1
|
Daruich A, Duncan M, Robert MP, Lagali N, Semina EV, Aberdam D, Ferrari S, Romano V, des Roziers CB, Benkortebi R, De Vergnes N, Polak M, Chiambaretta F, Nischal KK, Behar-Cohen F, Valleix S, Bremond-Gignac D. Congenital aniridia beyond black eyes: From phenotype and novel genetic mechanisms to innovative therapeutic approaches. Prog Retin Eye Res 2023; 95:101133. [PMID: 36280537 PMCID: PMC11062406 DOI: 10.1016/j.preteyeres.2022.101133] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
Abstract
Congenital PAX6-aniridia, initially characterized by the absence of the iris, has progressively been shown to be associated with other developmental ocular abnormalities and systemic features making congenital aniridia a complex syndromic disorder rather than a simple isolated disease of the iris. Moreover, foveal hypoplasia is now recognized as a more frequent feature than complete iris hypoplasia and a major visual prognosis determinant, reversing the classical clinical picture of this disease. Conversely, iris malformation is also a feature of various anterior segment dysgenesis disorders caused by PAX6-related developmental genes, adding a level of genetic complexity for accurate molecular diagnosis of aniridia. Therefore, the clinical recognition and differential genetic diagnosis of PAX6-related aniridia has been revealed to be much more challenging than initially thought, and still remains under-investigated. Here, we update specific clinical features of aniridia, with emphasis on their genotype correlations, as well as provide new knowledge regarding the PAX6 gene and its mutational spectrum, and highlight the beneficial utility of clinically implementing targeted Next-Generation Sequencing combined with Whole-Genome Sequencing to increase the genetic diagnostic yield of aniridia. We also present new molecular mechanisms underlying aniridia and aniridia-like phenotypes. Finally, we discuss the appropriate medical and surgical management of aniridic eyes, as well as innovative therapeutic options. Altogether, these combined clinical-genetic approaches will help to accelerate time to diagnosis, provide better determination of the disease prognosis and management, and confirm eligibility for future clinical trials or genetic-specific therapies.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Melinda Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; Borelli Centre, UMR 9010, CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute at the Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI, 53226, USA
| | - Daniel Aberdam
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, Via Paccagnella 11, Venice, Italy
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiolological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Italy
| | - Cyril Burin des Roziers
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Rabia Benkortebi
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nathalie De Vergnes
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris Cité University, INSERM U1016, Institut IMAGINE, France
| | | | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, and Adult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francine Behar-Cohen
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France
| | - Sophie Valleix
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France; Service de Médecine Génomique des Maladies de Système et d'Organe, APHP. Centre Université de Paris, Fédération de Génétique et de Médecine Génomique Hôpital Cochin, 27 rue du Fbg St-Jacques, 75679, Paris Cedex 14, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, Paris Cité University, Paris, France; INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Sorbonne Paris Cité University, Centre de Recherche des Cordeliers, Paris, France.
| |
Collapse
|
2
|
Jeyabalan N, Ghosh A, Mathias GP, Ghosh A. Rare eye diseases in India: A concise review of genes and genetics. Indian J Ophthalmol 2022; 70:2232-2238. [PMID: 35791102 PMCID: PMC9426079 DOI: 10.4103/ijo.ijo_322_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rare eye diseases (REDs) are mostly progressive and are the leading cause of irreversible blindness. The disease onset can vary from early childhood to late adulthood. A high rate of consanguinity contributes to India’s predisposition to RED. Most gene variations causing REDs are monogenic and, in some cases, digenic. All three types of Mendelian inheritance have been reported in REDs. Some of the REDs are related to systemic illness with variable phenotypes in affected family members. Approximately, 50% of the children affected by REDs show associated phenotypes at the early stages of the disease. A precise clinical diagnosis becomes challenging due to high clinical and genetic heterogeneity. Technological advances, such as next-generation sequencing (NGS), have improved genetic and genomic testing for REDs, thereby aiding in determining the underlying causative gene variants. It is noteworthy that genetic testing together with genetic counseling facilitates a more personalized approach in the accurate diagnosis and management of the disease. In this review, we discuss REDs identified in the Indian population and their underlying genetic etiology.
Collapse
Affiliation(s)
- Nallathambi Jeyabalan
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | - Anuprita Ghosh
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | - Grace P Mathias
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| | - Arkasubhra Ghosh
- Molecular Signaling and Gene Therapy Unit, GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Tibrewal S, Ratna R, Gour A, Agarkar S, Dubey S, Ganesh S, Kekunnaya R, Sangwan V, Liu Y, Vanita V. Clinical and molecular aspects of congenital aniridia - A review of current concepts. Indian J Ophthalmol 2022; 70:2280-2292. [PMID: 35791108 PMCID: PMC9426064 DOI: 10.4103/ijo.ijo_2255_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Congenital aniridia is a pan ocular disorder characterized by partial or total loss of iris tissue as the defining feature. Classic aniridia, however, has a spectrum of ocular findings, including foveal hypoplasia, optic nerve hypoplasia, nystagmus, late-onset cataract, glaucoma, and keratopathy. The latter three are reasons for further visual compromise in such patients. This entity is often due to mutations in the PAX6 (Paired box protein Pax-6) gene. Recently, aniridia-like phenotypes have been reported due to non-PAX6 mutations as in PITX2, FOXC1, FOXD3, TRIM44, and CYP1B1 as well wherein there is an overlap of aniridia, such as iris defects with congenital glaucoma or anterior segment dysgenesis. In this review, we describe the various clinical features of classic aniridia, the comorbidities and their management, the mutation spectrum of the genes involved, genotype-phenotype correlation of PAX6 and non-PAX6 mutations, and the genetic testing plan. The various systemic associations and their implications in screening and genetic testing have been discussed. Finally, the future course of aniridia treatment in the form of drugs (such as ataluren) and targeted gene therapy has been discussed.
Collapse
Affiliation(s)
- Shailja Tibrewal
- Department of Ocular Genetics; Department of Pediatric Ophthalmology, Strabismus and Neuro-ophthalmology, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Ria Ratna
- Department of Ocular Genetics, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Abha Gour
- Department of Cornea and Anterior Segment, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Sumita Agarkar
- Department of Pediatric Ophthalmology and Strabismus, Medical Research Foundation, Sankara Netralaya, Chennai, Tamil Nadu, India
| | - Suneeta Dubey
- Department of Glaucoma, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Suma Ganesh
- Department of Pediatric Ophthalmology, Strabismus and Neuro-ophthalmology, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Centre, L V Prasad Eye Institute, KAR Campus, Hyderabad, Telangana, India
| | - Virender Sangwan
- Department of Cornea and Anterior Segment, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
4
|
Ratna R, Tibrewal S, Gour A, Gupta R, Mathur U, Vanita V. A rare case of congenital aniridia with an unusual run-on mutation in PAX6 gene. Indian J Ophthalmol 2022; 70:2661-2664. [PMID: 35791194 PMCID: PMC9426074 DOI: 10.4103/ijo.ijo_433_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Ria Ratna
- Department of Ocular Genetics, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Shailja Tibrewal
- Department of Ocular Genetics; Department of Pediatric Ophthalmology, Strabismus and Neuro-Ophthalmology, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Abha Gour
- Department of Cornea and Anterior Segment, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Reena Gupta
- Regional Institute of Ophthalmology, Post-Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Umang Mathur
- Department of Cornea and Anterior Segment, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
5
|
Mirrahimi M, Sabbaghi H, Ahmadieh H, Jahanmard M, Hassanpour K, Suri F. A novel PAX6 mutation causes congenital aniridia with or without retinal detachment. Ophthalmic Genet 2019; 40:146-149. [DOI: 10.1080/13816810.2019.1597374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mehraban Mirrahimi
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Sabbaghi
- Ophthalmic Epidemiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Jahanmard
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Hassanpour
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Suri
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Landsend ES, Utheim ØA, Pedersen HR, Lagali N, Baraas RC, Utheim TP. The genetics of congenital aniridia—a guide for the ophthalmologist. Surv Ophthalmol 2018; 63:105-113. [DOI: 10.1016/j.survophthal.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
|
7
|
Pérez-Solórzano S, Chacón-Camacho OF, Astiazarán MC, Ledesma-Gil G, Zenteno JC. PAX6 allelic heterogeneity in Mexican congenital aniridia patients: expanding the mutational spectrum with seven novel pathogenic variants. Clin Exp Ophthalmol 2017; 45:875-883. [PMID: 28488383 DOI: 10.1111/ceo.12982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/24/2017] [Accepted: 05/02/2017] [Indexed: 02/04/2023]
Abstract
IMPORTANCE The importance of the study was to describe the clinical characteristics and mutational analysis of Mexican patients with aniridia. BACKGROUND Aniridia is a panocular hereditary eye disease caused by mutations in the PAX6 transcription factor. Mutation detection rate is highly variable ranging from 30% to 90% in different populations. Very few studies have been published about the PAX6 mutational analysis in aniridia patients from Mexico. In order to establish a more representative PAX6 mutational frequency in the country, a cohort of 22 Mexican unrelated aniridia probands were analysed in this study. DESIGN Case series. PARTICIPANTS A total of 22 Mexican probands with bilateral isolated aniridia and their available relatives were included. METHODS Sanger sequencing was used for the mutational analysis of all coding exons and flanking intronic regions of PAX6. MAIN OUTCOME MEASURES Clinical characteristics and results of PAX6 mutational analysis in probands with aniridia and available family members. RESULTS Molecular analysis of PAX6 in 22 index cases with aniridia allowed the identification of a total of 16 different mutations. Seven of these pathogenic variants are novel, including c.183C>G, p.(Y61*); c.718delC, p.(R240Efs*3); c.1149_1152delTCAG, p.(P385Wfs*139); c.257_266delAAATAGCCCA, p.(K86Sfs*35); c.836_843dupGCAACACA p.(P282Afs*86); c.1032+2_1032+3insT; and c.141+2T>A. Inter and intrafamilial phenotypic heterogeneity was found. CONCLUSIONS AND RELEVANCE The mutational diagnostic rate in this series was 77%, which is comparable with reports from other populations. Importantly, no founder mutations were identified in this case series. Our results add 7 novel PAX6 pathogenic variants to the aniridia-related mutational spectrum and reveal considerable PAX6 allelic heterogeneity in this population.
Collapse
Affiliation(s)
- Sofía Pérez-Solórzano
- Genetics Department, Institute of Ophthalmology 'Conde de Valenciana', Mexico City, Mexico
| | - Oscar F Chacón-Camacho
- Genetics Department, Institute of Ophthalmology 'Conde de Valenciana', Mexico City, Mexico
| | - Mirena C Astiazarán
- Genetics Department, Institute of Ophthalmology 'Conde de Valenciana', Mexico City, Mexico
| | - Gerardo Ledesma-Gil
- Retina Department, Institute of Ophthalmology 'Conde de Valenciana', Mexico City, Mexico
| | - Juan Carlos Zenteno
- Genetics Department, Institute of Ophthalmology 'Conde de Valenciana', Mexico City, Mexico.,Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
8
|
Novel variants in PAX6 gene caused congenital aniridia in two Chinese families. Eye (Lond) 2017; 31:956-961. [PMID: 28157223 DOI: 10.1038/eye.2016.326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/14/2016] [Indexed: 11/08/2022] Open
Abstract
PurposeTo reveal the underlying genetic defect in two four-generation Chinese families with aniridia and explore the pathologic mechanism.MethodsFull ophthalmic examinations were performed in two families with aniridia. The PAX6 gene was directly sequenced in patients of two families, and the detected variants were screened in unaffected family members and two hundred unrelated healthy controls. Real-time quantitative PCR was used to explore pathologic mechanisms of the two variants.ResultsAniridia, cataract, and oscillatory nystagmus were observed in patients of the two families. In addition, we observed corneal opacity and microphthalmus in family 1, and strabismus, left ectopia lentis, microphthalmus, and microcornea in family 2. Sanger sequencing detected a novel 1-bp duplication (c.50dupA) in family 1 and a novel 2-bp splice site deletion (c.765+1_765+2delGT) in family 2. Sequencing of cDNA indicated skipping of exon 9 caused by the splice site deletion, being predicted to cause a premature stop codon, as well as the duplication. The PAX6 mRNA significantly lower in patients with aniridia than in unaffected family members in both families, suggesting that the duplication and splice site deletion caused nonsense-mediated mRNA decay.ConclusionsOur study identified two novel PAX6 variants in two families with aniridia and revealed the pathogenicity of the variants; this would expand the variant spectrum of PAX6 and help us better understand the molecular basis of aniridia, thus facilitating genetic counseling.
Collapse
|
9
|
Goswami S, Gupta V, Srivastava A, Sihota R, Malik MA, Kaur J. A novel duplication in the PAX6 gene in a North Indian family with aniridia. Int Ophthalmol 2014; 34:1183-1188. [PMID: 25189681 DOI: 10.1007/s10792-013-9882-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 11/08/2013] [Indexed: 10/24/2022]
Abstract
Mutations in paired box gene 6 (PAX6) are the major cause of aniridia that may be associated with several other developmental anomalies of the eye, including microcornea in rare cases. Therefore, the purpose of this study was to identify the underlying genetic cause in a two-generation North Indian family diagnosed with aniridia. All the participants enrolled in the study, including the aniridia family and 20 healthy individuals (controls), underwent a comprehensive ophthalmic examination. Mutation screening was performed for the PAX6 gene by direct sequencing of the polymerase chain reaction products. A novel PAX6 duplication in exon 5 at position c.474dupC was identified in all three affected individuals from the family but not in the unaffected family members or unrelated controls. We reported a novel duplication in the PAX6 gene capable of causing the classic aniridia phenotype. This is the first report on the duplication in a North Indian family with autosomal dominant aniridia.
Collapse
Affiliation(s)
- Sandeep Goswami
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
10
|
Singh B, Mohamed A, Chaurasia S, Ramappa M, Mandal AK, Jalali S, Sangwan VS. Clinical manifestations of congenital aniridia. J Pediatr Ophthalmol Strabismus 2014; 51:59-62. [PMID: 24369682 DOI: 10.3928/01913913-20131223-01] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 10/10/2013] [Indexed: 11/20/2022]
Abstract
PURPOSE To study the various clinical manifestations associated with congenital aniridia in an Indian population. METHODS In this retrospective, consecutive, observational case series, all patients with the diagnosis of congenital aniridia seen at the institute from January 2005 to December 2010 were reviewed. In all patients, the demographic profile, visual acuity, and associated systemic and ocular manifestations were studied. RESULTS The study included 262 eyes of 131 patients with congenital aniridia. Median patient age at the time of initial visit was 8 years (range: 1 day to 73 years). Most cases were sporadic and none of the patients had parents afflicted with aniridia. The most common anterior segment abnormality identified was lenticular changes. Cataract was the predominant lens finding, observed in 93 of 231 (40.3%) phakic eyes. Other lens abnormalities were subluxation, coloboma, posterior lenticonus, and microspherophakia. Corneal involvement of varying degrees was seen in 157 of 262 (59.9%) eyes, glaucoma was identified in 95 of 262 (36.3%) eyes, and foveal hypoplasia could be assessed in 230 of 262 (87.7%) eyes. Median age when glaucoma and cataract were noted was 7 and 14 years, respectively. None of the patients had Wilm's tumor. CONCLUSIONS Congenital aniridia was commonly associated with classically described ocular features. However, systemic associations were characteristically absent in this population. Notably, cataract and glaucoma were seen at an early age. This warrants a careful evaluation and periodic follow-up in these patients for timely identification and appropriate management.
Collapse
|
11
|
Glaucoma and Frequency of Ocular and General Diseases in 30 Patients with Aniridia: A Clinical Study. Eur J Ophthalmol 2011; 22:104-10. [DOI: 10.5301/ejo.2011.8318] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2011] [Indexed: 11/20/2022]
Abstract
Purpose To evaluate the following in patients with aniridia: age at first examination at the University Eye Hospital and age at diagnosis of glaucoma; visual acuity; frequency of family history of aniridia; and frequency of ocular and general diseases associated with aniridia. Methods This was a consecutive examination of 30 unrelated patients with aniridia and retrospective evaluation of ophthalmologic, pediatric, and internal findings. The relative frequency of age at glaucoma diagnosis within decades was evaluated for the 20 patients with aniridia and glaucoma. Statistical analysis was performed using the Mann-Whitney test. Results Relative frequency of the age of patients with aniridia at time of glaucoma diagnosis within the following decades was as follows: from birth to 9 years: 15%, 10-19: 15%, 20-29: 15%, 30-39: 15%, 40-49: 35%, and 50-59: 5%. Visual acuity in the better eye of 20/100 or less was found in 60%. Family history of aniridia was found in 33.3% of patients, with 1-4 relatives with aniridia. A total of 76.7% of patients had congenital cataract, and 66.7% had glaucoma. Mean maximum intraocular pressure of the 20 patients with glaucoma was 35.9 mmHg in the right and 32.6 mmHg in the left eye. A total of 53.3% had nystagmus, 26.6% corneal opacifications, 16.7% bilateral lens dislocation upwards, 6.7% optic nerve hypoplasia, 3.3% poor foveal development, and 3.3% Wilms tumor. Conclusions Up to the age of 40 years, 15% of patients were diagnosed with glaucoma per age decade. Frequent bilateral glaucoma and similar bilateral height of intraocular pressure suggest a genetic glaucoma disposition with malformation at Schlemm canal, besides possible sequential anatomic changes in the chamber angle. Associated ocular abnormalities limit visual prognosis.
Collapse
|
12
|
Luo F, Zhou L, Ma X, He Y, Zou L, Jie Y, Liu J, Pan Z. Mutation analysis of PAX6 in a Chinese family and a patient with a presumed sporadic case of congenital aniridia. Ophthalmic Res 2011; 47:27-31. [PMID: 21691140 DOI: 10.1159/000327593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 03/17/2011] [Indexed: 11/19/2022]
Abstract
AIMS Mutations in the PAX6 are the major cause of congenital aniridia. The objective of this study was to analyze genetic mutations in PAX6 in Chinese patients with congenital aniridia. METHODS Total genomic DNA was isolated from the peripheral blood of the aniridia patients, all healthy family members and 100 healthy volunteers. The 14 exons (including alternatively spliced exon 5a) of the PAX6 gene were amplified by polymerase chain reaction, and the products were sequenced to identify the mutation. RESULTS Two mutations of PAX6 were detected in exon 11 in the congenital aniridia patients. One mutation was caused by the duplication of the 4 nucleic acids CTCC (c.1286insCTCC), which would lead to a frameshift. The other mutation was caused by a transition from C to T (c.1311C → T), which would generate a stop codon. Neither mutation was present in the healthy family members or 100 healthy volunteers. CONCLUSION We examined the exon sequence of the PAX6 gene in a Chinese family and an unrelated individual with aniridia. The predicted outcome of both mutations is premature termination. The mutation found in the unrelated individual has not previously been reported and represents a new addition to the spectrum of mutations in PAX6.
Collapse
Affiliation(s)
- Fei Luo
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|