1
|
Zhang E, He P. The function of histone methyltransferase SETDB1 and its roles in liver cancer. Front Cell Dev Biol 2024; 12:1500263. [PMID: 39583200 PMCID: PMC11582049 DOI: 10.3389/fcell.2024.1500263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Epigenetic alterations in gene expression have been implicated in cancer development and tumor immune escape, with posttranslational histone or non-histone modifications representing attractive targets for disease surveillance and therapy. SET domain bifurcated 1 (SETDB1) is a histone lysine methyltransferase that reversibly catalyzes the di- and tri-methylation of histone 3 lysine 9 (H3K9) on euchromatin, inhibiting gene transcription within these regions and facilitating the switch from euchromatic to heterochromatic states. Emerging evidence suggests that SETDB1 amplification and aberrant activation are significantly associated with poor prognosis in hepatocellular carcinoma (HCC), and contribute to HCC development, immune escape, and immune checkpoint blockade (ICB) resistance. Here, we provide an updated overview of the cellular and molecular effects of SETDB1 activity in hepatocarcinogenesis and progression and focus on studies linking its function to immunotherapy for HCC, and present current challenges and future perspectives for targeting SETDB1 in HCC treatment.
Collapse
Affiliation(s)
- Enxiang Zhang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and food engineering, Liaocheng University, Liaocheng, China
| | - Pingping He
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and food engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Hu SY, Lin TH, Chen CY, He YH, Huang WC, Hsieh CY, Chen YH, Chang WC. Stephania tetrandra and Its Active Compound Coclaurine Sensitize NSCLC Cells to Cisplatin through EFHD2 Inhibition. Pharmaceuticals (Basel) 2024; 17:1356. [PMID: 39458997 PMCID: PMC11510146 DOI: 10.3390/ph17101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Adjuvant chemotherapy, particularly cisplatin, is recommended for non-small cell lung carcinoma (NSCLC) patients at high risk of recurrence. EF-hand domain-containing protein D2 (EFHD2) has been recently shown to increase cisplatin resistance and is significantly associated with recurrence in early-stage NSCLC patients. Natural products, commonly used as phytonutrients, are also recognized for their potential as pharmaceutical anticancer agents. RESULT In this study, a range of Chinese herbs known for their antitumor or chemotherapy-enhancing properties were evaluated for their ability to inhibit EFHD2 expression in NSCLC cells. Among the herbs tested, Stephania tetrandra (S. tetrandra) exhibited the highest efficacy in inhibiting EFHD2 and sensitizing cells to cisplatin. Through LC-MS identification and functional assays, coclaurine was identified as a key molecule in S. tetrandra responsible for EFHD2 inhibition. Coclaurine not only downregulated EFHD2-related NOX4-ABCC1 signaling and enhanced cisplatin sensitivity, but also suppressed the stemness and metastatic properties of NSCLC cells. Mechanistically, coclaurine disrupted the interaction between the transcription factor FOXG1 and the EFHD2 promoter, leading to a reduction in EFHD2 transcription. Silencing FOXG1 further inhibited EFHD2 expression and sensitized NSCLC cells to cisplatin. CONCLUSIONS S. tetrandra and its active compound coclaurine may serve as effective adjuvant therapies to improve cisplatin efficacy in the treatment of NSCLC.
Collapse
Affiliation(s)
- Shu-Yu Hu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (S.-Y.H.); (Y.-H.H.); (W.-C.H.)
| | - Tsai-Hui Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan;
| | - Yu-Hao He
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (S.-Y.H.); (Y.-H.H.); (W.-C.H.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 406040, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404333, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (S.-Y.H.); (Y.-H.H.); (W.-C.H.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 406040, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404333, Taiwan
- School of Pharmacy, China Medical University, Taichung 404333, Taiwan
| | - Ching-Yun Hsieh
- Division of Hematology and Oncology, Department of internal medicine, China Medical University Hospital, Taichung 404327, Taiwan;
| | - Ya-Huey Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan; (S.-Y.H.); (Y.-H.H.); (W.-C.H.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 406040, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung 404333, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 406040, Taiwan
| |
Collapse
|
3
|
Hassanie H, Penteado AB, de Almeida LC, Calil RL, da Silva Emery F, Costa-Lotufo LV, Trossini GHG. SETDB1 as a cancer target: challenges and perspectives in drug design. RSC Med Chem 2024; 15:1424-1451. [PMID: 38799223 PMCID: PMC11113007 DOI: 10.1039/d3md00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.
Collapse
Affiliation(s)
- Haifa Hassanie
- School of Pharmaceutical Sciences, University of São Paulo Brazil
| | | | | | | | - Flávio da Silva Emery
- School of Pharmaceutical Sciences of the Ribeirão Preto, University of São Paulo Brazil
| | | | | |
Collapse
|
4
|
Xu M, Tu Y, Bi W, Lundberg MZ, Klooster I, Fletcher JA, Ou WB. SETDB1 tumour suppressor roles in near-haploid mesothelioma involve TP53. Br J Cancer 2023; 129:531-540. [PMID: 37369845 PMCID: PMC10403575 DOI: 10.1038/s41416-023-02330-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/17/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Mutational inactivation of the SETDB1 histone methyltransferase is found in a subset of mesothelioma, particularly in cases with near-haploidy and TP53 mutations. However, the tumourigenic consequences of SETDB1 inactivation are poorly understood. METHODS In this study, we investigated SETDB1 tumour suppressor functions in mesothelioma and explored biologic relationships between SETDB1 and TP53. RESULTS Immunoblotting of early passage cultures showed that SETDB1 was undetectable in 7 of 8 near-haploid mesotheliomas whereas SETDB1 expression was retained in each of 13 near-diploid mesotheliomas. TP53 aberrations were present in 5 of 8 near-haploid mesotheliomas compared to 2 of 13 near-diploid mesotheliomas, and BAP1 inactivation was demonstrated only in near-diploid mesotheliomas, indicating that near-haploid and near-diploid mesothelioma have distinct molecular and biologic profiles. Lentiviral SETDB1 restoration in near-haploid mesotheliomas (MESO257 and MESO542) reduced cell viability, colony formation, reactive oxygen species levels, proliferative marker cyclin A expression, and inhibited growth of MESO542 xenografts. The combination of SETDB1 restoration with pemetrexed and/or cisplatin treatment additively inhibited tumour growth in vitro and in vivo. Furthermore, SETDB1 restoration upregulated TP53 expression in MESO542 and MESO257, whereas SETDB1 knockdown inhibited mutant TP53 expression in JMN1B near-haploid mesothelioma cells. Likewise, TP53 knockdown inhibited SETDB1 expression. Similarly, immunoblotting evaluations of ten near-diploid mesothelioma biopsies and analysis of TCGA expression profiles showed that SETDB1 expression levels paralleled TP53 expression. CONCLUSION These findings demonstrate that SETDB1 inactivation in near-haploid mesothelioma is generally associated with complete loss of SETDB1 protein expression and dysregulates TP53 expression. Targeting SETDB1 pathways could be an effective therapeutic strategy in these often untreatable tumours.
Collapse
Affiliation(s)
- Mengting Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuqing Tu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenhui Bi
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meijun Z Lundberg
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Isabella Klooster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Cha J, Choi S. Gene-Smoking Interaction Analysis for the Identification of Novel Asthma-Associated Genetic Factors. Int J Mol Sci 2023; 24:12266. [PMID: 37569643 PMCID: PMC10419280 DOI: 10.3390/ijms241512266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Asthma is a complex heterogeneous disease caused by gene-environment interactions. Although numerous genome-wide association studies have been conducted, these interactions have not been systemically investigated. We sought to identify genetic factors associated with the asthma phenotype in 66,857 subjects from the Health Examination Study, Cardiovascular Disease Association Study, and Korea Association Resource Study cohorts. We investigated asthma-associated gene-environment (smoking status) interactions at the level of single nucleotide polymorphisms, genes, and gene sets. We identified two potentially novel (SETDB1 and ZNF8) and five previously reported (DM4C, DOCK8, MMP20, MYL7, and ADCY9) genes associated with increased asthma risk. Numerous gene ontology processes, including regulation of T cell differentiation in the thymus (GO:0033081), were significantly enriched for asthma risk. Functional annotation analysis confirmed the causal relationship between five genes (two potentially novel and three previously reported genes) and asthma through genome-wide functional prediction scores (combined annotation-dependent depletion, deleterious annotation of genetic variants using neural networks, and RegulomeDB). Our findings elucidate the genetic architecture of asthma and improve the understanding of its biological mechanisms. However, further studies are necessary for developing preventive treatments based on environmental factors and understanding the immune system mechanisms that contribute to the etiology of asthma.
Collapse
Affiliation(s)
- Junho Cha
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Sungkyoung Choi
- Department of Applied Artificial Intelligence, College of Computing, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
- Department of Mathematical Data Science, College of Science and Convergence Technology, Hanyang University, 55 Hanyang-daehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
6
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
7
|
Rao W, Yang L, Dai N, Zhang L, Liu J, Yang B, Li M, Shan J, Wang Q, Wang D. Frequently mutated genes in predicting the relapse of stage I lung adenocarcinoma. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1767-1778. [PMID: 36739576 DOI: 10.1007/s12094-023-03074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 02/06/2023]
Abstract
PURPOSE Approximately, 45-65% stage I non-small cell lung cancer (NSCLC) patients with surgical resection relapse within 5 years. Therefore, it is urgent to identify the predictors involved in the relapse of stage I NSCLC. METHODS/PATIENTS Targeted sequencing was used to examine the mutation of tumor tissues and matched adjacent normal tissues from 35 patients with stage I lung adenocarcinoma (LUAD). Then, tissue microarrays containing tumor tissues from 149 stage I LUAD patients were used to assess protein expression of frequently mutated genes by immunohistochemistry. COX regression model was used to evaluate the impacts of frequently mutated genes and their protein expression on relapse-free survival (RFS) in stage I LUAD. RESULTS AND CONCLUSIONS Three hundred and twenty-nine non-synonymous somatic variants were identified in 161 genes among these 35 patients. EGFR, TP53, LRP1B, RBM10, KRAS, NTRK3, RB1, ALK, APC, FAT2, KEAP1, MED12 and MLL3 were described as frequently mutated genes with prevalence more than 10%. Patients harboring KRAS mutation had more relapse in 1 year after surgical resection. For the expression of these frequently mutated genes in 149 stage I patients, multivariate Cox regression analyses showed that the expression of RBM10 was positively associated with RFS in all patients (HR 0.40, 95% CI 0.15-1.0, p = 0.052), and the expression of APC was negative associated with RFS in patients with EGFR mutations (HR 3.10, 95% CI 1.54-6.26, p = 0.002). Stage I LUAD patients with KRAS mutation or low RBM10 expression are inclined to receive more positive intervention rather than just disease surveillance.
Collapse
Affiliation(s)
- Wen Rao
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China.,The 75th Group Army Hospital, Dali, Yunnan, People's Republic of China
| | - Lujie Yang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Nan Dai
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Liang Zhang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Jie Liu
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Bo Yang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Jinlu Shan
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China
| | - Qiushi Wang
- Department of Pathology, Daping Hospital and Army Medical Center of PLA, Army Medical University, Chongqing, People's Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Army Medical Center of PLA, Army Medical University, No.10 Changjiangzhi Rd, Yuzhong District, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Ueshima S, Fang J. Histone H3K9 methyltransferase SETDB1 augments invadopodia formation to promote tumor metastasis. Oncogene 2022; 41:3370-3380. [PMID: 35546351 PMCID: PMC9801494 DOI: 10.1038/s41388-022-02345-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 01/04/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of leading causes of cancer-related mortality worldwide, which harbors various accumulated genetic and epigenetic abnormalities. Histone methyltransferase SETDB1 is a pivotal epigenetic regulator whose focal amplification and upregulation are commonly detected in NSCLC. However, molecular mechanisms underlying the pro-oncogenic function of SETDB1 remain poorly characterized. Here, we demonstrate that SETDB1 augments the migration and invasion capabilities of NSCLC cells by reinforcing invadopodia formation and mediated ECM degradation. At the molecular level, SETDB1 suppresses the expression of FOXA2, a crucial tumor and metastasis suppressor via coordinated epigenetic mechanisms - SETDB1 not only catalyzes histone H3K9 methylation on FOXA2 genomic locus, but also recruits DNMT3A to regulate DNA methylation on CpG island. Consequently, depletion of Setdb1 in murine lung adenocarcinoma cells completely abolished their full and spontaneous metastatic capabilities in mouse xenograft models. These findings together establish the pro-metastasis activity of SETDB1 in NSCLC and elucidate the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Shuhei Ueshima
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jia Fang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
9
|
Zakharova VV, Magnitov MD, Del Maestro L, Ulianov SV, Glentis A, Uyanik B, Williart A, Karpukhina A, Demidov O, Joliot V, Vassetzky Y, Mège RM, Piel M, Razin S, Ait-Si-Ali S. SETDB1 fuels the lung cancer phenotype by modulating epigenome, 3D genome organization and chromatin mechanical properties. Nucleic Acids Res 2022; 50:4389-4413. [PMID: 35474385 PMCID: PMC9071401 DOI: 10.1093/nar/gkac234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Imbalance in the finely orchestrated system of chromatin-modifying enzymes is a hallmark of many pathologies such as cancers, since causing the affection of the epigenome and transcriptional reprogramming. Here, we demonstrate that a loss-of-function mutation (LOF) of the major histone lysine methyltransferase SETDB1 possessing oncogenic activity in lung cancer cells leads to broad changes in the overall architecture and mechanical properties of the nucleus through genome-wide redistribution of heterochromatin, which perturbs chromatin spatial compartmentalization. Together with the enforced activation of the epithelial expression program, cytoskeleton remodeling, reduced proliferation rate and restricted cellular migration, this leads to the reversed oncogenic potential of lung adenocarcinoma cells. These results emphasize an essential role of chromatin architecture in the determination of oncogenic programs and illustrate a relationship between gene expression, epigenome, 3D genome and nuclear mechanics.
Collapse
Affiliation(s)
- Vlada V Zakharova
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Mikhail D Magnitov
- Institute of Gene Biology, Russian Academy of Science, Moscow 119334, Russia
| | - Laurence Del Maestro
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Science, Moscow 119334, Russia,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexandros Glentis
- Institute Jacques Monod, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Burhan Uyanik
- INSERM UMR1231, LipSTIC, University of Burgundy Franche-Comté F-21000, Dijon, France
| | - Alice Williart
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, 75248 Paris, France
| | - Anna Karpukhina
- UMR9018, CNRS, Université Paris-Sud Paris-Saclay, Institut Gustave Roussy; 94805 Villejuif, France,Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Oleg Demidov
- INSERM UMR1231, LipSTIC, University of Burgundy Franche-Comté F-21000, Dijon, France,Institute of Cytology, RAS, 194064 St. Petersburg, Russia,NTU Sirius, 354340 Sochi, Russia
| | - Veronique Joliot
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Yegor S Vassetzky
- UMR9018, CNRS, Université Paris-Sud Paris-Saclay, Institut Gustave Roussy; 94805 Villejuif, France,Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - René-Marc Mège
- Institute Jacques Monod, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, 75248 Paris, France
| | - Sergey V Razin
- Correspondence may also be addressed to Sergey V. Razin. Tel: +7 499 135 3092;
| | | |
Collapse
|
10
|
Histone Methyltransferase SETDB1 Promotes Immune Evasion in Colorectal Cancer via FOSB-Mediated Downregulation of MicroRNA-22 through BATF3/PD-L1 Pathway. J Immunol Res 2022; 2022:4012920. [PMID: 35497876 PMCID: PMC9045983 DOI: 10.1155/2022/4012920] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Tumors may develop a variety of immune evasion mechanisms during the progression of colorectal cancer (CRC). Here, we intended to explore the mechanism of histone methyltransferase SETDB1 in immune evasion in CRC. The expression of SETDB1, microRNA-22 (miR-22), BATF3, PD-L1, and FOSB in CRC tissues and cells was determined with their interactions analyzed also. Gain-of-function and loss-of-function approaches were employed to evaluate the effects of the SETDB1/FOSB/miR-22/BATF3/PD-L1 axis on T cell function, immune cell infiltration, and tumorigenesis. Aberrant high SETDB1 expression in CRC was positively associated with PD-L1 expression. SETDB1 negatively regulated miR-22 expression by downregulating FOSB expression, while miR-22 downregulated PD-L1 expression via targeting BATF3. Furthermore, SETDB1 silencing promoted the T cell-mediated cytotoxicity to tumor cells via the FOSB/miR-22/BATF3/PD-L1 axis and hindered CRC tumor growth in mice while leading to decreased immune cell infiltration. Taken together, SETDB1 could activate the BATF3/PD-L1 axis by inhibiting FOSB-mediated miR-22 and promote immune evasion in CRC, which provides a better understanding of the mechanisms underlying immune evasion in CRC.
Collapse
|
11
|
Lin J, Guo D, Liu H, Zhou W, Wang C, Müller I, Kossenkov AV, Drapkin R, Bitler BG, Helin K, Zhang R. The SETDB1-TRIM28 Complex Suppresses Antitumor Immunity. Cancer Immunol Res 2021; 9:1413-1424. [PMID: 34848497 DOI: 10.1158/2326-6066.cir-21-0754] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023]
Abstract
The tumor immune microenvironment is influenced by the epigenetic landscape of the tumor. Here, we have identified the SETDB1-TRIM28 complex as a critical suppressor of antitumor immunity. An epigenetic CRISPR-Cas9 screen of 1,218 chromatin regulators identified TRIM28 as a suppressor of PD-L1 expression. We then revealed that expression of the SETDB1-TRIM28 complex negatively correlated with infiltration of effector CD8+ T cells. Inhibition of SETDB1-TRIM28 simultaneously upregulated PD-L1 and activated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway to increase infiltration of CD8+ T cells. Mechanistically, SETDB1-TRIM28 inhibition led to micronuclei formation in the cytoplasm, which is known to activate the cGAS-STING pathway. Thus, SETDB1-TRIM28 inhibition bridges innate and adaptive immunity. Indeed, SETDB1 knockout enhanced the antitumor effects of immune checkpoint blockade with anti-PD-L1 in a mouse model of ovarian cancer in a cGAS-dependent manner. Our findings establish the SETDB1-TRIM28 complex as a regulator of antitumor immunity and demonstrate that its loss activates cGAS-STING innate immunity to boost the antitumor effects of immune checkpoint blockade.
Collapse
Affiliation(s)
- Jianhuang Lin
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dajiang Guo
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Heng Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Wei Zhou
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Chen Wang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Iris Müller
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Andrew V Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin G Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, The University of Colorado, Aurora, Colorado
| | - Kristian Helin
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
12
|
Gao Y, Luo XD, Yang XL, Tu D. Clinical significance of breast cancer susceptibility gene 1 expression in resected non-small cell lung cancer: A meta-analysis. World J Clin Cases 2021; 9:9090-9100. [PMID: 34786391 PMCID: PMC8567518 DOI: 10.12998/wjcc.v9.i30.9090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The clinical significance of breast cancer susceptibility gene 1 (BRCA1) in non-small cell lung cancer (NSCLC) patients undergoing surgery remains unclear up to now.
AIM To explore the relation of BRCA1 expression with clinicopathological characteristics and survival in patients with resected NSCLC.
METHODS EMBASE, PubMed, Web of Science, and The Cochrane Library databases were searched to identify the relevant articles. To assess the correlation between the expression of BRCA1 and clinicopathological characteristics and prognosis of patients with resected NSCLC patients, the combined relative risks or hazard ratios (HRs) with their corresponding 95% confidence intervals [CIs] were estimated.
RESULTS Totally, 11 articles involving 1041 patients were included in the meta-analysis. The results indicated that the expression of BRCA1 was significantly correlated with prognosis of resected NSCLC. Positive BRCA1 expression signified a shorter overall survival (HR = 1.60, 95%CI: 1.25-2.05; P < 0.001) and disease-free survival (HR = 1.78, 95%CI: 1.42-2.23; P < 0.001). However, no significant association of BRCA1 expression with any clinicopathological parameters was observed.
CONCLUSION BRCA1 expression indicates a poor prognosis in resected NSCLC patients. BRCA1 might serve as an independent biomarker to predict clinical outcomes and help to customize optimal adjuvant chemotherapy for NSCLC patients who had received surgical therapy.
Collapse
Affiliation(s)
- Yang Gao
- Department of Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming 650032, Yunnan Province, China
| | - Xiao-Di Luo
- Department of Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming 650032, Yunnan Province, China
| | - Xiao-Li Yang
- Department of Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming 650032, Yunnan Province, China
| | - Dong Tu
- Department of Cardiothoracic Surgery, 920th Hospital of Joint Logistics Support Force of People’s Liberation Army of China, Kunming 650032, Yunnan Province, China
| |
Collapse
|
13
|
Markouli M, Strepkos D, Piperi C. Structure, Activity and Function of the SETDB1 Protein Methyltransferase. Life (Basel) 2021; 11:life11080817. [PMID: 34440561 PMCID: PMC8397983 DOI: 10.3390/life11080817] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) is a prominent member of the Suppressor of Variegation 3–9 (SUV39)-related protein lysine methyltransferases (PKMTs), comprising three isoforms that differ in length and domain composition. SETDB1 is widely expressed in human tissues, methylating Histone 3 lysine 9 (H3K9) residues, promoting chromatin compaction and exerting negative regulation on gene expression. SETDB1 has a central role in normal physiology and nervous system development, having been implicated in the regulation of cell cycle progression, inactivation of the X chromosome, immune cells function, expression of retroelements and formation of promyelocytic leukemia (PML) nuclear bodies (NB). SETDB1 has been frequently deregulated in carcinogenesis, being implicated in the pathogenesis of gliomas, melanomas, as well as in lung, breast, gastrointestinal and ovarian tumors, where it mainly exerts an oncogenic role. Aberrant activity of SETDB1 has also been implicated in several neuropsychiatric, cardiovascular and gastrointestinal diseases, including schizophrenia, Huntington’s disease, congenital heart defects and inflammatory bowel disease. Herein, we provide an update on the unique structural and biochemical features of SETDB1 that contribute to its regulation, as well as its molecular and cellular impact in normal physiology and disease with potential therapeutic options.
Collapse
|
14
|
Yuan L, Sun B, Xu L, Chen L, Ou W. The Updating of Biological Functions of Methyltransferase SETDB1 and Its Relevance in Lung Cancer and Mesothelioma. Int J Mol Sci 2021; 22:ijms22147416. [PMID: 34299035 PMCID: PMC8306223 DOI: 10.3390/ijms22147416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
SET domain bifurcated 1 (SETDB1) is a histone H3 lysine 9 (H3K9) methyltransferase that exerts important effects on epigenetic gene regulation. SETDB1 complexes (SETDB1-KRAB-KAP1, SETDB1-DNMT3A, SETDB1-PML, SETDB1-ATF7IP-MBD1) play crucial roles in the processes of histone methylation, transcriptional suppression and chromatin remodelling. Therefore, aberrant trimethylation at H3K9 due to amplification, mutation or deletion of SETDB1 may lead to transcriptional repression of various tumour-suppressing genes and other related genes in cancer cells. Lung cancer is the most common type of cancer worldwide in which SETDB1 amplification and H3K9 hypermethylation have been indicated as potential tumourigenesis markers. In contrast, frequent inactivation mutations of SETDB1 have been revealed in mesothelioma, an asbestos-associated, locally aggressive, highly lethal, and notoriously chemotherapy-resistant cancer. Above all, the different statuses of SETDB1 indicate that it may have different biological functions and be a potential diagnostic biomarker and therapeutic target in lung cancer and mesothelioma.
Collapse
Affiliation(s)
| | | | | | | | - Wenbin Ou
- Correspondence: ; Tel./Fax: +86-571-86843303
| |
Collapse
|
15
|
Assessment of copy number in protooncogenes are predictive of poor survival in advanced gastric cancer. Sci Rep 2021; 11:12117. [PMID: 34108525 PMCID: PMC8190267 DOI: 10.1038/s41598-021-91652-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/28/2021] [Indexed: 12/01/2022] Open
Abstract
The copy number (CN) gain of protooncogenes is a frequent finding in gastric carcinoma (GC), but its prognostic implication remains elusive. The study aimed to characterize the clinicopathological features, including prognosis, of GCs with copy number gains in multiple protooncogenes. Three hundred thirty-three patients with advanced GC were analyzed for their gene ratios in EGFR, GATA6, IGF2, and SETDB1 using droplet dPCR (ddPCR) for an accurate assessment of CN changes in target genes. The number of GC patients with 3 or more genes with CN gain was 16 (4.8%). Compared with the GCs with 2 or less genes with CN gain, the GCs with 3 or more CN gains displayed more frequent venous invasion, a lower density of tumor-infiltrating lymphocytes, and lower methylation levels of L1 or SAT-alpha. Microsatellite instability-high tumors or Epstein–Barr virus-positive tumors were not found in the GCs with 3 or more genes with CN gain. Patients of this groups also showed the worst clinical outcomes for both overall survival and recurrence-free survival, which was persistent in the multivariate survival analyses. Our findings suggest that the ddPCR-based detection of multiple CN gain of protooncogenes might help to identify a subset of patients with poor prognosis.
Collapse
|
16
|
Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1875:188498. [PMID: 33373647 DOI: 10.1016/j.bbcan.2020.188498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates histone H3 lysine 9 methylation in tumorigenesis. The SUV family of H3K9 methyltransferases, which include G9a, GLP, SETDB1, SETDB2, SUV39H1 and SUV39H2 deposit H3K9me1/2/3 marks at euchromatic and heterochromatic regions, catalyzed by their conserved SET domain. In cancer, this family of enzymes can be deregulated by genomic alterations and transcriptional mis-expression leading to alteration of transcriptional programs. In solid and hematological malignancies, studies have uncovered pro-oncogenic roles for several H3K9 methyltransferases and accordingly, small molecule inhibitors are being tested as potential therapies. However, emerging evidence demonstrate onco-suppressive roles for these enzymes in cancer development as well. Here, we review the role H3K9 methyltransferases play in tumorigenesis focusing on gene targets and biological pathways affected due to misregulation of these enzymes. We also discuss molecular mechanisms regulating H3K9 methyltransferases and their influence on cancer. Finally, we describe the impact of H3K9 methylation on therapy induced resistance in carcinoma. Converging evidence point to multi-faceted roles for H3K9 methyltransferases in development and cancer that encourages a deeper understanding of these enzymes to inform novel therapy.
Collapse
Affiliation(s)
- Nirmalya Saha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America.
| |
Collapse
|
17
|
Kang YK, Min B. SETDB1 Overexpression Sets an Intertumoral Transcriptomic Divergence in Non-small Cell Lung Carcinoma. Front Genet 2020; 11:573515. [PMID: 33343623 PMCID: PMC7738479 DOI: 10.3389/fgene.2020.573515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
An increasing volume of evidence suggests that SETDB1 plays a role in the tumorigenesis of various cancers, classifying SETDB1 as an oncoprotein. However, owing to its numerous protein partners and their global-scale effects, the molecular mechanism underlying SETDB1-involved oncogenesis remains ambiguous. In this study, using public transcriptome data of lung adenocarcinoma (ADC) and squamous-cell carcinoma (SCC), we compared tumors with high-level SETDB1 (SH) and those with low-level SETDB1 (comparable with normal samples; SL). The results of principal component analysis revealed a transcriptomic distinction and divergence between the SH and SL samples in both ADCs and SCCs. The results of gene set enrichment analysis indicated that genes involved in the “epithelial–mesenchymal transition,” “innate immune response,” and “autoimmunity” collections were significantly depleted in SH tumors, whereas those involved in “RNA interference” collections were enriched. Chromatin-modifying genes were highly expressed in SH tumors, and the variance in their expression was incomparably high in SCC-SH, which suggested greater heterogeneity within SCC tumors. DNA methyltransferase genes were also overrepresented in SH samples, and most differentially methylated CpGs (SH/SL) were undermethylated in a highly biased manner in ADCs. We identified interesting molecular signatures associated with the possible roles of SETDB1 in lung cancer. We expect these SETDB1-associated molecular signatures to facilitate the development of biologically relevant targeted therapies for particular types of lung cancer.
Collapse
Affiliation(s)
- Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea
| |
Collapse
|
18
|
Identification of PDL1-Related Biomarkers to Select Lung Adenocarcinoma Patients for PD1/PDL1 Inhibitors. DISEASE MARKERS 2020; 2020:7291586. [PMID: 32587640 PMCID: PMC7303743 DOI: 10.1155/2020/7291586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/15/2020] [Accepted: 05/25/2020] [Indexed: 12/23/2022]
Abstract
PD1/PDL1 inhibitors have been adopted for the treatment of advanced non-small-cell lung cancer, and PDL1 expression has been investigated as a predictive biomarker for PD1/PDL1 inhibitor therapy. However, PDL1 lacks diagnostic accuracy in differentiating patients who are likely or unlikely to benefit. So, it is urgent and clinically significant to identify other associated predictive biomarkers for PD1/PDL1 inhibitor therapy. Our work was to identify PDL1-related biomarkers that could improve the patient selection for PD1/PDL1 inhibitor treatment. We obtained 500 genes coexpressed with PDL1 in lung adenocarcinoma from the TCGA database. Then, we identified 125 out of 500 genes differentially expressed in lung adenocarcinoma. A total of 39 genes were distinguished with prognostic value and associated with overall survival. Median survival time analysis based on gene expression level, protein-protein interaction analysis, GO and KEGG enrichment analyses, and significant GO and KEGG function consistency analyses were conducted to screen candidate biomarkers. Three candidate genes, BRCA1, BRIP1, and EREG, were identified to be functionally significantly coexpressed with PDL1. Functional enrichment analysis and protein-protein interaction networks further showed that these genes mainly participated in immune response and cell activation. Additionally, to find potential adjuvant therapeutic targets in PD1/PDL1 inhibitor treatment, we performed transcription factor prediction analysis. A group of negative differential expression but PDL1-related biomarkers has been identified, which might help to assess the clinical management of lung cancer patients. A combination of potential biomarkers and adjuvant therapeutic targets with PDL1 will predict the response to PD1/PDL1 inhibitors more accurately and help with the patient selection for more personalized immune checkpoint inhibitor treatment.
Collapse
|
19
|
Liu S, Li B, Xu J, Hu S, Zhan N, Wang H, Gao C, Li J, Xu X. SOD1 Promotes Cell Proliferation and Metastasis in Non-small Cell Lung Cancer via an miR-409-3p/SOD1/SETDB1 Epigenetic Regulatory Feedforward Loop. Front Cell Dev Biol 2020; 8:213. [PMID: 32391354 PMCID: PMC7190798 DOI: 10.3389/fcell.2020.00213] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
Superoxide dismutase 1(SOD1) is a major antioxidant with oncogenic effects in many human cancers. Although SOD1 is overexpressed in various cancers, the clinical significance and functions of SOD1 in non-small cell lung cancer (NSCLC), particularly the epigenetic regulation of SOD1 in NSCLC carcinogenesis and progression have been less well investigated. In this study, we found that SOD1 expression was upregulated in NSCLC cell lines and tissues. Further, elevated SOD1 expression could promote NSCLC cell proliferation, invasion and migration. While inhibition of SOD1 expression induced NSCLC G1-phase cell cycle arrest and promoted apoptosis. In addition, miR-409-3p could repress SOD1 expression and significantly counteract its oncogenic activities. Bioinformatics analysis indicated that SET domain bifurcated histone lysine methyltransferase1 (SETDB1) was involved in the epigenetic regulation of miR-409-3p and SOD1 expression and functions in NSCLC cells. Identification of this miR-409-3p/SOD1/SETDB1 epigenetic regulatory feedforward loop may provide new insights into further understanding of NSCLC tumorigenesis and progression. Additionally, our results incicate that SOD1 may be a potential new therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Shilong Liu
- Department of Thoracic Radiation Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Li
- Department of Plastic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Jianyu Xu
- Department of Thoracic Radiation Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songliu Hu
- Department of Thoracic Radiation Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Zhan
- Department of Radiation Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Hong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chunzi Gao
- Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Li
- Department of Thoracic Radiation Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangying Xu
- Department of Thoracic Radiation Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
20
|
Li R, Liu Y, Wang T, Tang J, Xie L, Yao Z, Li K, Liao Y, Zhou L, Geng Z, Huang Z, Yang Z, Han L. The characteristics of lung cancer in Xuanwei County: A review of differentially expressed genes and noncoding RNAs on cell proliferation and migration. Biomed Pharmacother 2019; 119:109312. [PMID: 31518876 DOI: 10.1016/j.biopha.2019.109312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
The occurrence of lung cancers is the highest in Xuanwei County, Yunnan province, China, especially among nonsmoking women. Domestic combustion of smoky coal induces serious indoor air pollution and is considered to be the main cause of human lung cancers. The occurrence of lung cancer in Xuanwei County has unique characteristics, such as the high morbidity in nonsmoking women or people with no family history. In the present review, we summarize advances in identification of differentially expressed genes, regulatory lncRNAs and miRNAs in cell proliferation and migration of lung cancers in Xuanwei County. Moreover, several regulatory differentially expressed genes (DEGs) or noncoding RNAs have diagnostic and prognostic significance for lung cancers in Xuanwei County and have the potential to serve as biomarkers.
Collapse
Affiliation(s)
- Rong Li
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Yan Liu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Tiying Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Jiadai Tang
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Lin Xie
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China.
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Kechen Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Yedan Liao
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Ling Zhou
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Zhenqin Geng
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Zeyong Huang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650504, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China.
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| |
Collapse
|
21
|
Cruz-Tapias P, Zakharova V, Perez-Fernandez OM, Mantilla W, RamÍRez-Clavijo S, Ait-Si-Ali S. Expression of the Major and Pro-Oncogenic H3K9 Lysine Methyltransferase SETDB1 in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11081134. [PMID: 31398867 PMCID: PMC6721806 DOI: 10.3390/cancers11081134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
SETDB1 is a key histone lysine methyltransferase involved in gene silencing. The SETDB1 gene is amplified in human lung cancer, where the protein plays a driver role. Here, we investigated the clinical significance of SETDB1 expression in the two major forms of human non-small cell lung carcinoma (NSCLC), i.e., adenocarcinoma (ADC) and squamous cell carcinoma (SCC), by combining a meta-analysis of transcriptomic datasets and a systematic review of the literature. A total of 1140 NSCLC patients and 952 controls were included in the association analyses. Our data revealed higher levels of SETDB1 mRNA in ADC (standardized mean difference, SMD: 0.88; 95% confidence interval, CI: 0.73-1.02; p < 0.001) and SCC (SMD: 0.40; 95% CI: 0.13-0.66; p = 0.003) compared to non-cancerous tissues. For clinicopathological analyses, 2533 ADC and 903 SCC patients were included. Interestingly, SETDB1 mRNA level was increased in NSCLC patients who were current smokers compared to non-smokers (SMD: 0.26; 95% CI: 0.08-0.44; p = 0.004), and when comparing former smokers and non-smokers (p = 0.009). Furthermore, the area under the curve (AUC) given by the summary receiver operator characteristic curve (sROC) was 0.774 (Q = 0.713). Together, our findings suggest a strong foundation for further research to evaluate SETDB1 as a diagnostic biomarker and/or its potential use as a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Paola Cruz-Tapias
- Epigenetics and Cell Fate (EDC), Centre National de la Recherche Scientifique (CNRS), Université de Paris, Université Paris Diderot, F-75013 Paris, France.
- Grupo de investigación Ciencias Básicas Médicas, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 111221, Colombia.
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia.
- Doctoral Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá 111221, Colombia.
| | - Vlada Zakharova
- Epigenetics and Cell Fate (EDC), Centre National de la Recherche Scientifique (CNRS), Université de Paris, Université Paris Diderot, F-75013 Paris, France
| | - Oscar M Perez-Fernandez
- Department of Cardiology, Fundación Cardioinfantil - Instituto de Cardiología, Bogotá 110131, Colombia
| | - William Mantilla
- Department of Hematology-oncology. Fundación Cardioinfantil - Instituto de Cardiología, Bogotá 110131, Colombia
| | - Sandra RamÍRez-Clavijo
- Grupo de investigación Ciencias Básicas Médicas, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá 111221, Colombia
| | - Slimane Ait-Si-Ali
- Epigenetics and Cell Fate (EDC), Centre National de la Recherche Scientifique (CNRS), Université de Paris, Université Paris Diderot, F-75013 Paris, France.
| |
Collapse
|
22
|
Kang YK. Surveillance of Retroelement Expression and Nucleic-Acid Immunity by Histone Methyltransferase SETDB1. Bioessays 2018; 40:e1800058. [DOI: 10.1002/bies.201800058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/31/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Yong-Kook Kang
- Development and Differentiation Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Department of Functional Genomics; University of Science and Technology (UST); Yuseong-gu Daejeon 34141 South Korea
| |
Collapse
|
23
|
Ho YJ, Lin YM, Huang YC, Chang J, Yeh KT, Lin LI, Gong Z, Tzeng TY, Lu JW. Significance of histone methyltransferase SETDB1 expression in colon adenocarcinoma. APMIS 2017; 125:985-995. [PMID: 28913972 DOI: 10.1111/apm.12745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
This study investigated the clinical implications of SETDB1 (also known as KMT1E) in human colon adenocarcinoma. Expression levels of SETDB1 proteins were analyzed by immunohistochemistry staining, and tissue microarrays were used to examine expression profiles in human patients. Our results revealed that SETDB1 protein expression was significantly higher in tumor tissue than in normal tissue for the breast, colon, liver, and lung (p < 0.05). Moreover, an analysis with SurvExpress software suggested that elevated expression of SETDB1 mRNA was significantly associated with the overall survival of colon adenocarcinoma patients (p < 0.05); and additional analysis involving 90 paired samples of colon adenocarcinoma tissue and normal tissue revealed that SETDB1 protein expression was 82% higher in cancerous cells (p < 0.001). High SETDB1 expression was also found to be significantly correlated with histological grade (p = 0.005), TNM stage (p = 0.003), T-class/primary tumor (p = 0.001), and N-class/regional lymph nodes (p = 0.017); and Kaplan-Meier survival curves indicated that SETDB1 protein expression was significantly associated with poor survival. Finally, univariate analysis demonstrated that SETDB1 protein expression was related to TNM stage (p = 0.004) and SETDB1 score (p = 0.001), whereas multivariate analysis showed that the influence of SETDB1 on overall colon adenocarcinoma survival was independent from other risk factors. Taken together, our results suggest that the SETDB1 protein could serve as a clinical prognostic indicator for colon adenocarcinoma.
Collapse
Affiliation(s)
- Yi-Jung Ho
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Yen-Chi Huang
- Department of Styling & Cosmetology, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Liang-In Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Tsai-Yu Tzeng
- VYM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Wei Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
24
|
Wang X, Zhu X, Zhang H, Fan X, Xue X, Chen Y, Ding C, Zhao J, Wu G. ERCC1_202 Is A Prognostic Biomarker in Advanced Stage Non-Small Cell Lung Cancer Patients Treated with Platinum-Based Chemotherapy. J Cancer 2017; 8:2846-2853. [PMID: 28928874 PMCID: PMC5604217 DOI: 10.7150/jca.19897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022] Open
Abstract
Purpose: To develop a qPCR method to examine the 202 isoform of excision repair cross-complementation group 1 (ERCC1_202) and to evaluate its clinical utility as a predictive biomarker for platinum-based chemotherapy in non-small cell lung cancer (NSCLC). Methods: The relative complementary DNA (cDNA) quantification for ERCC1_202 was conducted using a fluorescence-based, real-time detection method and β-actin was used as a reference gene. Results: A strong correlation was observed between ERCC1_202 mRNA and ERCC1 mRNA levels in NSCLC cells (P < 0.001). 28 patients completed this research. Our results implied that as ERCC1_202 levels increased, the risk of progression (HR = 4.296, P = 0.011) and death (HR = 6.503, P = 0.001) increased. At multivariate analysis, high expression of ERCC1_202 was shown to be an independent predictive factor for time to progression (P = 0.047), and progression-free survival (P = 0.014). However, the high expression of ERCC1_202 was not an independent predictive factor for response (P = 0.324). Conclusions: This study suggests that the efficacy of platinum-based chemotherapy can be improved when customized according to the expression of ERCC1_202.
Collapse
Affiliation(s)
- Xiyong Wang
- Medical school of Southeast University, Nanjing 210009, China.,Department of Respiratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xiaoli Zhu
- Medical school of Southeast University, Nanjing 210009, China.,Department of Respiratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Hongming Zhang
- Medical school of Southeast University, Nanjing 210009, China.,Department of Respiratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Xiaobo Fan
- Medical school of Southeast University, Nanjing 210009, China
| | - Xiulei Xue
- Medical school of Southeast University, Nanjing 210009, China
| | - Yan Chen
- Medical school of Southeast University, Nanjing 210009, China
| | - Chenbo Ding
- Medical school of Southeast University, Nanjing 210009, China
| | - Jianwen Zhao
- Medical school of Southeast University, Nanjing 210009, China
| | - Guoqiu Wu
- Medical school of Southeast University, Nanjing 210009, China.,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
25
|
Meta-analysis showing that ERCC1 polymorphism is predictive of osteosarcoma prognosis. Oncotarget 2017; 8:62769-62779. [PMID: 28977987 PMCID: PMC5617547 DOI: 10.18632/oncotarget.19370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 07/11/2017] [Indexed: 12/14/2022] Open
Abstract
To investigate correlations between excision repair cross-complementation group 1 (ERCC1) and 2 (ERCC2) polymorphisms and osteosarcoma prognosis, we conducted a meta-analysis of studies published through October 2016. Studies were identified in the PubMed, ScienceDirect, Springer, and Web of Science databases using preferred reporting items for systematic reviews and meta-analyses (PRISMA). Odds ratios (ORs) or hazard ratios (HRs) and their 95% confidence intervals (CIs) for overall survival (OS), tumor response (TR), and event-free survival (EFS) were estimated. Our meta-analysis included eleven studies in which four SNPs (ERCC1 rs11615 and rs3212986, ERCC2 rs13181 and rs1799793) reportedly associated with osteosarcoma prognosis were investigated. Each of these studies scored > 6 on the Newcastle-Ottawa Scale (NOS). We found that only one SNP, ERCC1 rs11615, correlated with improved OS and TR. The HR of T vs. C for OS was 1.455 (T/C, 95% CI = 1.151–1.839, P = 0.002, I2 = 37.80%). The OR of T vs. C for good TR was 0.554 (T/C, 95% CI = 0.437–0.702, P < 0.001, I2 = 0%). Few significant outcome was observed in subgroup analyses stratified based on study characteristics with adjustments for potential confounders. Our results suggest that ERCC1 rs11615 CC is associated with a better clinical outcome. This suggests rs11615 may be a useful genetic marker for predicting osteosarcoma prognosis.
Collapse
|
26
|
Lee SM, Falzon M, Blackhall F, Spicer J, Nicolson M, Chaudhuri A, Middleton G, Ahmed S, Hicks J, Crosse B, Napier M, Singer JM, Ferry D, Lewanski C, Forster M, Rolls SA, Capitanio A, Rudd R, Iles N, Ngai Y, Gandy M, Lillywhite R, Hackshaw A. Randomized Prospective Biomarker Trial of ERCC1 for Comparing Platinum and Nonplatinum Therapy in Advanced Non-Small-Cell Lung Cancer: ERCC1 Trial (ET). J Clin Oncol 2017; 35:402-411. [PMID: 27893326 DOI: 10.1200/jco.2016.68.1841] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose Retrospective studies indicate that expression of excision repair cross complementing group 1 (ERCC1) protein is associated with platinum resistance and survival in non-small-cell lung cancer (NSCLC). We conducted the first randomized trial, to our knowledge, to evaluate ERCC1 prospectively and to assess the superiority of nonplatinum therapy over platinum doublet therapy for ERCC1-positive NSCLC as well as noninferiority for ERCC1-negative NSCLC. Patients and Methods This trial had a marker-by-treatment interaction phase III design, with ERCC1 (8F1 antibody) status as a randomization stratification factor. Chemonaïve patients with NSCLC (stage IIIB and IV) were eligible. Patients with squamous histology were randomly assigned to cisplatin and gemcitabine or paclitaxel and gemcitabine; nonsquamous patients received cisplatin and pemetrexed or paclitaxel and pemetrexed. Primary end point was overall survival (OS). We also evaluated an antibody specific for XPF (clone 3F2). The target hazard ratio (HR) for patients with ERCC1-positive NSCLC was ≤ 0.78. Results Of patients, 648 were recruited (177 squamous, 471 nonsquamous). ERCC1-positive rates were 54.5% and 76.7% in nonsquamous and squamous patients, respectively, and the corresponding XPF-positive rates were 70.5% and 68.5%. Accrual stopped early in 2012 for squamous patients because OS for nonplatinum therapy was inferior to platinum therapy (median OS, 7.6 months [paclitaxel and gemcitabine] v 10.7 months [cisplatin and gemcitabine]; HR, 1.46; P = .02). Accrual for nonsquamous patients halted in 2013. Median OS was 8.0 (paclitaxel and pemetrexed) versus 9.6 (cisplatin and pemetrexed) months for ERCC1-positive patients (HR, 1.11; 95% CI, 0.85 to 1.44), and 10.3 (paclitaxel and pemetrexed) versus 11.6 (cisplatin and pemetrexed) months for ERCC1-negative patients (HR, 0.99; 95% CI, 0.73 to 1.33; interaction P = .64). OS HR was 1.09 (95% CI, 0.83 to 1.44) for XPF-positive patients, and 1.39 (95% CI, 0.90 to 2.15) for XPF-negative patients (interaction P = .35). Neither ERCC1 nor XPF were prognostic: among nonsquamous patients, OS HRs for positive versus negative were ERCC1, 1.11 ( P = .32), and XPF, 1.08 ( P = .55). Conclusion Superior outcomes were observed for patients with squamous histology who received platinum therapy compared with nonplatinum chemotherapy; however, selecting chemotherapy by using commercially available ERCC1 or XPF antibodies did not confer any extra survival benefit.
Collapse
Affiliation(s)
- Siow Ming Lee
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Mary Falzon
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Fiona Blackhall
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - James Spicer
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Marianne Nicolson
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Abhro Chaudhuri
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Gary Middleton
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Samreen Ahmed
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Jonathan Hicks
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Barbara Crosse
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Mark Napier
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Julian M Singer
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - David Ferry
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Conrad Lewanski
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Martin Forster
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Sally-Ann Rolls
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Arrigo Capitanio
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Robin Rudd
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Natasha Iles
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Yenting Ngai
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Michael Gandy
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Rachel Lillywhite
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Allan Hackshaw
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| |
Collapse
|
27
|
Karanth AV, Maniswami RR, Prashanth S, Govindaraj H, Padmavathy R, Jegatheesan SK, Mullangi R, Rajagopal S. Emerging role of SETDB1 as a therapeutic target. Expert Opin Ther Targets 2017; 21:319-331. [PMID: 28076698 DOI: 10.1080/14728222.2017.1279604] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Epigenetic changes lead to aberrant gene expression in cancer. SETDB1, a histone lysine methyltransferase plays an important role in methylation and gene silencing. Aberrant histone methylation at H3K9 by SETDB1 promotes silencing of tumor suppressor genes and thus contributes to carcinogenesis. Recent studies indicate that SETDB1 is abnormally expressed in various human cancer conditions which contributed to enhanced tumor growth and metastasis. Hence, SETDB1 appears to be a promising epigenetic target for therapeutic intervention. Areas covered: In this article, the structural features, localization and functions of SETDB1 are reviewed. Also, an overview of the role of SETDB1 in cancer and other disease mechanisms, the currently studied inhibitors for SETDB1 are mentioned. Expert opinion: Silencing of tumor suppressor genes due to excessive trimethylation at H3K9 by amplified SETDB1 levels is found in various cancerous conditions. Since epigenetic changes are reversible, SETDB1 holds promise as an important therapeutic target for cancer. Therefore, a better understanding of the role of SETDB1 and its interaction with various proteins in cancer-related mechanisms along with therapeutic interventions specific for SETDB1 may improve targeted cancer therapy.
Collapse
|
28
|
Zhang F, Chen X, Wei K, Liu D, Xu X, Zhang X, Shi H. Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma. Med Sci Monit 2017; 23:172-206. [PMID: 28081052 PMCID: PMC5248564 DOI: 10.12659/msm.898297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Lung squamous cell carcinoma (lung SCC) is a common type of lung cancer, but its mechanism of pathogenesis is unclear. The aim of this study was to identify key transcription factors in lung SCC and elucidate its mechanism. Material/Methods Six published microarray datasets of lung SCC were downloaded from Gene Expression Omnibus (GEO) for integrated bioinformatics analysis. Significance analysis of microarrays was used to identify differentially expressed genes (DEGs) between lung SCC and normal controls. The biological functions and signaling pathways of DEGs were mapped in the Gene Otology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, respectively. A transcription factor gene regulatory network was used to obtain insights into the functions of DEGs. Results A total of 1,011 genes, including 539 upregulated genes and 462 downregulated genes, were filtered as DEGs between lung SCC and normal controls. DEGs were significantly enriched in cell cycle, DNA replication, p53 signaling pathway, pathways in cancer, adherens junction, and cell adhesion molecules signaling pathways. There were 57 transcription factors identified, which were used to construct a regulatory network. The network consisted of 736 interactions between 49 transcription factors and 486 DEGs. NFIC, BRCA1, and NFATC2 were the top 3 transcription factors that had the highest connectivity with DEGs and that regulated 83, 82, and 75 DEGs in the network, respectively. Conclusions NFIC, BRCA1, and NFATC2 might be the key transcription factors in the development of lung SCC by regulating the genes involved in cell cycle and DNA replication pathways.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Oncology, Linyi People's Hospital of Shandong Province, Linyi, Shandong, China (mainland)
| | - Xia Chen
- The Second Ward, Taian Disabled Soldiers Hospital of Shandong Province, Taian, Shandong, China (mainland)
| | - Ke Wei
- The Third Ward, Taian Disabled Soldiers Hospital of Shandong Province, Taian, Shandong, China (mainland)
| | - Daoming Liu
- Department of Respiratory Medicine, Taian City Central Hospital of Shandong Province, Taian, Shandong, China (mainland)
| | - Xiaodong Xu
- Department of Internal Medicine, Taian City Central Hospital of Shandong Province, Taian, Shandong, China (mainland)
| | - Xing Zhang
- The Second Ward, Taian Disabled Soldiers Hospital of Shandong Province, Taian, Shandong, China (mainland)
| | - Hong Shi
- Department of Respiratory Medicine, Taian City Central Hospital of Shandong Province, Taian, Shandong, China (mainland)
| |
Collapse
|
29
|
Bai L, Guo C, Wang J, Liu X, Li Y, Li M, Guo Y, Duan X. 18F-fludrodeoxyglucose maximal standardized uptake value and metabolic tumor burden are associated with major chemotherapy-related tumor markers in NSCLC patients. Onco Targets Ther 2016; 9:6315-6324. [PMID: 27789962 PMCID: PMC5072511 DOI: 10.2147/ott.s113832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objective Metabolic activity and tumor burden are significant for prognosis and metastasis of non-small cell lung cancer (NSCLC), including maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG). Chemotherapy resistance is a great challenge for treating NSCLC patients and is also closely related with several biomarkers such as epidermal growth factor receptor (EGFR), p53, and excision repair cross-complementing group 1 protein (ERCC1). Our purpose was to determine the correlation between positron emission tomography/computed tomography (PET/CT) parameters and tumor markers-related chemotherapy resistance in NSCLC. Methods Forty-six NSCLC chemotherapy-naïve patients were enrolled. The SUVmax, MTV, and TLG were calculated by PET/CT imaging, and expression of EGFR, p53, and ERCC1 were analyzed by immunohistochemistry on tissues. SUVmax, MTV, and TLG compared for their performance in predicting the expression of EGFR, p53, and ERCC1 were illustrated with statistical analysis. Results SUVmax was significantly correlated with p53 expression (P=0.001), and MTV and TLG were significantly associated with ERCC1 (P=0.000; P=0.000). Furthermore, multiple stepwise regression analysis revealed that SUVmax was the primary predictor for p53, MTV and TLG was the primary predictor for ERCC1. SUVmax had a sensitivity of 91% and specificity of 50% for the detection of p53 positive. The sensitivities of MTV and TLG were 83% and 80%, and specificities were 69% and 75% for the detection of ERCC1 positive, respectively. When we suggested p53 or ERCC1 positive, the cutoff value of SUVmax, MTV, and TLG were 7.68, 23.62, and 129.65 cm3, respectively. Conclusion SUVmax, MTV, and TLG were closely associated with p53 and ERCC1’ expressions. Therefore, 18F-fludrodeoxyglucose PET/CT could be a new way of predicting p53 or ERCC1-related chemotherapy effect in NSCLC patients with more convenience.
Collapse
Affiliation(s)
- Lu Bai
- Department of Medical Imaging
| | | | - Jiansheng Wang
- Department of Oncological Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | - Yang Li
- Department of Medical Imaging
| | - Miao Li
- Department of Medical Imaging
| | | | | |
Collapse
|