1
|
Cumbers GA, Harvey-Latham ED, Kassiou M, Werry EL, Danon JJ. Emerging TSPO-PET Radiotracers for Imaging Neuroinflammation: A Critical Analysis. Semin Nucl Med 2024; 54:856-874. [PMID: 39477764 DOI: 10.1053/j.semnuclmed.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024]
Abstract
The translocator protein (TSPO) is a biomarker for imaging neuroinflammation via Positron Emission Tomography (PET) across a broad range of CNS conditions. Most clinically used PET ligands targeting TSPO have limitations, including high lipophilicity and off-target binding or poor binding to a mutated TSPO isoform present in up to 30% of the population. Research efforts over the past decade have focused on development of improved TSPO PET radiotracers that overcome these limitations. This review provides a critical analysis of the development and validation of these so-called "third-generation" radiotracers in clinical and preclinical settings. We also offer our perspective on the future directions of TSPO PET imaging, including recommendations for overcoming current challenges and capitalizing on emerging opportunities in molecular imaging for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Grace A Cumbers
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Edward D Harvey-Latham
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia.
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia; Central Clinical School, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Jonathan J Danon
- School of Chemistry, Faculty of Science, The University of Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Salerno S, Viviano M, Baglini E, Poggetti V, Giorgini D, Castagnoli J, Barresi E, Castellano S, Da Settimo F, Taliani S. TSPO Radioligands for Neuroinflammation: An Overview. Molecules 2024; 29:4212. [PMID: 39275061 PMCID: PMC11397380 DOI: 10.3390/molecules29174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The translocator protein (TSPO) is predominately localized on the outer mitochondrial membrane in steroidogenic cells. In the brain, TSPO expression, low under normal conditions, results upregulated in response to glial cell activation, that occurs in neuroinflammation. As a consequence, TSPO has been extensively studied as a biomarker of such conditions by means of TSPO-targeted radiotracers. Although [11C]-PK11195, the prototypical TSPO radioligand, is still widely used for in vivo studies, it is endowed with severe limitations, mainly low sensitivity and poor amenability to quantification. Consequently, several efforts have been focused on the design of new radiotracers for the in vivo imaging of TSPO. The present review will provide an outlook on the latest advances in TSPO radioligands for neuroinflammation imaging. The final goal is to pave the way for (radio)chemists in the future design and development of novel effective and sensitive radiopharmaceuticals targeting TSPO.
Collapse
Affiliation(s)
- Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| |
Collapse
|
3
|
Volpi G, Laurenti E, Rabezzana R. Imidazopyridine Family: Versatile and Promising Heterocyclic Skeletons for Different Applications. Molecules 2024; 29:2668. [PMID: 38893542 PMCID: PMC11173518 DOI: 10.3390/molecules29112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, there has been increasing attention focused on various products belonging to the imidazopyridine family; this class of heterocyclic compounds shows unique chemical structure, versatile optical properties, and diverse biological attributes. The broad family of imidazopyridines encompasses different heterocycles, each with its own specific properties and distinct characteristics, making all of them promising for various application fields. In general, this useful category of aromatic heterocycles holds significant promise across various research domains, spanning from material science to pharmaceuticals. The various cores belonging to the imidazopyridine family exhibit unique properties, such as serving as emitters in imaging, ligands for transition metals, showing reversible electrochemical properties, and demonstrating biological activity. Recently, numerous noteworthy advancements have emerged in different technological fields, including optoelectronic devices, sensors, energy conversion, medical applications, and shining emitters for imaging and microscopy. This review intends to provide a state-of-the-art overview of this framework from 1955 to the present day, unveiling different aspects of various applications. This extensive literature survey may guide chemists and researchers in the quest for novel imidazopyridine compounds with enhanced properties and efficiency in different uses.
Collapse
Affiliation(s)
- Giorgio Volpi
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy; (E.L.)
| | | | | |
Collapse
|
4
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Bian J, Liu YQ, He J, Lin X, Qiu CY, Yu WB, Shen Y, Zhu ZY, Ye DY, Wang J, Chu Y. Discovery of styrylaniline derivatives as novel alpha-synuclein aggregates ligands. Eur J Med Chem 2021; 226:113887. [PMID: 34624824 DOI: 10.1016/j.ejmech.2021.113887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder. Early diagnosis is the key to treatment but is still a great challenge in the clinic now. The discovery of alpha-synuclein (α-syn) aggregates ligands has become an attractive strategy to meet the early diagnosis of PD. Herein, we designed and synthesized a series of styrylaniline derivatives as novel α-syn aggregates ligands. Several compounds displayed good potency to α-syn aggregates with Kd values less than 0.1 μM. The docking study revealed that the hydrogen bonds and cation-pi interaction between ligands and α-syn aggregates would be crucial for the activity. The representative compound 7-16 not only detected α-syn aggregates in both SH-SY5Y cells and brain tissues prepared from two kinds of α-syn preformed-fibrils-injected mice models but also showed good blood-brain barrier penetration characteristics in vivo with a brain/plasma ratio over 1.0, which demonstrates its potential as a lead compound for further development of in vivo imaging agents.
Collapse
Affiliation(s)
- Jiang Bian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yi-Qi Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jie He
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chen-Yang Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wen-Bo Yu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yan Shen
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ze-Yun Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - De-Yong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Yong Chu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
6
|
Van Camp N, Lavisse S, Roost P, Gubinelli F, Hillmer A, Boutin H. TSPO imaging in animal models of brain diseases. Eur J Nucl Med Mol Imaging 2021; 49:77-109. [PMID: 34245328 PMCID: PMC8712305 DOI: 10.1007/s00259-021-05379-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022]
Abstract
Over the last 30 years, the 18-kDa TSPO protein has been considered as the PET imaging biomarker of reference to measure increased neuroinflammation. Generally assumed to image activated microglia, TSPO has also been detected in endothelial cells and activated astrocytes. Here, we provide an exhaustive overview of the recent literature on the TSPO-PET imaging (i) in the search and development of new TSPO tracers and (ii) in the understanding of acute and chronic neuroinflammation in animal models of neurological disorders. Generally, studies testing new TSPO radiotracers against the prototypic [11C]-R-PK11195 or more recent competitors use models of acute focal neuroinflammation (e.g. stroke or lipopolysaccharide injection). These studies have led to the development of over 60 new tracers during the last 15 years. These studies highlighted that interpretation of TSPO-PET is easier in acute models of focal lesions, whereas in chronic models with lower or diffuse microglial activation, such as models of Alzheimer's disease or Parkinson's disease, TSPO quantification for detection of neuroinflammation is more challenging, mirroring what is observed in clinic. Moreover, technical limitations of preclinical scanners provide a drawback when studying modest neuroinflammation in small brains (e.g. in mice). Overall, this review underlines the value of TSPO imaging to study the time course or response to treatment of neuroinflammation in acute or chronic models of diseases. As such, TSPO remains the gold standard biomarker reference for neuroinflammation, waiting for new radioligands for other, more specific targets for neuroinflammatory processes and/or immune cells to emerge.
Collapse
Affiliation(s)
- Nadja Van Camp
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Sonia Lavisse
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Pauline Roost
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Francesco Gubinelli
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Ansel Hillmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, M20 3LJ, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Zhou R, Ji B, Kong Y, Qin L, Ren W, Guan Y, Ni R. PET Imaging of Neuroinflammation in Alzheimer's Disease. Front Immunol 2021; 12:739130. [PMID: 34603323 PMCID: PMC8481830 DOI: 10.3389/fimmu.2021.739130] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation play an important role in Alzheimer's disease pathogenesis. Advances in molecular imaging using positron emission tomography have provided insights into the time course of neuroinflammation and its relation with Alzheimer's disease central pathologies in patients and in animal disease models. Recent single-cell sequencing and transcriptomics indicate dynamic disease-associated microglia and astrocyte profiles in Alzheimer's disease. Mitochondrial 18-kDa translocator protein is the most widely investigated target for neuroinflammation imaging. New generation of translocator protein tracers with improved performance have been developed and evaluated along with tau and amyloid imaging for assessing the disease progression in Alzheimer's disease continuum. Given that translocator protein is not exclusively expressed in glia, alternative targets are under rapid development, such as monoamine oxidase B, matrix metalloproteinases, colony-stimulating factor 1 receptor, imidazoline-2 binding sites, cyclooxygenase, cannabinoid-2 receptor, purinergic P2X7 receptor, P2Y12 receptor, the fractalkine receptor, triggering receptor expressed on myeloid cells 2, and receptor for advanced glycation end products. Promising targets should demonstrate a higher specificity for cellular locations with exclusive expression in microglia or astrocyte and activation status (pro- or anti-inflammatory) with highly specific ligand to enable in vivo brain imaging. In this review, we summarised recent advances in the development of neuroinflammation imaging tracers and provided an outlook for promising targets in the future.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Limei Qin
- Inner Mongolia Baicaotang Qin Chinese Mongolia Hospital, Hohhot, China
| | - Wuwei Ren
- School of Information Science and Technology, Shanghaitech University, Shanghai, China
| | - Yihui Guan
- Positron Emission Tomography (PET) Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich & Eidgenössische Technische Hochschule Zürich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
8
|
Oh SJ, Ahn H, Jung KH, Han SJ, Nam KR, Kang KJ, Park JA, Lee KC, Lee YJ, Choi JY. Evaluation of the Neuroprotective Effect of Microglial Depletion by CSF-1R Inhibition in a Parkinson's Animal Model. Mol Imaging Biol 2021; 22:1031-1042. [PMID: 32086763 DOI: 10.1007/s11307-020-01485-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Neuroinflammation in Parkinson's disease (PD) is known to play a pivotal role in progression to neuronal degeneration. It has been reported that colony-stimulation factor 1 receptor (CSF-1R) inhibition can effectively deplete microglia. However, its therapeutic efficacy in PD is unclear still now. PROCEDURES To elucidate this issue, we examined the contribution of microglial depletion to PD by behavioral testing, positron emission tomography (PET) imaging, and immunoassays in sham, PD, and microglial depletion PD model (PLX3397 was administered to PD groups, with n = 6 in each group). RESULTS The microglial depletion in PD model showed improved sensory motor function and depressive-like behavior. NeuroPET revealed that PLX3397 treatment resulted in partial recovery of striatal neuro-inflammatory functions (binding values of [18F]DPA-174 for PD, 1.47 ± 0.12, p < 0.01 vs. for PLX3397 in PD: 1.33 ± 0.26) and the dopaminergic (binding values of 18F-FP-CIT for PD, 1.32 ± 0.07 vs. for PLX3397 in PD: 1.54 ± 0.10, p < 0.01) and glutamatergic systems (binding values of [18F]FPEB for PD: 9.22 ± 0.54 vs. for PLX3397 Tx in PD: 9.83 ± 0.96, p > 0.05). Western blotting for microglia showed similar changes. CONCLUSION Microglial depletion has inflammation-related therapeutic effects, which have beneficial effects on motor and nonmotor symptoms of PD.
Collapse
Affiliation(s)
- Se Jong Oh
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Heesu Ahn
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea.,Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, South Korea
| | - Ki-Hye Jung
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea.,Medical Device-Bio Research Institute, Korea Testing and Research Institute, Gwacheon, Gyeonggi-do, South Korea
| | - Sang Jin Han
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Kyung Jun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, South Korea.
| |
Collapse
|
9
|
Zhang L, Hu K, Shao T, Hou L, Zhang S, Ye W, Josephson L, Meyer JH, Zhang MR, Vasdev N, Wang J, Xu H, Wang L, Liang SH. Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharm Sin B 2021; 11:373-393. [PMID: 33643818 PMCID: PMC7893127 DOI: 10.1016/j.apsb.2020.08.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is predominately localized to the outer mitochondrial membrane in steroidogenic cells. Brain TSPO expression is relatively low under physiological conditions, but is upregulated in response to glial cell activation. As the primary index of neuroinflammation, TSPO is implicated in the pathogenesis and progression of numerous neuropsychiatric disorders and neurodegenerative diseases, including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), multiple sclerosis (MS), major depressive disorder (MDD) and obsessive compulsive disorder (OCD). In this context, numerous TSPO-targeted positron emission tomography (PET) tracers have been developed. Among them, several radioligands have advanced to clinical research studies. In this review, we will overview the recent development of TSPO PET tracers, focusing on the radioligand design, radioisotope labeling, pharmacokinetics, and PET imaging evaluation. Additionally, we will consider current limitations, as well as translational potential for future application of TSPO radiopharmaceuticals. This review aims to not only present the challenges in current TSPO PET imaging, but to also provide a new perspective on TSPO targeted PET tracer discovery efforts. Addressing these challenges will facilitate the translation of TSPO in clinical studies of neuroinflammation associated with central nervous system diseases.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
- ANT, adenine nucleotide transporter
- Am, molar activities
- BBB, blood‒brain barrier
- BMSC, bone marrow stromal cells
- BP, binding potential
- BPND, non-displaceable binding potential
- BcTSPO, Bacillus cereus TSPO
- CBD, corticobasal degeneration
- CNS disorders
- CNS, central nervous system
- CRAC, cholesterol recognition amino acid consensus sequence
- DLB, Lewy body dementias
- EP, epilepsy
- FTD, frontotemporal dementia
- HAB, high-affinity binding
- HD, Huntington's disease
- HSE, herpes simplex encephalitis
- IMM, inner mitochondrial membrane
- KA, kainic acid
- LAB, low-affinity binding
- LPS, lipopolysaccharide
- MAB, mixed-affinity binding
- MAO-B, monoamine oxidase B
- MCI, mild cognitive impairment
- MDD, major depressive disorder
- MMSE, mini-mental state examination
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- MSA, multiple system atrophy
- Microglial activation
- NAA/Cr, N-acetylaspartate/creatine
- Neuroinflammation
- OCD, obsessive compulsive disorder
- OMM, outer mitochondrial membrane
- P2X7R, purinergic receptor P2X7
- PAP7, RIa-associated protein
- PBR, peripheral benzodiazepine receptor
- PCA, posterior cortical atrophy
- PD, Parkinson's disease
- PDD, PD dementia
- PET, positron emission tomography
- PKA, protein kinase A
- PRAX-1, PBR-associated protein 1
- PSP, progressive supranuclear palsy
- Positron emission tomography (PET)
- PpIX, protoporphyrin IX
- QA, quinolinic acid
- RCYs, radiochemical yields
- ROS, reactive oxygen species
- RRMS, relapsing remitting multiple sclerosis
- SA, specific activity
- SAH, subarachnoid hemorrhage
- SAR, structure–activity relationship
- SCIDY, spirocyclic iodonium ylide
- SNL, selective neuronal loss
- SNR, signal to noise ratio
- SUV, standard uptake volume
- SUVR, standard uptake volume ratio
- TBAH, tetrabutyl ammonium hydroxide
- TBI, traumatic brain injury
- TLE, temporal lobe epilepsy
- TSPO
- TSPO, translocator protein
- VDAC, voltage-dependent anion channel
- VT, distribution volume
- d.c. RCYs, decay-corrected radiochemical yields
- dMCAO, distal middle cerebral artery occlusion
- fP, plasma free fraction
- n.d.c. RCYs, non-decay-corrected radiochemical yields
- p.i., post-injection
Collapse
Affiliation(s)
- Lingling Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Kuan Hu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey H. Meyer
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto ON M5T 1R8, Canada
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Toronto ON M5T 1R8, Canada
| | - Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
10
|
Nomura M, Toyama H, Suzuki H, Yamada T, Hatano K, Wilson AA, Ito K, Sawada M. Peripheral benzodiazepine receptor/18 kDa translocator protein positron emission tomography imaging in a rat model of acute brain injury. Ann Nucl Med 2021; 35:8-16. [PMID: 32989663 DOI: 10.1007/s12149-020-01530-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/16/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The activation of microglia in various brain pathologies is accompanied by an increase in the expression of peripheral benzodiazepine receptor/18 kDa translocator protein (PBR/TSPO). However, whether activated microglia have a neuroprotective or neurotoxic effect on neurons in the brain is yet to be determined. In this study, we investigated the ability of the novel PBR/TSPO ligand FEPPA to detect activated microglia in an animal model of primary neurotoxic microglia activation. METHODS [18F] FEPPA positron emission tomography (PET) imaging was performed before and after intraperitoneal administration of lipopolysaccharide (LPS) (LPS group) or saline (control group) in a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease. Images were compared between these groups. After imaging, the brains were collected, and the activated microglia at the disease sites were analyzed by the expression of inflammatory cytokines and immunohistochemistry staining. These results were then comparatively examined with those obtained by PET imaging. RESULTS In the unilateral 6-OHDA lesion rat model, the PBR/TSPO PET signal was significantly increased in the LPS group compared with the saline group. As the increased signal was observed 4 h after the injection, we considered it an acute response to brain injury. In the post-imaging pathological examination, activated microglia were found to be abundant at the site where strong signals were detected, and the expression of the inflammatory cytokines TNF-α and IL-1β was increased. Intraperitoneal LPS administration further increased the expression of inflammatory cytokines, and the PBR/TSPO PET signal increased concurrently. The increase in inflammatory cytokine expression correlated with enhanced signal intensity. CONCLUSIONS PET signal enhancement by PBR/TSPO at the site of brain injury correlated with the activation of microglia and production of inflammatory cytokines. Furthermore, because FEPPA enables the detection of neurotoxic microglia on PET images, we successfully constructed a novel PET detection system that can monitor neurodegenerative diseases.
Collapse
Affiliation(s)
- Masahiko Nomura
- Department of Radiology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiromi Suzuki
- Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Takashi Yamada
- Department of Management Nutrition, Faculty of Human Life Science, Nagoya University of Economics, 6-11 Uchikubo, Inuyama, Aichi, Japan
| | - Kentaro Hatano
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Alan A Wilson
- PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
- Department of Radiology, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Makoto Sawada
- Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Sharma A, Liaw K, Sharma R, Thomas AG, Slusher BS, Kannan S, Kannan RM. Targeting Mitochondria in Tumor-Associated Macrophages using a Dendrimer-Conjugated TSPO Ligand that Stimulates Antitumor Signaling in Glioblastoma. Biomacromolecules 2020; 21:3909-3922. [PMID: 32786523 PMCID: PMC8022998 DOI: 10.1021/acs.biomac.0c01033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondria mediate critical cellular processes, including proliferation, apoptosis, and immune responses; as such, their dysfunction is pathogenic in many neurodegenerative disorders and cancers. In glioblastoma, targeted delivery of mitochondria-focused anticancer therapies has failed to translate into clinical success due to the nonspecific cellular localization, heterogeneity of receptor expression across patients, poor transport across biological barriers to reach the brain, tumor, and mitochondria, and systemic side effects. Strategies that can overcome brain and solid tumor barriers and selectively target mitochondria within specific cell types may lead to improvements in glioblastoma treatment. Developments in dendrimer-mediated nanomedicines have shown promise targeting tumor-associated macrophages (TAMs) in glioblastoma, following systemic administration. Here, we present a novel dendrimer conjugated to the translocator protein (18 kDa) (TSPO) ligand 5,7-dimethylpyrazolo[1,5-α]pyrimidin-3-ylacetamide (DPA). We developed a clickable DPA for conjugation on the dendrimer surface and demonstrated in vitro that the dendrimer-DPA conjugate (D-DPA) significantly increases dendrimer colocalization with mitochondria. Compared to free TSPO ligand PK11195, D-DPA stimulates greater antitumor immune signaling. In vivo, we show that D-DPA targets mitochondria specifically within TAMs following systemic administration. Our results demonstrate that dendrimers can achieve TAM-specific targeting in glioblastoma and can be further modified to target specific intracellular compartments for organelle-specific drug delivery.
Collapse
|
12
|
Vanda D, Zajdel P, Soural M. Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases. Eur J Med Chem 2019; 181:111569. [DOI: 10.1016/j.ejmech.2019.111569] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/26/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022]
|
13
|
Kwon YD, Kang S, Park H, Cheong IK, Chang KA, Lee SY, Jung JH, Lee BC, Lim ST, Kim HK. Novel potential pyrazolopyrimidine based translocator protein ligands for the evaluation of neuroinflammation with PET. Eur J Med Chem 2018; 159:292-306. [PMID: 30296688 DOI: 10.1016/j.ejmech.2018.09.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023]
Abstract
Translocator protein (TSPO) is an interesting biological target because TSPO overexpression is associated with microglial activation caused by neuronal damage or neuroinflammation, and these activated microglia are involved in several central nervous system diseases. Herein, novel fluorinated ligands (14a-c and 16a-c) based on a 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide scaffold were synthesized, and in vitro characterization of each of the novel ligands was performed to elucidate structure activity relationships. All of the newly synthesized ligands displayed nano-molar affinity for TSPO. Particularly, an in vitro affinity study suggests that 2-(5,7-diethyl-2-(4-(3-fluoro-2-methylpropoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide (14a), which exhibited high nano-molar affinity for TSPO and proper lipophilicity, was suitable for in vivo brain studies. Thus, radiosynthesis from tosylate precursor 13a using fluorine-18 was performed, and [18F]14a was obtained in a 31% radiochemical yield (decay-corrected). Dynamic positron emission tomography (PET) imaging studies were performed in a lipopolysaccharide (LPS)-induced neuroinflammation rat model using [18F]14a to identify the location of inflammation in the brain with a high target-to-background signal ratio. In addition, we validated that the locations of inflammatory lesions found by PET imaging were consistent with the locations observed by histological examination of dissected brains using antibodies. These results suggest that [18F]14a is a novel promising PET imaging agent for diagnosing neuroinflammation, and it may also prove to be applicable for diagnosing other diseases, including cancers associated with altered TSPO expression, using PET techniques.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea
| | - Hyunjun Park
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea
| | - Il-Koo Cheong
- Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea.
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229, Republic of Korea
| | - Seok Tae Lim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, 54907, Republic of Korea.
| |
Collapse
|
14
|
Microglial Activation on 11C-CB184 PET in a Patient With Cerebellar Ataxia Associated With HIV Infection. Clin Nucl Med 2018; 43:e82-e84. [PMID: 29261623 DOI: 10.1097/rlu.0000000000001936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 63-year-old man complaining of prolonged imbalance underwent C-CB184 PET to assess microglial activation 3 years after being diagnosed with cerebellar ataxia associated with HIV infection. C-CB184 images revealed significant cerebellar uptake where MRI signal abnormalities were observed at disease onset, although these abnormalities had mostly disappeared at the time of C-CB184 PET. Microglia are believed to be a long-term reservoir for HIV infection, causing persistent immune activation (ie, chronic inflammation). Hence, in this case, increased C-CB184 binding may reflect persistent microglial activation along with HIV persistence in the cerebellum. However, further pathological investigations are desired to validate C-CB184 PET.
Collapse
|
15
|
Sakata M, Ishibashi K, Imai M, Wagatsuma K, Ishii K, Hatano K, Ishiwata K, Toyohara J. Assessment of safety, efficacy, and dosimetry of a novel 18-kDa translocator protein ligand, [ 11C]CB184, in healthy human volunteers. EJNMMI Res 2017; 7:26. [PMID: 28337723 PMCID: PMC5364125 DOI: 10.1186/s13550-017-0271-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND N,N-di-n-propyl-2-[2-(4-[11C]methoxyphenyl)-6,8-dichloroimidazol[1,2-a]pyridine-3-yl]acetamide ([11C]CB184) is a novel selective radioligand for the 18-kD translocator protein (TSPO), which is upregulated in activated microglia in the brain, and may be useful in positron emission tomography (PET). We examined the safety, radiation dosimetry, and initial brain imaging with [11C]CB184 in healthy human volunteers. RESULTS Dynamic [11C]CB184 PET scans (90 min) were performed in five healthy male subjects. During the scan, arterial blood was sampled at various time intervals, and the fraction of the parent compound in plasma was determined with high-performance liquid chromatography. No serious adverse events occurred in any of the subjects throughout the study period. [11C]CB184 was metabolized in the periphery: 36.7% ± 5.7% of the radioactivity in plasma was detected as the unchanged form after 60 min. The total distribution volume (V T) was estimated with a two-tissue compartment model. The V T of [11C]CB184 was highest in the thalamus (5.1 ± 0.4), followed by the cerebellar cortex (4.4 ± 0.2), and others. Although regional differences were small, the observed [11C]CB184 binding pattern was consistent with the TSPO distribution in the normal human brain. Radiation dosimetry was determined in three healthy male subjects using a serial whole-body PET scan acquired over 2 h after [11C]CB184 injection. [11C]CB184 PET demonstrated high uptake in the gallbladder at a later time (>60 min). In urine obtained approximately 100 min post-injection, 0.3% of the total injected radioactivity was recovered, indicating hepatobiliary excretion of radioactivity. The absorbed dose (μGy/MBq) was highest in the kidneys (21.0 ± 0.5) followed by the lungs (16.8 ± 2.7), spleen (16.6 ± 6.6), and pancreas (16.5 ± 2.2). The estimated effective dose for [11C]CB184 was 5.9 ± 0.6 μSv/MBq. CONCLUSIONS This initial evaluation indicated that [11C]CB184 is feasible for imaging of TSPO in the brain.
Collapse
Affiliation(s)
- Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, 173-0015 Tokyo, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, 173-0015 Tokyo, Japan
| | - Masamichi Imai
- Department of Radiology, Toranomon Hospital, Tokyo, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, 173-0015 Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, 173-0015 Tokyo, Japan
| | - Kentaro Hatano
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, 173-0015 Tokyo, Japan
- Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, 173-0015 Tokyo, Japan
| |
Collapse
|
16
|
Wilson H, De Micco R, Niccolini F, Politis M. Molecular Imaging Markers to Track Huntington's Disease Pathology. Front Neurol 2017; 8:11. [PMID: 28194132 PMCID: PMC5278260 DOI: 10.3389/fneur.2017.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a progressive, monogenic dominant neurodegenerative disorder caused by repeat expansion mutation in the huntingtin gene. The accumulation of mutant huntingtin protein, forming intranuclear inclusions, subsequently leads to degeneration of medium spiny neurons in the striatum and cortical areas. Genetic testing can identify HD gene carriers before individuals develop overt cognitive, psychiatric, and chorea symptoms. Thus, HD gene carriers can be studied in premanifest stages to understand and track the evolution of HD pathology. While advances have been made, the precise pathophysiological mechanisms underlying HD are unclear. Magnetic resonance imaging (MRI) and positron emission tomography (PET) have been employed to understand HD pathology in presymptomatic and symptomatic disease stages. PET imaging uses radioactive tracers to detect specific changes, at a molecular level, which could be used as markers of HD progression and to monitor response to therapeutic treatments for HD gene expansion carriers (HDGECs). This review focuses on available PET techniques, employed in cross-sectional and longitudinal human studies, as biomarkers for HD, and highlights future potential PET targets. PET studies have assessed changes in postsynaptic dopaminergic receptors, brain metabolism, microglial activation, and recently phosphodiesterase 10A (PDE10A) as markers to track HD progression. Alterations in PDE10A expression are the earliest biochemical change identified in HD gene carriers up to 43 years before predicted symptomatic onset. Thus, PDE10A expression could be a promising marker to track HD progression from early premanifest disease stages. Other PET targets which have been less well investigated as biomarkers include cannabinoid, adenosine, and GABA receptors. Future longitudinal studies are required to fully validate these PET biomarkers for use to track disease progression from far-onset premanifest to manifest HD stages. PET imaging is a crucial neuroimaging tool, with the potential to detect early changes and validate sensitivity of biomarkers for tracking HD pathology. Moreover, continued development of novel PET tracers provides exciting opportunities to investigate new molecular targets, such as histamine and serotonin receptors, to further understand the mechanisms underlying HD pathology.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Rosa De Micco
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| |
Collapse
|
17
|
Toyohara J, Sakata M, Hatano K, Yanai S, Endo S, Ishibashi K, Wagatsuma K, Ishii K, Ishiwata K. Preclinical and first-in-man studies of [(11)C]CB184 for imaging the 18-kDa translocator protein by positron emission tomography. Ann Nucl Med 2016; 30:534-543. [PMID: 27329083 DOI: 10.1007/s12149-016-1094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/30/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE We performed preclinical and first-in-man clinical positron emission tomography (PET) studies in human brain using N,N-di-n-propyl-2-[2-(4-[(11)C]methoxyphenyl)-6,8-dichloroimidazol[1,2-a]pyridine-3-yl]acetamide ([(11)C]CB184) to image the 18-kDa translocator protein (TSPO), which is overexpressed in activated microglia in neuroinflammatory conditions. METHODS In vitro selectivity of CB184 was characterized. The radiation absorbed dose by [(11)C]CB184 in humans was calculated from murine distribution data. Acute toxicity of CB184 hydrochloride in rats at a dose of 5.81 mg/kg body weight, which is >10,000-fold higher than the clinical equivalent dose of [(11)C]CB184, was evaluated. Acute toxicity of [(11)C]CB184 injection of a 400-fold dose to administer a postulated dose of 740 MBq [(11)C]CB184 was also evaluated after the decay-out of (11)C. The mutagenicity of CB184 was studied with a reverse mutation test (Ames test). The pharmacological effect of CB184 injection in mice was studied with an open field test. The first PET imaging of TSPO with [(11)C]CB184 in a normal human volunteer was performed. RESULTS A suitable preparation method for [(11)C]CB184 injection was established. CB184 showed low activity in a 28-standard receptor binding profile. The radiation absorbed dose by [(11)C]CB184 in humans was sufficiently low for clinical use, and no acute toxicity of CB184 or [(11)C]CB184 injection was found. No mutagenicity or apparent effect on locomotor activity or anxiety status was observed for CB184. We safely performed brain imaging with PET following administration of [(11)C]CB184 in a normal human volunteer. A 90-min dynamic scan showed rapid initial uptake of radioactivity in the brain followed by prompt clearance. [(11)C]CB184 was homogeneously distributed in the gray matter. The total distribution volume of [(11)C]CB184 was highest in the thalamus followed by the cerebellar cortex and elsewhere. Although regional differences were small, the observed [(11)C]CB184 binding pattern was consistent with the TSPO distribution in normal human brain. Peripherally, [(11)C]CB184 was metabolized in humans: 30 % of the radioactivity in plasma was detected as the unchanged form after 60 min. CONCLUSIONS [(11)C]CB184 is suitable for imaging TSPO in human brain and provides an acceptable radiation dose. Pharmacological safety was noted at the dose required for PET imaging.
Collapse
Affiliation(s)
- Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kentaro Hatano
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shuichi Yanai
- Research Team for Aging Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Research Team for Aging Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- Institute of Cyclotron and Drug Discovery Research, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
18
|
Current status of PET imaging in Huntington's disease. Eur J Nucl Med Mol Imaging 2016; 43:1171-82. [PMID: 26899245 PMCID: PMC4844650 DOI: 10.1007/s00259-016-3324-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022]
Abstract
Purpose To review the developments of recent decades and the current status of PET molecular imaging in Huntington’s disease (HD). Methods A systematic review of PET studies in HD was performed. The MEDLINE, Web of Science, Cochrane and Scopus databases were searched for articles in all languages published up to 19 August 2015 using the major medical subject heading “Huntington Disease” combined with text and key words “Huntington Disease”, “Neuroimaging” and “PET”. Only peer-reviewed, primary research studies in HD patients and premanifest HD carriers, and studies in which clinical features were described in association with PET neuroimaging results, were included in this review. Reviews, case reports and nonhuman studies were excluded. Results A total of 54 PET studies were identified and analysed in this review. Brain metabolism ([18F]FDG and [15O]H2O), presynaptic ([18F]fluorodopa, [11C]β-CIT and [11C]DTBZ) and postsynaptic ([11C]SCH22390, [11C]FLB457 and [11C]raclopride) dopaminergic function, phosphodiesterases ([18F]JNJ42259152, [18F]MNI-659 and [11C]IMA107), and adenosine ([18F]CPFPX), cannabinoid ([18F]MK-9470), opioid ([11C]diprenorphine) and GABA ([11C]flumazenil) receptors were evaluated as potential biomarkers for monitoring disease progression and for assessing the development and efficacy of novel disease-modifying drugs in premanifest HD carriers and HD patients. PET studies evaluating brain restoration and neuroprotection were also identified and described in detail. Conclusion Brain metabolism, postsynaptic dopaminergic function and phosphodiesterase 10A levels were proven to be powerful in assessing disease progression. However, no single technique may be currently considered an optimal biomarker and an integrative multimodal imaging approach combining different techniques should be developed for monitoring potential neuroprotective and preventive treatment in HD.
Collapse
|
19
|
A Novel PET Imaging Probe for the Detection and Monitoring of Translocator Protein 18 kDa Expression in Pathological Disorders. Sci Rep 2016; 6:20422. [PMID: 26853260 PMCID: PMC4745082 DOI: 10.1038/srep20422] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022] Open
Abstract
A new fluorine-substituted ligand, compound 1 (CB251), with a very high affinity (Ki = 0.27 ± 0.09 nM) and selectivity for the 18-kDa translocator protein (TSPO), is presented as an attractive biomarker for the diagnosis of neuroinflammation, neurodegeneration and tumour progression. To test compound 1 as a TSPO PET imaging agent in vivo, 2-(2-(4-(2-[18F]fluoroethoxy)phenyl)-6,8-dichloroimidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide ([18F]1; [18F]CB251) was synthesized by nucleophilic aliphatic substitution in a single-step radiolabelling procedure with a 11.1 ± 3.5% (n = 14, decay corrected) radiochemical yield and over 99% radiochemical purity. In animal PET imaging studies, [18F]CB251 provided a clearly visible image of the inflammatory lesion with the binding potential of the specifically bound radioligand relative to the non-displaceable radioligand in tissue (BPND 1.83 ± 0.18), in a neuroinflammation rat model based on the unilateral stereotaxic injection of lipopolysaccharide (LPS), comparable to that of [11C]PBR28 (BPND 1.55 ± 0.41). [18F]CB251 showed moderate tumour uptake (1.96 ± 0.11%ID/g at 1 h post injection) in human glioblastoma U87-MG xenografts. These results suggest that [18F]CB251 is a promising TSPO PET imaging agent for neuroinflammation and TSPO-rich cancers.
Collapse
|
20
|
Vállez Garcia D, de Vries EFJ, Toyohara J, Ishiwata K, Hatano K, Dierckx RAJO, Doorduin J. Evaluation of [(11)C]CB184 for imaging and quantification of TSPO overexpression in a rat model of herpes encephalitis. Eur J Nucl Med Mol Imaging 2015; 42:1106-1118. [PMID: 25771904 PMCID: PMC4424274 DOI: 10.1007/s00259-015-3021-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/16/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE Evaluation of translocator protein (TSPO) overexpression is considered an attractive research tool for monitoring neuroinflammation in several neurological and psychiatric disorders. [(11)C]PK11195 PET imaging has been widely used for this purpose. However, it has a low sensitivity and a poor signal-to-noise ratio. For these reasons, [(11)C]CB184 was evaluated as a potentially more sensitive PET tracer. METHODS A model of herpes simplex encephalitis (HSE) was induced in male Wistar rats. On day 6 or 7 after virus inoculation, [(11)C]CB184 PET scans were acquired followed by ex vivo evaluation of biodistribution. In addition, [(11)C]CB184 and [(11)C]PK11195 PET scans with arterial blood sampling were acquired to generate input for pharmacokinetic modelling. Differences between the saline-treated control group and the virus-treated HSE group were explored using volumes of interest and voxel-based analysis. RESULTS The biodistribution study showed significantly higher [(11)C]CB184 uptake in the amygdala, olfactory bulb, medulla, pons and striatum (p < 0.05) in HSE rats than in control rats, and the voxel-based analysis showed higher bilateral uptake in the pons and medulla (p < 0.05, corrected at the cluster level). A high correlation was found between tracer uptake in the biodistribution study and on the PET scans (p < 0.001, r (2) = 0.71). Pretreatment with 5 mg/kg of unlabelled PK11195 effectively reduced (p < 0.001) [(11)C]CB184 uptake in the whole brain. Both, [(11)C]CB184 and [(11)C]PK11195, showed similar amounts of metabolites in plasma, and the binding potential (BPND) was not significantly different between the HSE rats and the control rats. In HSE rats BPND for [(11)C]CB184 was significantly higher (p < 0.05) in the amygdala, hypothalamus, medulla, pons and septum than in control rats, whereas higher uptake of [(11)C]PK11195 was only detected in the medulla. CONCLUSION [(11)C]CB184 showed nonspecific binding to healthy tissue comparable to that observed for [(11)C]PK11195, but it displayed significantly higher specific binding in those brain regions affected by the HSE. Our results suggest that [(11)C]CB184 PET is a good alternative for imaging of neuroinflammatory processes.
Collapse
Affiliation(s)
- David Vállez Garcia
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015 Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015 Japan
| | - Kentaro Hatano
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522 Japan
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|