Stachurska A, Leszczynski P, Tomczyk-Szatkowska A, Sobiczewski P, Parada J, Kulinczak M, Moes-Sosnowska J, Pienkowska-Grela B, Kupryjanczyk J, Chechlinska M, Szafron LM. PROM1, CXCL8, RUNX1, NAV1 and TP73 genes as independent markers predictive of prognosis or response to treatment in two cohorts of high-grade serous ovarian cancer patients. PLoS One 2022; 17:e0271539. [PMID: 35867729 PMCID: PMC9307210 DOI: 10.1371/journal.pone.0271539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the vast biological diversity and high mortality rate in high-grade ovarian cancers, identification of novel biomarkers, enabling precise diagnosis and effective, less aggravating treatment, is of paramount importance. Based on scientific literature data, we selected 80 cancer-related genes and evaluated their mRNA expression in 70 high-grade serous ovarian cancer (HGSOC) samples by Real-Time qPCR. The results were validated in an independent Northern American cohort of 85 HGSOC patients with publicly available NGS RNA-seq data. Detailed statistical analyses of our cohort with multivariate Cox and logistic regression models considering clinico-pathological data and different TP53 mutation statuses, revealed an altered expression of 49 genes to affect the prognosis and/or treatment response. Next, these genes were investigated in the validation cohort, to confirm the clinical significance of their expression alterations, and to identify genetic variants with an expected high or moderate impact on their products. The expression changes of five genes, PROM1, CXCL8, RUNX1, NAV1, TP73, were found to predict prognosis or response to treatment in both cohorts, depending on the TP53 mutation status. In addition, we revealed novel and confirmed known SNPs in these genes, and showed that SNPs in the PROM1 gene correlated with its elevated expression.
Collapse
Affiliation(s)
- Agnieszka Dansonka-Mieszkowska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Laura Aleksandra Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Kulesza
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Stachurska
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Pawel Leszczynski
- Laboratory of Genetic and Molecular Cancer Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Agnieszka Tomczyk-Szatkowska
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Sobiczewski
- Department of Gynecological Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Parada
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mariusz Kulinczak
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Joanna Moes-Sosnowska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Barbara Pienkowska-Grela
- Cytogenetics Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jolanta Kupryjanczyk
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Chechlinska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Lukasz Michal Szafron
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
9
|
Chehade H, Tedja R, Ramos H, Bawa TS, Adzibolosu N, Gogoi R, Mor G, Alvero AB. Regulatory Role of the Adipose Microenvironment on Ovarian Cancer Progression. Cancers (Basel) 2022; 14:cancers14092267. [PMID: 35565396 PMCID: PMC9101128 DOI: 10.3390/cancers14092267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Adipocytes or fat cells are integral part of the ovarian tumor microenvironment. Secreted factors from adipocytes, as well as direct cell-to-cell interaction with ovarian cancer cells have been shown to directly support ovarian tumor progression. Elucidating the molecular pathways involved is crucial in the identification of relevant targets. Abstract The tumor microenvironment of ovarian cancer is the peritoneal cavity wherein adipose tissue is a major component. The role of the adipose tissue in support of ovarian cancer progression has been elucidated in several studies from the past decades. The adipocytes, in particular, are a major source of factors, which regulate all facets of ovarian cancer progression such as acquisition of chemoresistance, enhanced metastatic potential, and metabolic reprogramming. In this review, we summarize the relevant studies, which highlight the role of adipocytes in ovarian cancer progression and offer insights into unanswered questions and possible future directions of research.
Collapse
Affiliation(s)
- Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Harry Ramos
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Tejeshwar Singh Bawa
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
10
|
Wang X, Du ZW, Xu TM, Wang XJ, Li W, Gao JL, Li J, Zhu H. HIF-1α Is a Rational Target for Future Ovarian Cancer Therapies. Front Oncol 2022; 11:785111. [PMID: 35004308 PMCID: PMC8739787 DOI: 10.3389/fonc.2021.785111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer is the eighth most commonly diagnosed cancer among women worldwide. Even with the development of novel drugs, nearly one-half of the patients with ovarian cancer die within five years of diagnosis. These situations indicate the need for novel therapeutic agents for ovarian cancer. Increasing evidence has shown that hypoxia-inducible factor-1α(HIF-1α) plays an important role in promoting malignant cell chemoresistance, tumour metastasis, angiogenesis, immunosuppression and intercellular interactions. The unique microenvironment, crosstalk and/or interaction between cells and other characteristics of ovarian cancer can influence therapeutic efficiency or promote the disease progression. Inhibition of the expression or activity of HIF-1α can directly or indirectly enhance the therapeutic responsiveness of tumour cells. Therefore, it is reasonable to consider HIF-1α as a potential therapeutic target for ovarian cancer. In this paper, we summarize the latest research on the role of HIF-1α and molecules which can inhibit HIF-1α expression directly or indirectly in ovarian cancer, and drug clinical trials about the HIF-1α inhibitors in ovarian cancer or other solid malignant tumours.
Collapse
Affiliation(s)
- Xin Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Zhen-Wu Du
- Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China.,Research Center, The Second Hospital of Jilin University, Changchun, China
| | - Tian-Min Xu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Jun Wang
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Li Gao
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Jing Li
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Surendran V, Rutledge D, Colmon R, Chandrasekaran A. A novel tumor-immune microenvironment (TIME)-on-Chip mimics three dimensional neutrophil-tumor dynamics and neutrophil extracellular traps (NETs)-mediated collective tumor invasion. Biofabrication 2021; 13:10.1088/1758-5090/abe1cf. [PMID: 33524968 PMCID: PMC8990531 DOI: 10.1088/1758-5090/abe1cf] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Neutrophils are the most abundant type of leukocytes in the blood, traditionally regarded as the first immune responders to infections and inflammations. In the context of tumors, neutrophils have been shown to possess both tumor-promoting and tumor-limiting properties. A better understanding of the inter-cellular dynamics between the neutrophils and aggregated tumors could possibly shed light on the different modalities of neutrophil involvement in tumor progression. To studyin-vitrothe interactional dynamics of neutrophils and growing tumor aggregates, in this work, we engineered a novel, microfluidics-integrated, three-dimensional (3D) tumor-immune microenvironment (TIME)-on-Chip device, and we investigated the effect of neutrophils on the inception of collective 3D invasion of ovarian tumor cells. Herein, tumor spheroids generated and cultured on hydrogel based multi-microwell plates, and embedded within collagen matrix of defined thickness, were magnetically hybrid-integrated with a 3D bioprinting enabled microfluidic system fabricated on a porous membrane and carrying neutrophils. This setting recreated a typical TIMEin-vitroto model dynamic neutrophil migration and 3D tumor invasion. Using this device, we observed that neutrophils respond to the growing tumor spheroids through both chemotaxis and generation of neutrophil extracellular traps (NETs). The formation of NETs stimulated the reciprocation of tumor cells from their aggregated state to collectively invade into the surrounding collagen matrix, in a manner more significant compared to their response to known tumor-derived stimulants such as transforming growth factor and Interleukin- 8. This effect was reversed by drug-induced inhibition of NETs formation, suggesting that induction of NETs by cancer cells could be a pro-migratory tumor behavior. Further, we additionally report a previously unidentified, location-dictated mechanism of NETosis, in which NETs formation within the stromal extracellular collagen matrix around the spheroids, and not tumor-contacted NETs, is important for the induction of collective invasion of the ovarian tumor cells, thus providing a rationale for new anti-tumor therapeutics research.
Collapse
Affiliation(s)
- Vikram Surendran
- Bioinspired Microengineering Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro 27411, United States of America
| | - Dylan Rutledge
- Bioinspired Microengineering Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro 27411, United States of America
| | - Ramair Colmon
- Bioinspired Microengineering Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro 27411, United States of America
| | - Arvind Chandrasekaran
- Bioinspired Microengineering Laboratory, Department of Chemical, Biological and Bio Engineering, North Carolina A&T State University, Greensboro 27411, United States of America
| |
Collapse
|
12
|
Thongchot S, Jamjuntra P, Therasakvichya S, Warnnissorn M, Ferraresi A, Thuwajit P, Isidoro C, Thuwajit C. Interleukin‑8 released by cancer‑associated fibroblasts attenuates the autophagy and promotes the migration of ovarian cancer cells. Int J Oncol 2021; 58:14. [PMID: 33649784 PMCID: PMC7949624 DOI: 10.3892/ijo.2021.5194] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment composed of a mixture of stromal cells and their secretions has a marked impact on cancer progression. In particular, soluble factors and metabolites contribute to malignancy through the dysregulation of autophagy in cancer cells. The present study investigated the effects of ovarian cancer‑associated fibroblasts (OVCAFs) with their secretory substances on the autophagy and migration of ovarian cancer cells. The conditioned‑medium (CM) of OVCAFs isolated from fresh human ovarian cancer tissues was analyzed for the levels of 27 common cytokines/chemokines using a cytokine array. Autophagy in cancer cells was assessed by determining the expression of the vacuolar form of LC3 by western blot analysis and immunofluorescence. Cancer cell migration was assessed by Transwell migration assay. Interleukin (IL)‑8 was found to be the most highly upregulated cytokine among the cytokines/chemokines found in the OVCAF‑CM. The role of IL‑8 in ovarian cancer cell migration and its mechanistic link with autophagy was investigated. Recombinant human IL‑8 (rhIL‑8) stimulated the migration of SKOV3 and Kuramochi ovarian cancer cells, and concurrently downregulated basal autophagy, in concentration‑dependent manner. Compared to the CM of control counterpart normal fibroblasts isolated from benign ovaries (OVNF‑CM), the CM from 3 OVCAF isolates (namely, OVCAF‑9, ‑20 and ‑43) exerted effects similar to rhIL‑8 on both cancer cell lines. The pharmacological induction of autophagy with rapamycin or metformin attenuated the pro‑migratory effects of IL‑8. Neutralizing anti‑IL‑8 antibody counteracted the inhibitory effect of OVCAF‑CM on basal autophagy. On the whole, the present study highlights the involvement of IL‑8 released by CAFs in the ovarian tumor microenvironment in promoting cancer cell migration through the suppression of autophagy.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pranisa Jamjuntra
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suwanit Therasakvichya
- Department of Gynecology and Obstetrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malee Warnnissorn
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, University of Eastern Piedmont 'A. Avogadro', I‑28100 Novara, Italy
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, University of Eastern Piedmont 'A. Avogadro', I‑28100 Novara, Italy
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
13
|
Dai L, Song K, Di W. Adipocytes: active facilitators in epithelial ovarian cancer progression? J Ovarian Res 2020; 13:115. [PMID: 32967712 PMCID: PMC7513299 DOI: 10.1186/s13048-020-00718-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
There is growing evidence that adipocytes play important roles in the progression of multiple cancers. Moreover, in obesity, adipocytes alter their original functions and contribute to the metabolic and inflammatory changes of adipose tissue microenvironment, which can further enhance tumor development. At present, the roles of adipocytes in the pathogenesis of epithelial ovarian cancer (EOC) are far from being fully elucidated. Herein, we summarized the recent advances in understanding the roles of adipocytes in EOC progression. Adipocytes, close neighbors of EOC tissue, promote EOC growth, invasion, metastasis and angiogenesis through adipokine secretion, metabolic remodeling and immune microenvironment modulation. Moreover, adipocytes are important therapeutic targets and may work as useful anticancer drug delivery depot for EOC treatment. Furthermore, adipocytes also act as a therapeutic obstacle for their involvement in EOC treatment resistance. Hence, better characterization of the adipocytes in EOC microenvironment and the crosstalk between adipocytes and EOC cells may provide insights into EOC progression and suggest novel therapeutic opportunities.
Collapse
Affiliation(s)
- Lan Dai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Keqi Song
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
14
|
Göbel A, Zinna VM, Dell'Endice S, Jaschke N, Kuhlmann JD, Wimberger P, Rachner TD. Anti-tumor effects of mevalonate pathway inhibition in ovarian cancer. BMC Cancer 2020; 20:703. [PMID: 32727400 PMCID: PMC7388525 DOI: 10.1186/s12885-020-07164-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ovarian cancer remains the most fatal gynecological malignancy. Current therapeutic options are limited due to late diagnosis in the majority of the cases, metastatic spread to the peritoneal cavity and the onset of chemo-resistance. Thus, novel therapeutic approaches are required. Statins and amino-bisphosphonates are inhibitors of the mevalonate pathway, which is a fundamental pathway of cellular metabolism, essential for cholesterol production and posttranslational protein farnesylation and geranylgeranylation. While this pathway has emerged as a promising treatment target in several human malignancies, its potential as a therapeutic approach in ovarian cancer is still not fully understood. METHODS Human ovarian cancer cell lines (IGROV-1, A2780, A2780cis) were treated with increasing concentrations (0.5-100 μM) of statins (simvastatin, atorvastatin, rosuvastatin) and zoledronic acid. Effects on cell vitality and apoptosis were assessed using Cell Titer Blue®, Caspase 3/7 Glo®, clonogenic assays as well as cleaved poly (ADP-ribose) polymerase (cPARP) detection. The inhibition of the mevalonate pathway was confirmed using Western Blot of unprenylated Ras and Rap1a proteins. Quantitative real-time PCR and ELISA were used to analyze modulations on several key regulators of ovarian cancer tumorigenesis. RESULTS The treatment of IGROV-1 and A2780 cells with statins and zoledronic acid reduced vitality (by up to 80%; p < 0.001) and induced apoptosis by up to 8-folds (p < 0.001) in a dose-dependent fashion. Rescue experiments using farnesyl pyrophosphate or geranylgeranyl pyrophosphate evidenced that blocked geranylgeranylation is the major underlying mechanism of the pro-apoptotic effects. Gene expression of the tumor-promoting cytokines and mediators, such as transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF), interleukin (IL)-8, and IL-6 were significantly suppressed by statins and zoledronic acid by up to 90% (p < 0.001). For all readouts, simvastatin was most potent of all agents used. Cisplatin-resistant A2780cis cells showed a relative resistance to statins and zoledronic acid. However, similar to the effects in A2780 cells, simvastatin and zoledronic acid significantly induced caspase 3/7 activation (6-folds; p < 0.001). CONCLUSION Our in vitro findings point to promising anti-tumor effects of statins and zoledronic acid in ovarian cancer and warrant additional validation in preclinical and clinical settings.
Collapse
Affiliation(s)
- Andy Göbel
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Valentina M Zinna
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stefania Dell'Endice
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany
| | - Nikolai Jaschke
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Jan Dominik Kuhlmann
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Pauline Wimberger
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technische Universität, Fetscherstraße 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Sohn SH, Kim B, Sul HJ, Choi BY, Kim HS, Zang DY. Foretinib Inhibits Cancer Stemness and Gastric Cancer Cell Proliferation by Decreasing CD44 and c-MET Signaling. Onco Targets Ther 2020; 13:1027-1035. [PMID: 32099405 PMCID: PMC7006849 DOI: 10.2147/ott.s226951] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose CD44 isoforms are highly expressed in cancer stem cells, initiating tumor growth and sustaining tumor self-renewal. Among these isoforms, CD44 variant 9 (CD44v9) is overexpressed in chronic inflammation-induced cancer. CD44 and the mesenchymal-to-epithelial transition (MET) receptor tyrosine kinase are coactivated in some gastric cancers (GCs). In this study, we characterized MET and CD44 expression and signaling in human GC cell lines and analyzed differences in the susceptibility of these lines to foretinib. Patients and Methods We analyzed cell viability and the rate of apoptotic cells using MTS assays and flow cytometry, respectively. Gene and protein expression were assessed by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and immunoblotting, respectively. Results Foretinib treatment resulted in dose-dependent inhibition of growth in c-MET-amplified MKN45 and SNU620 cells with concomitant induction of apoptosis, but not in c-MET-reduced MKN28 and AGS cells. Foretinib treatment also significantly reduced phosphor-c-MET, phosphor-AKT, beta-catenin, and COX-2 protein expression in MKN45 and SNU620 cells. Interestingly, foretinib significantly reduced CD44, CD44v9, COX-2, OCT3/4, CCND1, c-MYC, VEGFA, and HIF-1a gene expression in CD44 and MET coactivated MKN45 cells and increased CD44s gene expression; in contrast, these drugs were only slightly active against SNU620 cells. Conclusion The results of this study indicate that foretinib could be a therapeutic agent for the prevention or treatment of GCs positive for CD44v9 and c-MET.
Collapse
Affiliation(s)
- Sung-Hwa Sohn
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
| | - Bohyun Kim
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
| | - Hee Jung Sul
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
| | - Bo Youn Choi
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea
| | - Hyeong Su Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do 14068, Republic of Korea
| | - Dae Young Zang
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Republic of Korea.,Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do 14068, Republic of Korea
| |
Collapse
|
16
|
Li JN, Zhang Z, Wu GZ, Yao DB, Cui SS. Claudin-15 overexpression inhibits proliferation and promotes apoptosis of Schwann cells in vitro. Neural Regen Res 2020; 15:169-177. [PMID: 31535666 PMCID: PMC6862392 DOI: 10.4103/1673-5374.264463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Our previous experiments have discovered that Claudin-15 was up-regulated in Schwann cells of the distal nerve stumps of rat models of sciatic nerve injury. However, how Claudin-15 affects Schwann cell function is still unknown. This study aimed to identify the effects of Claudin-15 on proliferation and apoptosis of Schwann cells cultured in vitro and explore the underlying mechanisms. Primary Schwann cells were obtained from rats. Claudin-15 in Schwann cells was knocked down using siRNA (siRNA-1 group) compared with the negative control siRNA transfection group (negative control group). Claudin-15 in Schwann cells was overexpressed using pGV230-Claudin-15 plasmid (pGV230-Claudin-15 group). The pGV230 transfection group (pGV230 group) acted as the control of the pGV230-Claudin-15 group. Cell proliferation was analyzed with EdU assay. Cell apoptosis was analyzed with flow cytometric analysis. Cell migration was analyzed with Transwell inserts. The mRNA and protein expressions were analyzed with quantitative polymerase chain reaction assay and western blot assay. The results showed that compared with the negative control group, cell proliferation rate was up-regulated; p-AKT/AKT ratio, apoptotic rate, p-c-Jun/c-Jun ratio, mRNA expression of protein kinase C alpha, Bcl-2 and Bax were down-regulated; and mRNA expression of neurotrophins basic fibroblast growth factor and neurotrophin-3 were increased in the siRNA-1 group. No significant difference was found in cell migration between the negative control and siRNA-1 groups. Compared with the pGV230 group, the cell proliferation rate was down-regulated; apoptotic rate, p-c-Jun/c-Jun ratio and c-Fos protein expression increased; mRNA expression of protein kinase C alpha and Bax decreased; and mRNA expressions of neurotrophins basic fibroblast growth factor and neurotrophin-3 were up-regulated in the pGV230-Claudin-15 group. The above results demonstrated that overexpression of Claudin-15 inhibited Schwann cell proliferation and promoted Schwann cell apoptosis in vitro. Silencing of Claudin-15 had the reverse effect and provided neuroprotective effect. This study was approved by the Experimental Animal Ethics Committee of Jilin University of China (approval No. 2016-nsfc001) on March 5, 2016.
Collapse
Affiliation(s)
- Jian-Nan Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhan Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guang-Zhi Wu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Deng-Bing Yao
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shu-Sen Cui
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
17
|
Łukaszewicz-Zając M, Pączek S, Mroczko B. The significance of chemokine CXCL-8 in esophageal carcinoma. Arch Med Sci 2020; 16:475-480. [PMID: 32190161 PMCID: PMC7069419 DOI: 10.5114/aoms.2017.71933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023] Open
Abstract
Chemokines are a group of small molecular weight proteins that are structurally related. These molecules play an important role in the growth, differentiation and activation of many types of cells [1, 2]. Chemokines are synthesized mostly by leukocytes and act through their cognate G-protein coupled receptors to cause a cellular response, such as migration, adhesion or chemotaxis [1, 3]. The chemokine family has been classified into four classes: CC, CXC, CX3C, and (X), based on the arrangement of N-terminal cysteine residues [4]. These small peptides may also be grouped into inflammatory, homeostatic or dual function chemokines. Inflammatory chemokines can be induced during an immune response, whereas homeostatic chemokines are involved in control of cell migration [5]. The chemokine receptors are seven-transmembrane receptors coupled to G-proteins, that consist of an N-terminus outside the cell surface, three extracellular and three intracellular loops as well as a C-terminus in the cytoplasm [6, 7].
Collapse
Affiliation(s)
| | - Sara Pączek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
18
|
Wen J, Zhao Z, Huang L, Wang L, Miao Y, Wu J. IL-8 promotes cell migration through regulating EMT by activating the Wnt/β-catenin pathway in ovarian cancer. J Cell Mol Med 2019; 24:1588-1598. [PMID: 31793192 PMCID: PMC6991660 DOI: 10.1111/jcmm.14848] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Interleukin‐8 (IL‐8), as an inflammatory chemokine, has been previously shown to contribute to tumorigenesis in several malignancies including the ovarian cancer. However, little is known about how IL‐8 promotes the metastasis and invasion of ovarian cancers cells. In this study, we found that IL‐8 and its receptors CXCR1 and CXCR2 were up‐regulated in advanced ovarian serous cancer tissues. Furthermore, the level of IL‐8 and its receptors CXCR1 and CXCR2 expression were associated with ovarian cancer stage, grade and lymph node metastasis. In vitro, IL‐8 promoted ovarian cancer cell migration, initiated the epithelial‐mesenchymal transition (EMT) program and activated Wnt/β‐catenin signalling. However, when treated with Reparixin (inhibitor of both IL‐8 receptors CXCR1 and CXCR2), effect of both endogenous and exogenous IL‐8 was reversed. Together, our results indicated that IL‐8 triggered ovarian cancer cells migration partly through Wnt/β‐catenin pathway mediated EMT, and IL‐8 may be an important molecule in the invasion and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Jirui Wen
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhiwei Zhao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Liwei Huang
- West China School of Stomatology Medicine, Sichuan University, Chengdu, China
| | - Ling Wang
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yali Miao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiang Wu
- Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Zhang J, Wang Y, Fan C, Xiao X, Zhang Q, Xu T, Jiang C. Interleukin‐8/β‐catenin mediates epithelial–mesenchymal transition in ameloblastoma. Oral Dis 2019; 25:1964-1971. [PMID: 31397928 DOI: 10.1111/odi.13173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Jie Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, School of Stomatology Qingdao University Qingdao China
| | - Yanhui Wang
- Department of Oral Implantology The Affiliated Hospital of Qingdao University Qingdao China
| | - Cunhui Fan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, School of Stomatology Qingdao University Qingdao China
| | - Ximei Xiao
- Department of Endodontics, The Affiliated Hospital of Qingdao University, School of Stomatology Qingdao University Qingdao China
| | - Qian Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, School of Stomatology Qingdao University Qingdao China
| | - Tao Xu
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, School of Stomatology Qingdao University Qingdao China
| | - Chunmiao Jiang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, School of Stomatology Qingdao University Qingdao China
| |
Collapse
|
20
|
Ascites from Ovarian Cancer Induces Novel Fucosylated Proteins. CANCER MICROENVIRONMENT 2019; 12:181-195. [PMID: 31267484 DOI: 10.1007/s12307-019-00227-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
Ovarian cancer is considered to be the most lethal type of gynecological cancer. During the advanced stages of ovarian cancer, an accumulation of ascites is observed. Fucosylation has been classified as an abnormal post-translational modification that is present in many diseases, including ovarian cancer. Ovarian cancer cells that are cultured with ascites stimulation change their morphology; concomitantly, the fucosylation process is altered. However, it is not known which fucosylated proteins are modified. The goal of this work was to identify the differentially fucosylated proteins that are expressed by ovarian cancer cell lines that are cultured with ovarian cancer patients' ascites. Aleuria aurantia lectin was used to detect fucosylation, and some changes were observed, especially in the cell membrane. Affinity chromatography and mass spectrometry (MALDI-TOF) were used to identify 6 fucosylated proteins. Four proteins (Intermediate filament family orphan 1 [IFFO1], PHD finger protein 20-like protein 1 [PHF20L1], immunoglobulin gamma 1 heavy chain variable region partial [IGHV1-2], and Zinc finger protein 224 [ZNF224]) were obtained from cell cultures stimulated with ascites, and the other two proteins (Peregrin [BRPF1] and Dystrobrevin alpha [DTNA]) were obtained under normal culture conditions. The fucosylated state of some of these proteins was further analyzed. The experimental results show that the ascites of ovarian cancer patients modulated the fucosylation process. The PHD finger protein 20-like protein 1, Zinc finger protein 224 and Peregrin proteins colocalize with fucosylation at different levels.
Collapse
|
21
|
Arzmi MH, Dashper S, McCullough M. Polymicrobial interactions of Candida albicans and its role in oral carcinogenesis. J Oral Pathol Med 2019; 48:546-551. [PMID: 31183906 DOI: 10.1111/jop.12905] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
The oral microbiome is composed of microorganisms residing in the oral cavity, which are critical components of health and disease. Disruption of the oral microbiome has been proven to influence the course of oral diseases, especially among immunocompromised patients. Oral microbiome is comprised of inter-kingdom microorganisms, including yeasts such as Candida albicans, bacteria, archaea and viruses. These microorganisms can interact synergistically, mutualistically and antagonistically, wherein the sum of these interactions dictates the composition of the oral microbiome. For instance, polymicrobial interactions can improve the ability of C albicans to form biofilm, which subsequently increases the colonisation of oral mucosa by the yeast. Polymicrobial interactions of C albicans with other members of the oral microbiome have been reported to enhance the malignant phenotype of oral cancer cells, such as the attachment to extracellular matrix molecules (ECM) and epithelial-mesenchymal transition (EMT). Polymicrobial interactions may also exacerbate an inflammatory response in oral epithelial cells, which may play a role in carcinogenesis. This review focuses on the role of polymicrobial interactions between C albicans and other oral microorganisms, including its role in promoting oral carcinogenesis.
Collapse
Affiliation(s)
- Mohd Hafiz Arzmi
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Stuart Dashper
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Qu J, Cheng T, Liu L, Heng J, Liu X, Sun Z, Wang W, Li K, Yang N. Mast cells induce epithelial-to-mesenchymal transition and migration in non-small cell lung cancer through IL-8/Wnt/β-catenin pathway. J Cancer 2019; 10:3830-3841. [PMID: 31333800 PMCID: PMC6636305 DOI: 10.7150/jca.29953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 05/12/2019] [Indexed: 01/02/2023] Open
Abstract
Background: In the various cancer, mast cells (MCs) infiltration is correlated with a worse prognosis. There is an increasing evidence that MCs and their mediators are participated in remodeling of the tumor microenvironment and facilitate tumor growth, epithelial-to-mesenchymal transition (EMT) and metastasis. Methods: The transwell was conducted to evaluate the correlations between MCs and non-small cell lung cancer (NSCLC) cells in vitro. The RNA interference of β-catenin was performed to further explore the signaling pathway. Lung adenocarcinoma cell line A549 and human MC (HMC-1) were subcutaneously injected into BALB/c nude mice. The conventional experiment methods (such as quantitative RT-PCR Western Blot, Immunofluorescence, and ELISA) were used in the present study. Results: We found that high density of MCs in NSCLC correlates with worse prognosis. The NSCLC cells could release CCL5 and recruit MCs to the tumor microenvironment. Then, we explored that HMC-1 transplantation accelerated the growth of A549 cell in nude mice. Moreover, the MCs-derived factors were responsible for tumor growth. When NSCLC cells were activated, MCs produced various factors that induced EMT and migration. We also identified that CXCL8/interleukin (IL)-8 served as the major modulator containing in the activated MC conditioned medium. Furthermore, MCs and exogenous IL-8 promoted β-catenin phosphorylation in NSCLC cells. Inhibiting the Wnt/β-catenin pathway by RNA interference could revert EMT and migration of NSCLC. Conclusions: Our study suggests that MCs are recruited into NSCLC microenvironment and improve the EMT and migration of cancer cells, thereby accelerating the growth of NSCLC.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Clinical Pharmaceutical Research Institution, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China.,Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China
| | - Tianli Cheng
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China
| | - Li Liu
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China
| | - Jianfu Heng
- Department of Clinical Pharmaceutical Research Institution, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China.,Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China
| | - Xiaobao Liu
- Department of Clinical Pharmaceutical Research Institution, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China
| | - Ziyi Sun
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China
| | - Wenxiang Wang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China
| | - Kunyan Li
- Department of Clinical Pharmaceutical Research Institution, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China
| | - Nong Yang
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, 410008, China
| |
Collapse
|
23
|
The Vicious Cross-Talk between Tumor Cells with an EMT Phenotype and Cells of the Immune System. Cells 2019; 8:cells8050460. [PMID: 31096701 PMCID: PMC6562673 DOI: 10.3390/cells8050460] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
Carcinoma cells that undergo an epithelial-mesenchymal transition (EMT) and display a predominantly mesenchymal phenotype (hereafter EMT tumor cells) are associated with immune exclusion and immune deviation in the tumor microenvironment (TME). A large body of evidence has shown that EMT tumor cells and immune cells can reciprocally influence each other, with EMT cells promoting immune exclusion and deviation and immune cells promoting, under certain circumstances, the induction of EMT in tumor cells. This cross-talk between EMT tumor cells and immune cells can occur both between EMT tumor cells and cells of either the native or adaptive immune system. In this article, we review this evidence and the functional consequences of it. We also discuss some recent evidence showing that tumor cells and cells of the immune system respond to similar stimuli, activate the expression of partially overlapping gene sets, and acquire, at least in part, identical functionalities such as migration and invasion. The possible significance of these symmetrical changes in the cross-talk between EMT tumor cells and immune cells is addressed. Eventually, we also discuss possible therapeutic opportunities that may derive from disrupting this cross-talk.
Collapse
|
24
|
Kapka-Skrzypczak L, Popek S, Sawicki K, Drop B, Czajka M, Jodłowska-Jędrych B, Matysiak-Kucharek M, Furman-Toczek D, Zagórska-Dziok M, Kruszewski M. IL‑6 prevents CXCL8‑induced stimulation of EpCAM expression in ovarian cancer cells. Mol Med Rep 2019; 19:2317-2322. [PMID: 30747214 DOI: 10.3892/mmr.2019.9890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/19/2018] [Indexed: 11/06/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM), which is expressed in the majority of epithelial tissues, exhibits tumor growth promoting abilities and is overexpressed in human epithelial ovarian cancer. Therefore, EpCAM is considered to be a promising target for specific immune‑based therapies. The present study evaluated the role of IL‑6 and IL‑8 in the expression of EpCAM in the A2780 human ovarian cancer cell line. Furthermore, the cellular localization of the EpCAM protein in A2780 cells was determined and the effect of EpCAM inhibition on the proliferation of the A2780 cells was investigated. An MTT assay demonstrated that blocking EpCAM with anti‑EPCAM antibodies had no effect on cellular metabolic activity (proliferation). Gene expression analysis revealed that IL‑8 increased EpCAM expression, whereas IL‑6 and the combination of IL‑6/IL‑8 had no effect on EpCAM expression. Immunofluorescence analysis confirmed that EpCAM is expressed on A2780 cell membranes. The present results demonstrated that IL‑8 increased EpCAM expression at the mRNA level in ovarian cancer cells and suggested a potential role of IL‑6 as an inhibitor of IL‑8‑stimulated EpCAM expression.
Collapse
Affiliation(s)
- Lucyna Kapka-Skrzypczak
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| | - Sylwia Popek
- Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, 20‑080 Lublin, Poland
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 0‑090 Lublin, Poland
| | - Bartłomiej Drop
- Department of Informatics and Medical Statistics, Faculty of Health Sciences, Medical University, 20‑090 Lublin, Poland
| | - Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 0‑090 Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20‑080 Lublin, Poland
| | | | - Dominika Furman-Toczek
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| | - Martyna Zagórska-Dziok
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| | - Marcin Kruszewski
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| |
Collapse
|
25
|
Yan L, Xu F, Dai CL. Relationship between epithelial-to-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:203. [PMID: 30157906 PMCID: PMC6114477 DOI: 10.1186/s13046-018-0887-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a complex process involving multiple genes, steps and stages. It refers to the disruption of tight intercellular junctions among epithelial cells under specific conditions, resulting in loss of the original polarity, order and consistency of the cells. Following EMT, the cells show interstitial cell characteristics with the capacity for adhesion and migration, while apoptosis is inhibited. This process is critically involved in embryogenesis, wound-healing, tumor invasion and metastasis. The tumor microenvironment is composed of infiltrating inflammatory cells, stromal cells and the active medium secreted by interstitial cells. Most patients with hepatocellular carcinoma (HCC) have a history of hepatitis virus infection. In such cases, major components of the tumor microenvironment include inflammatory cells, inflammatory factors and virus-encoded protein are major components. Here, we review the relationship between EMT and the inflammatory tumor microenvironment in the context of HCC. We also further elaborate the significant influence of infiltrating inflammatory cells and inflammatory mediators as well as the products expressed by the infecting virus in the tumor microenvironment on the EMT process.
Collapse
Affiliation(s)
- Long Yan
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - Feng Xu
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - Chao-Liu Dai
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China.
| |
Collapse
|
26
|
Integrin αvβ6 Promotes Lung Cancer Proliferation and Metastasis through Upregulation of IL-8-Mediated MAPK/ERK Signaling. Transl Oncol 2018; 11:619-627. [PMID: 29573639 PMCID: PMC6002349 DOI: 10.1016/j.tranon.2018.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/16/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is notorious for high morbidity and mortality around the world. Interleukin (IL)-8, a proinflammatory chemokine with tumorigenic and proangiogenic effects, promotes lung cancer cells growth and migration and contributes to cell aggressive phenotypes. Integrin αvβ6 is a receptor of transmembrane heterodimeric cell surface adhesion, and its overexpression correlates with poor survival from non–small cell lung cancer. However, the cross talk between αvβ6 and IL-8 in lung cancer has not been characterized so far. Herein, human lung cancer samples were analyzed, and it revealed that the immunohistochemical and mRNA expression of integrin αvβ6 was significantly correlated with the expression of IL-8. Furthermore, in vitro, integrin αvβ6 increased cell proliferation, migration, and invasion by impairing the expressions of MMP-2 and MMP-9 and inhibited cell apoptosis in human lung cancer cells A549 and H460. In addition, integrin αvβ6 upregulated IL-8 expression through activating MAPK/ERK signaling. The in vivo experiment showed that integrin αvβ6 promoted tumor growth in xenograft model mice by accelerating tumor volume and reducing apoptosis. Meanwhile, lung metastasis model experiment suggested that integrin αvβ6 stimulated tumor metastasis with the increase of lung/total weight and tumor nodules. Simultaneously, integrin αvβ6 upregulated IL-8 expression detected by both Western blots and immunohistochemistry, along with the activation of MAPK/ERK signaling. Overall, these data suggested that, in vitro and in vivo, integrin αvβ6 promoted lung cancer proliferation and metastasis, at least in part, through upregulation of IL-8–mediated MAPK/ERK signaling. Thus, the inhibition of integrin αvβ6 and IL-8 may be the key for the treatment of lung cancer.
Collapse
|
27
|
Ji S, Zhang W, Zhang X, Hao C, Hao A, Gao Q, Zhang H, Sun J, Hao J. Sohlh2 suppresses epithelial to mesenchymal transition in breast cancer via downregulation of IL-8. Oncotarget 2018; 7:49411-49424. [PMID: 27384482 PMCID: PMC5226517 DOI: 10.18632/oncotarget.10355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the deadliest cancers worldwide due to its strong metastasis to other organs. Metastasis of breast cancer involves a complex set of events, including epithelial-mesenchymal transition (EMT) that increases invasiveness of the tumor cells. We previously identified sohlh2 is a tumor suppressor in the pathogenesis of ovarian cancer. However, the functions of sohlh2 in breast cancer cell migration and invasion remain unknown. Here we report a novel sohlh2/IL-8 signaling pathway in the invasive breast cancer. We observed sohlh2 expression was downregulated in the metastatic breast cancer. Ectopic sohlh2 expression in breast cancer cells reduced EMT and inhibited cell migration and invasion in vitro, and metastasis in vivo. Moreover, the depletion of sohlh2 induced the opposite effects to ectopic sohlh2 expression. RNA-Seq data from a sohlh2 knockdown breast cancer cell line showed that after sohlh2 depletion, the mRNA level of interleukin 8 (IL-8) was significantly increased in these cancer cells, which consequently increased secretion of IL-8 protein. Using chromatin immunoprecipitation and reporter assays, we demonstrated that sohlh2 bound to IL-8 promoter and repressed its activities. The enhanced migration and invasion in sohlh2 -ablated MCF-7 cells were blocked by knockdown of IL-8 expression, while exogenous IL-8 neutralized the anti-migratory and invasive activities of sohlh2 in MDA-MB-231cells. Overall, these results demonstrate that sohlh2 functions as a tumor metastasis suppressor via suppressing IL-8 expression in breast cancer.
Collapse
Affiliation(s)
- Shufang Ji
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenfang Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiaoli Zhang
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Chunyan Hao
- Department of Pathology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Aijun Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Qing Gao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Hongying Zhang
- Department of Biology, Jinan Vocational College of Nursing, Jinan 250000, PR China
| | - Jinhao Sun
- Department of Human Anatomy, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan 250012, PR China
| |
Collapse
|
28
|
Bie Q, Zhang B, Sun C, Ji X, Barnie PA, Qi C, Peng J, Zhang D, Zheng D, Su Z, Wang S, Xu H. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells. Oncotarget 2017; 8:18914-18923. [PMID: 28145881 PMCID: PMC5386657 DOI: 10.18632/oncotarget.14835] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells are important cells in tumor microenvironment. We have previously demonstrated that IL-17B/IL-17RB signal promoted progression of gastric cancer. In this study, we further explored the effect of IL-17B on mesenchymal stem cells in tumor microenvironment and its impact on the tumor progression. The results showed that IL-17B induced the expression of stemness-related genes Nanog, Sox2, and Oct4 in mesenchymal stem cells and enhanced its tumor-promoting effect. The supernatant from cultured mesenchymal stem cells after treating with exogenous rIL-17B promoted the proliferation and migration of MGC-803, therefor suggesting that rIL-17B might promote mesenchymal stem cells to produce soluble factors. In addition, rIL-17B also activated the NF-κΒ, STAT3, β-catenin pathway in mesenchymal stem cells. Our data revealed a new mechanism that IL-17B enhanced the progression of gastric cancer by activating mesenchymal stem cells.
Collapse
Affiliation(s)
- Qingli Bie
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bin Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Caixia Sun
- Department of Anesthesiology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaoyun Ji
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Prince Amoah Barnie
- Department of Biomedical and Forensic Sciences, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Chen Qi
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jingjing Peng
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Danyi Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dong Zheng
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhaoliang Su
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shengjun Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huaxi Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
29
|
Klymenko Y, Kim O, Stack MS. Complex Determinants of Epithelial: Mesenchymal Phenotypic Plasticity in Ovarian Cancer. Cancers (Basel) 2017; 9:cancers9080104. [PMID: 28792442 PMCID: PMC5575607 DOI: 10.3390/cancers9080104] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Unlike most epithelial malignancies which metastasize hematogenously, metastasis of epithelial ovarian cancer (EOC) occurs primarily via transcoelomic dissemination, characterized by exfoliation of cells from the primary tumor, avoidance of detachment-induced cell death (anoikis), movement throughout the peritoneal cavity as individual cells and multi-cellular aggregates (MCAs), adhesion to and disruption of the mesothelial lining of the peritoneum, and submesothelial matrix anchoring and proliferation to generate widely disseminated metastases. This exceptional microenvironment is highly permissive for phenotypic plasticity, enabling mesenchymal-to-epithelial (MET) and epithelial-to-mesenchymal (EMT) transitions. In this review, we summarize current knowledge on EOC heterogeneity in an EMT context, outline major regulators of EMT in ovarian cancer, address controversies in EMT and EOC chemoresistance, and highlight computational modeling approaches toward understanding EMT/MET in EOC.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - Oleg Kim
- Department of Applied and Computational Mathematics and Statistics, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
- Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA.
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA.
| |
Collapse
|
30
|
Suarez‐Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol 2017; 11:805-823. [PMID: 28599100 PMCID: PMC5496491 DOI: 10.1002/1878-0261.12095] [Citation(s) in RCA: 411] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Tumors can be depicted as wounds that never heal, and are infiltrated by a large array of inflammatory and immune cells. Tumor-associated chronic inflammation is a hallmark of cancer that fosters progression to a metastatic stage, as has been extensively reviewed lately. Indeed, inflammatory cells persisting in the tumor establish a cross-talk with tumor cells that may result in a phenotype switch into tumor-supporting cells. This has been particularly well described for macrophages and is referred to as tumor-associated 'M2' polarization. Epithelial-to-mesenchymal transition (EMT), the embryonic program that loosens cell-cell adherence complexes and endows cells with enhanced migratory and invasive properties, can be co-opted by cancer cells during metastatic progression. Cancer cells that have undergone EMT are more aggressive, displaying increased invasiveness, stem-like features, and resistance to apoptosis. EMT programs can also stimulate the production of proinflammatory factors by cancer cells. Conversely, inflammation is a potent inducer of EMT in tumors. Therefore, the two phenomena may sustain each other, in an alliance for metastasis. This is the focus of this review, where the interconnections between EMT programs and cellular and molecular actors of inflammation are described. We also recapitulate data linking the EMT/inflammation axis to metastasis.
Collapse
Affiliation(s)
- Meggy Suarez‐Carmona
- National Center for Tumor Diseases (NCT) – University Hospital HeidelbergGermany
| | - Julien Lesage
- Laboratory of Tumor and Development BiologyGIGA‐Cancer University of LiègeBelgium
| | - Didier Cataldo
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| | - Christine Gilles
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| |
Collapse
|
31
|
Zhao Z, Wang S, Lin Y, Miao Y, Zeng Y, Nie Y, Guo P, Jiang G, Wu J. Epithelial-mesenchymal transition in cancer: Role of the IL-8/IL-8R axis. Oncol Lett 2017; 13:4577-4584. [PMID: 28599458 DOI: 10.3892/ol.2017.6034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process that is associated with cancer metastasis and invasion. In cancer, EMT promotes cell motility, invasion and distant metastasis. Interleukin (IL)-8 is highly expressed in tumors and may induce EMT. The IL-8/IL-8R axis has a vital role in EMT in carcinoma, which is regulated by several signaling pathways, including the transforming growth factor β-spleen associated tyrosine kinase/Src-AKT/extracellular signal-regulated kinase, p38/Jun N-terminal kinase-activating transcription factor-2, phosphoinositide 3-kinase/AKT, nuclear factor-κB and Wnt signaling pathways. Blocking the IL-8/IL-8R signaling pathway may be a novel strategy to reduce metastasis and improve patient survival rates. This review will cover IL-8-IL-8R signaling pathway in tumor epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Zhiwei Zhao
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shichao Wang
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, Cancer Centre Karolinska, SE-171 76 Stockholm, Sweden
| | - Yali Miao
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ye Zeng
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yongmei Nie
- School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Peng Guo
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guangyao Jiang
- Outpatient Building, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jiang Wu
- West China Medical Center, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,School of Basic Medicine, Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
32
|
Kim S, Kim B, Song YS. Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci 2016; 107:1173-1178. [PMID: 27297561 PMCID: PMC5021036 DOI: 10.1111/cas.12987] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 02/06/2023] Open
Abstract
Malignant ascites constitute a unique tumor microenvironment providing a physical structure for the accumulation of cellular and acellular components. Ascites is initiated and maintained by physical and biological factors resulting from underlying disease and forms an ecosystem that contributes to disease progression. It has been demonstrated that the cellular contents and the molecular signatures of ascites change continuously during the course of a disease. Over the past decade, increasing attention has been given to the characterization of components of ascites and their role in the progression of ovarian cancer, the most malignant gynecologic cancer in women. This review will discuss the role of ascites in disease progression, in terms of modulating cancer cell behavior and contributing to tumor heterogeneity.
Collapse
Affiliation(s)
- Soochi Kim
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Boyun Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Nano System Institute, Seoul National University, Seoul, Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, College of Medicine, Seoul National University, Seoul, Korea.
- Cancer Research Institute, Seoul National University, Seoul, Korea.
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea.
- Department of Obstetrics and Gynecology, Seoul National University, Seoul, Korea.
| |
Collapse
|
33
|
Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells. Oncotarget 2016; 6:34475-93. [PMID: 26439686 PMCID: PMC4741467 DOI: 10.18632/oncotarget.5922] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be “epithelial”-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727.
Collapse
|
34
|
Man XY, Chen XB, Li W, Landeck L, Dou TT, Chen JQ, Zhou J, Cai SQ, Zheng M. Analysis of epithelial-mesenchymal transition markers in psoriatic epidermal keratinocytes. Open Biol 2016; 5:rsob.150032. [PMID: 26269426 PMCID: PMC4554915 DOI: 10.1098/rsob.150032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Psoriasis is similar to endpoints of epithelial–mesenchymal transition (EMT), a process of epithelial cells transformed into fibroblast-like cells. The molecular epithelial and mesenchymal markers were analysed in psoriatic keratinocytes. No obvious alteration of epithelial markers E-cadherin (E-cad), keratin 10 (K10), K14 and K16 was detected in psoriatic keratinocytes. However, significantly increased expression of Vim, FN, plasminogen activator inhibitor 1 (PAI-1) and Slug was seen. IL-17A and IL-13 at 50 ng ml−1 strongly decreased expression of K10, Vim and FN. TGF-β1 at 50 ng ml−1 promoted the production of N-cad, Vim, FN and PAI-1. Slug was decreased by dexamethasone (Dex), but E-cad was upregulated by Dex. Silencing of ERK partially increased E-cad and K16, but remarkably inhibited K14, FN, Vim, β-catenin, Slug and α5 integrin. Moreover, inhibition of Rho and GSK3 by their inhibitors Y27632 and SB216763, respectively, strongly raised E-cad, β-catenin and Slug. Dex decreased Y27632-mediated increase of β-catenin. Dex at 2.0 µM inhibited SB216763-regulated E-cad, β-catenin and slug. In conclusion, EMT in psoriatic keratinocytes may be defined as an intermediate phenotype of type 2 EMT. ERK, Rho and GSK3 play active roles in the process of EMT in psoriatic keratinocytes.
Collapse
Affiliation(s)
- Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Xi-Bei Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Wei Li
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Lilla Landeck
- Department of Dermatology, Ernst von Bergmann General Hospital, Teaching Hospital of Charité-University, Potsdam, Germany
| | - Ting-Ting Dou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Jia-Qi Chen
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Jiong Zhou
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Sui-Qing Cai
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China
| |
Collapse
|
35
|
Słoniecka M, Le Roux S, Zhou Q, Danielson P. Substance P Enhances Keratocyte Migration and Neutrophil Recruitment through Interleukin-8. Mol Pharmacol 2016; 89:215-25. [PMID: 26646648 DOI: 10.1124/mol.115.101014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022] Open
Abstract
Keratocytes, the resident cells of the corneal stroma, are responsible for maintaining turnover of this tissue by synthesizing extracellular matrix components. When the cornea is injured, the keratocytes migrate to the wounded site and participate in the stromal wound healing. The neuropeptide substance P (SP), which is also known to be produced by non-neuronal cells, has previously been implicated in epithelial wound healing after corneal injury. Corneal scarring, which occurs in the stroma when the process of wound healing has malfunctioned, is one of the major causes of preventable blindness. This study aimed to elucidate the potential role of SP in keratocyte migration and therefore in stromal wound healing. We report that the expression and secretion of SP in human keratocytes are increased in response to injury in vitro. Moreover, SP enhances the migration of keratocytes by inducing the actin cytoskeleton reorganization and focal adhesion formation through the activation of the phosphatidylinositide 3-kinase and Ras-related C3 botulinum toxin substrate 1/Ras homolog gene family, member A pathway. Furthermore, SP stimulation leads to upregulated expression of the proinflammatory and chemotactic cytokine interleukin-8 (IL-8), which also contributes significantly to SP-enhanced keratocyte migration and is able to attract neutrophils. In addition, the preferred SP receptor, the neurokinin-1 receptor, is necessary to induce keratocyte migration and IL-8 secretion. In conclusion, we describe new mechanisms by which SP enhances migration of keratocytes and recruits neutrophils, two necessary steps in the corneal wound-healing process, which are also likely to occur in other tissue injuries.
Collapse
Affiliation(s)
- Marta Słoniecka
- Department of Integrative Medical Biology (M.S., S.LR., Q.Z., P.D.) and Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden (M.S.); and Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Qingdao, China (Q.Z.)
| | - Sandrine Le Roux
- Department of Integrative Medical Biology (M.S., S.LR., Q.Z., P.D.) and Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden (M.S.); and Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Qingdao, China (Q.Z.)
| | - Qingjun Zhou
- Department of Integrative Medical Biology (M.S., S.LR., Q.Z., P.D.) and Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden (M.S.); and Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Qingdao, China (Q.Z.)
| | - Patrik Danielson
- Department of Integrative Medical Biology (M.S., S.LR., Q.Z., P.D.) and Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden (M.S.); and Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Qingdao, China (Q.Z.)
| |
Collapse
|
36
|
Li W, Zhou Y, Yang J, Zhang X, Zhang H, Zhang T, Zhao S, Zheng P, Huo J, Wu H. Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:52. [PMID: 25986392 PMCID: PMC4443537 DOI: 10.1186/s13046-015-0172-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/08/2015] [Indexed: 01/26/2023]
Abstract
Background Bone marrow mesenchymal stem cells (BM-MSCs) have been identified to be closely associated with tumor growth and progression. However, the roles of tumor-resident MSCs in cancer have not been thoroughly clarified. This study was to investigate the regulating effect of gastric cancer-derived MSCs (GC-MSCs) on gastric cancer and elucidate the underlying mechanism. Methods GC-MSCs were isolated from primary human gastric cancer tissues and characterized. The effect of GC-MSCs on gastric cancer cell proliferation was analyzed by MTT assay and colony formation assay. Transwell migration assay was performed to evaluate the influence of GC-MSCs in gastric cancer cell migration. The regulating effects of interactions between gastric cancer cells and GC-MSCs on their pro-angiogenic abilities were analyzed in a co-culture system, with the expression, and secretion of pro-angiogenic factors detected by RT-PCR and Luminex assay. Tube formation assay was used to further validate the angiogenic capability of gastric cancer cells or GC-MSCs. Cytokine profiles in the supernatant of GC-MSCs were screened by Luminex assay and neutralizing antibody was used to identify the key effective cytokines. The activations of Akt and Erk1/2 in gastric caner cells were detected by Western blot. Results GC-MSC treatment enhanced the proliferation and migration of BGC-823 and MKN-28 cells, which was more potently than MSCs from adjacent non-cancerous tissues (GCN-MSCs) or bone marrow (BM-MSCs). Higher expression levels of pro-angiogenic factors were detected in GC-MSCs than GCN-MSCs or BM-MSCs. After 10 % GC-MSC-CM treatment, BGC-823, and MKN-28 cells expressed increased levels of pro-angiogenic factors and facilitated tube formation more potently than cancer cells alone. Furthermore, GC-MSCs produced an extremely higher level of interleukin-8 (IL-8) than GCN-MSCs or BM-MSCs. Blockade of IL-8 by neutralizing antibody significantly attenuated the tumor-promoting effect of GC-MSCs. In addition, 10 % CM of IL-8-secreted GC-MSCs induced the activations of Akt or Erk1/2 pathway in BGC-823 and MKN-28 cells. Conclusion Tumor-resident GC-MSCs promote gastric cancer growth and progression more efficiently than GCN-MSCs or BM-MSCs through a considerable secretion of IL-8, which could be a possible target for gastric cancer therapy.
Collapse
Affiliation(s)
- Wei Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China. .,Department of Pathology, Xuzhou Medical College, 209 Tongshan Road, Xuzhou, 221004, China.
| | - Ying Zhou
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Jin Yang
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Xu Zhang
- School of Medical Science and Laboratory Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| | - Huanhuan Zhang
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Ting Zhang
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Shaolin Zhao
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Ping Zheng
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Juan Huo
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| | - Huiyi Wu
- Center of Research Laboratory, The First People's Hospital of Lianyungang, 182 Tongguan Road, Lianyungang, 222001, China.
| |
Collapse
|