1
|
Lv JM, Wang LX, Yang J, Dong JJ, Feng NN, Liu HG, Zhao N, Yin GL, Wang F. UPLC-Q-TOF-MS based investigation into the bioactive compounds and molecular mechanisms of Qishen Huanwu capsule attenuates anthracycline-induced cardiotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156877. [PMID: 40449451 DOI: 10.1016/j.phymed.2025.156877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 05/14/2025] [Accepted: 05/18/2025] [Indexed: 06/03/2025]
Abstract
BACKGROUND Cardiotoxicity is a prevalent side effect linked to anthracyclines, a class of chemotherapy drugs, that frequently leads to the discontinuation of anthracycline-based treatments among cancer patients. Thus, there is a pressing need to mitigate and prevent these cardiotoxic effects. Mounting evidence suggests that Traditional Chinese Medicine may alleviate the toxic side effects of chemotherapy agents. For this reason, this study seeked to comprehensively assess the cardioprotective properties of the Qishen Huanwu capsule (QSHWC) against pirarubicin (THP)-induced cardiotoxicity in rat models and explore the underlying mechanisms. METHODS The effects of QSHWC on anthracycline-induced myocyte damage was evaluated via CCK8 assay. Investigations conducted subsequently principally comprised network pharmacology methodology, Ultra-performance liquid chromatograph-hybrid quadrupole orbitrap high resolution mass spectrometer (UHPLC-Q-Orbitrap HRMS) and an anthracycline-induced cardiotoxicity (AIC) rat model to dig into the chemical constituents and potential therapeutic mechanisms of the QSHWC. RESULTS As evidently demonstrated by in-vitro studies, QSHWC not only effectively elevated the cell viability of H9c2 after anthracycline injury, but also downregulates NLRP3 expression and LDH release. As illustrated by in-vivo studies, medium and high doses of QSHWC improved the cardiac injury caused by pirarubicin, decreased myocardial injury scores, cTnT and NT-proBNP levels, and elevated the left ventricular ejection fraction (LVEF %). By conducting HPLC-Q-Exactive-MS analysis, we identified the major parts of the QSHWC. As suggested by network pharmacology and molecular docking analyses, QSHWC may exert cardioprotective protective effects by regulating multiple signaling pathways such as PI3K/AKT and NOD-like receptors. Last but not least, animal experiments confirmed that QSHWC can up-regulate phosphorylated PI3K and phosphorylated AKT in rat myocardial tissue, while down-regulating NLRP3 levels. CONCLUSION QSHWC alleviates anthracycline-induced cardiotoxicity by targeting cardiac pyroptosis through the PI3K/AKT pathway, while providing a multi-target therapeutic strategy.
Collapse
Affiliation(s)
- Jin-Meng Lv
- Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, China; Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine in Osteoarthrosis Research, China
| | - Li-Xin Wang
- Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, China
| | - Jing Yang
- Department of Cardiovascular Disease, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, China
| | - Jing-Jing Dong
- Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, China
| | - Na-Na Feng
- Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, China
| | - Hong-Gui Liu
- Department of Cardiovascular Disease, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, China
| | - Na Zhao
- Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, China
| | - Guang-Li Yin
- Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, China
| | - Feng Wang
- Department of Cardiovascular Disease, Hebei Province Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, China.
| |
Collapse
|
2
|
Yin Y, Liu Z, Li Q, Gou M, Han Y, Xu Y. Identification and evolution of PDK-1-like involving lamprey innate immunity. Mol Immunol 2024; 172:47-55. [PMID: 38875755 DOI: 10.1016/j.molimm.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/02/2023] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
3-phosphoinositide-dependent protein kinase-1 (PDK-1) is a key kinase regulating the activity of the PI3K/AKT pathway and a major regulator of the AGC protein kinase family. It is essential in the physiological activities of cells, embryonic development, individual development and immune response. In this study, we have identified for the first time an analogue of PDK-1 in the most primitive vertebrate, lamprey, and named it PDK-1-like. The protein sequence similarity of lamprey PDK-1-like to human, mouse, chicken, African xenopus and zebrafish PDK-1 were 64.4 %, 64.5 %, 65.0 %, 61.3 % and 63.2 %, respectively. The phylogenetic tree showed that PDK-1-like of lamprey were located at the base of the vertebrate branch, in line with the trend of biological evolution. Meanwhile, homology analysis showed that PDK-1 proteins across species shared a conserved kinase structural domain and a Pleckstrin Homology (PH) domain. Genomic synteny analysis revealed that the large-scale duplication blocks were not found in lamprey genome and neighbor genes of lamprey PDK-1-like presented dramatic differences compared with jawed vertebrates. More importantly, qPCR analysis showed that PDK-1-like was widely expressed in lamprey. Its mRNA expression levels varied in response to different pathogenic stimuli, and its expression was generally up-regulated under Polyinosinic-Polycytidylic acid (Poly(I:C)) stimulation. Pearson's correlation analysis showed that PDK-1-like was involved in co-expressed with MyD88-independent TLR-3 pathway during the immune response of lamprey, instead of MyD88-dependent TLR-3 pathway. In summary, our composite results offer valuable clues to the origin and evolution of PDK-1, and imply that PDK-1 s are among the most ancestral immune regulators in vertebrates.
Collapse
Affiliation(s)
- Yi Yin
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhulin Liu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Meng Gou
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| | - Yang Xu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
3
|
Huang D, Jia N, Pei C, Shen Z, Zhao S, Wang Y, Wu Y, Shi S, Li S, Wang Z. Rosavidin protects against PM2.5-induced lung toxicity via inhibition of NLRP3 inflammasome-mediated pyroptosis by activating the PI3K/AKT pathway. Biochem Pharmacol 2023; 213:115623. [PMID: 37244433 DOI: 10.1016/j.bcp.2023.115623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Fine particulate matter (PM2.5) contributes to adverse health effects through the promotion of inflammatory cytokine release. Rosavidin (Ro), a phenylpropanoid compound having multiple biological activities, is extracted from Rhodiola crenulata, a medicine and food homology plant. However, the protective role and mechanism of Ro in PM2.5-induced lung toxicity have not been previously studied. This study aimed to investigate the potential protective effect and mechanism of Ro in PM2.5-induced lung toxicity. A lung toxicity rat model was established through trachea drip of PM2.5 suspension after the different dose pretreatment of Ro (50 mg/kg and 100 mg/kg) to evaluate the effect of Ro on PM2.5 caused lung toxicity. The results showed that Ro attenuated the pathological changes, edema, and inflammation response in rats. The PI3K/AKT signaling pathway may be associated with the protective effect of Ro against pulmonary toxicity. Subsequently, we verified the role of PI3K/AKT in the PM2.5 exposure lung tissue. Moreover, expression levels of p-PI3K and p-AKT were lower, and those of NLRP3, ASC, cleaved caspase-1, cleaved IL-1β, and GSDMD-N were higher in PM2.5 group compared to those in control group. Whereas pre-administration of Ro reversed the expression trends of these proteins in lung tissue. Notably, those protective effects of Ro were not observed after pretreatment with a combination of Ro with nigericin or LY294002. These results indicate that Ro mitigates PM2.5-caused lung toxicity by inhibiting NLRP3 inflammasome-mediated pyroptosis through activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Nan Jia
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sijing Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
4
|
Yu X, Xu J, Cahuzac KM, Xie L, Shen Y, Chen X, Liu J, Parsons RE, Jin J. Novel Allosteric Inhibitor-Derived AKT Proteolysis Targeting Chimeras (PROTACs) Enable Potent and Selective AKT Degradation in KRAS/BRAF Mutant Cells. J Med Chem 2022; 65:14237-14260. [PMID: 36197750 PMCID: PMC9613624 DOI: 10.1021/acs.jmedchem.2c01454] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AKT is an important target for cancer therapeutics. Significant advancements have been made in developing ATP-competitive and allosteric AKT inhibitors. Recently, several AKT proteolysis targeting chimeras (PROTACs) derived from ATP-competitive AKT inhibitors have been reported, including MS21. While MS21 potently degraded AKT and inhibited the growth in tumor cells harboring PI3K/PTEN pathway mutation, it was largely ineffective in degrading AKT in KRAS/BRAF mutated cells as a single agent. To overcome the AKT degradation resistance in KRAS/BRAF mutated cells, we developed novel AKT PROTACs derived from an AKT allosteric inhibitor, including degrader 62 (MS15). 62 displayed potent and selective AKT degradation activity and potent antiproliferative activity in KRAS/BRAF mutated cancer cells, in addition to PI3K/PTEN mutated cancer cells. Furthermore, 62 was bioavailable in mice through intraperitoneal administration. Overall, 62 is a valuable chemical tool to degrade AKT in cells harboring KRAS/BRAF mutation and expands the tool box for pharmacologically modulating AKT.
Collapse
Affiliation(s)
- Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jia Xu
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kaitlyn M. Cahuzac
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ramon E. Parsons
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
5
|
Larijani B, Pytowski L, Vaux DJ. The enigma of phosphoinositides and their derivatives: Their role in regulation of subcellular compartment morphology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183780. [PMID: 34547252 DOI: 10.1016/j.bbamem.2021.183780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
The general segregation of a molecular class, lipids, from the pathways of cellular communication, via endo-membranes, has resulted in the over-simplification and misconceptions in deciphering cell signalling mechanisms. Mechanisms in signal transduction and protein activation require targeting of proteins to membranous compartments with a specific localised morphology and dynamics that are dependent on their lipid composition. Many posttranslational events define cellular behaviours and without the active role of membranous compartments these events lead to various dysregulations of the signalling pathways. We summarise the key findings, using tools such as the rapalogue dimerisation, in the structural roles and signalling of the inter-related phosphoinositide lipids and their derivative, diacylglycerol, in the regulation of nuclear envelope biogenesis and other subcellular compartments such as the nucleoplasmic reticulum.
Collapse
Affiliation(s)
- Banafshé Larijani
- Centre for Therapeutic Innovation & Cell Biophysics Laboratory, Department of Pharmacy and Pharmacology & Department of Physics, University of Bath, Bath BA2 7AY, UK.
| | - Lior Pytowski
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David J Vaux
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
6
|
Truebestein L, Hornegger H, Anrather D, Hartl M, Fleming KD, Stariha JTB, Pardon E, Steyaert J, Burke JE, Leonard TA. Structure of autoinhibited Akt1 reveals mechanism of PIP 3-mediated activation. Proc Natl Acad Sci U S A 2021; 118:e2101496118. [PMID: 34385319 PMCID: PMC8379990 DOI: 10.1073/pnas.2101496118] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The protein kinase Akt is one of the primary effectors of growth factor signaling in the cell. Akt responds specifically to the lipid second messengers phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] via its PH domain, leading to phosphorylation of its activation loop and the hydrophobic motif of its kinase domain, which are critical for activity. We have now determined the crystal structure of Akt1, revealing an autoinhibitory interface between the PH and kinase domains that is often mutated in cancer and overgrowth disorders. This interface persists even after stoichiometric phosphorylation, thereby restricting maximum Akt activity to PI(3,4,5)P3- or PI(3,4)P2-containing membranes. Our work helps to resolve the roles of lipids and phosphorylation in the activation of Akt and has wide implications for the spatiotemporal control of Akt and potentially lipid-activated kinase signaling in general.
Collapse
Affiliation(s)
- Linda Truebestein
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Hornegger
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Core Facility, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jordan T B Stariha
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria;
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Maffucci T, Falasca M. Inositol Polyphosphate-Based Compounds as Inhibitors of Phosphoinositide 3-Kinase-Dependent Signaling. Int J Mol Sci 2020; 21:E7198. [PMID: 33003448 PMCID: PMC7582811 DOI: 10.3390/ijms21197198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Signaling pathways regulated by the phosphoinositide 3-kinase (PI3K) enzymes have a well-established role in cancer development and progression. Over the past 30 years, the therapeutic potential of targeting this pathway has been well recognized, and this has led to the development of a multitude of drugs, some of which have progressed into clinical trials, with few of them currently approved for use in specific cancer settings. While many inhibitors compete with ATP, hence preventing the catalytic activity of the kinases directly, a deep understanding of the mechanisms of PI3K-dependent activation of its downstream effectors led to the development of additional strategies to prevent the initiation of this signaling pathway. This review summarizes previously published studies that led to the identification of inositol polyphosphates as promising parent molecules to design novel inhibitors of PI3K-dependent signals. We focus our attention on the inhibition of protein-membrane interactions mediated by binding of pleckstrin homology domains and phosphoinositides that we proposed 20 years ago as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Tania Maffucci
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
8
|
Lazaro G, Kostaras E, Vivanco I. Inhibitors in AKTion: ATP-competitive vs allosteric. Biochem Soc Trans 2020; 48:933-943. [PMID: 32453400 PMCID: PMC7329346 DOI: 10.1042/bst20190777] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Aberrant activation of the PI3K pathway is one of the commonest oncogenic events in human cancer. AKT is a key mediator of PI3K oncogenic function, and thus has been intensely pursued as a therapeutic target. Multiple AKT inhibitors, broadly classified as either ATP-competitive or allosteric, are currently in various stages of clinical development. Herein, we review the evidence for AKT dependence in human tumours and focus on its therapeutic targeting by the two drug classes. We highlight the future prospects for the development and implementation of more effective context-specific AKT inhibitors aided by our increasing knowledge of both its regulation and some previously unrecognised non-canonical functions.
Collapse
Affiliation(s)
- Glorianne Lazaro
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., SM2 5NG London, U.K
| | - Eleftherios Kostaras
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., SM2 5NG London, U.K
| | - Igor Vivanco
- Division of Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Rd., SM2 5NG London, U.K
| |
Collapse
|
9
|
The triphenyltin carboxylate derivative triphenylstannyl 2-(benzylcarbamoyl)benzoate impedes prostate cancer progression via modulation of Akt/FOXO3a signaling. Toxicol Appl Pharmacol 2020; 401:115091. [PMID: 32525019 DOI: 10.1016/j.taap.2020.115091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Prostate cancer (PCa) incidence is surging in United States and other parts of the world. Synthetic and natural compounds have been explored as potential modulators of PI3K/Akt signaling that is known to drive PCa growth. Here, we evaluated the efficacy of a series of triphenyltin (IV) carboxylate derivatives against PCa. From this library, triphenylstannyl 2-(benzylcarbamoyl)benzoate (Ch-319) resulted in reduced viability and induction of cell cycle arrest in PTEN-/- PC3M and PTEN+/- DU145 cells. In parallel, downregulation of PI3K p85/p110 subunits, dephosphorylation of Akt-1 and increase in FOXO3a expression were observed. In silico studies indicated binding interactions of Ch-319 within the ATP binding site of Akt-1 at Met281, Phe442 and Glu234 residues. Elevated po-pulation of apoptotic cells, activation of Bax and reduced Bcl2 expression indicated apoptosis by Ch-319. Pre-sensitization of PCa cells with Ch-319 augmented the effect of cabazitaxel, a commonly used taxane in patients with castration-resistant PCa. Next, in a prostate-specific PTENp-/- mice, Ch-319 showed reduced weights of genitourinary apparatus as compared to DMSO treated controls. Histological studies indicated absence of neoplastic foci in Ch-319 treated prostates. Consistently, dephosphorylation of Akt-1, reduced expression of PRAS40 and androgen receptor and increase in FOXO3a were observed in treated group. Notably, no overt organ toxicity was noted in Ch-319 treated animals. Our studies identify Akt/FOXO3a signaling as a target of triphenyltin (IV) carboxylate Ch-319 and provide a molecular basis of its growth inhibitory effect in PCa cells. We propose that Ch-319 has the potential to be developed as an anticancer agent against PCa.
Collapse
|
10
|
Zhang M, Ma X, Xu H, Wu W, He X, Wang X, Jiang M, Hou Y, Bai G. A natural AKT inhibitor swertiamarin targets AKT-PH domain, inhibits downstream signaling, and alleviates inflammation. FEBS J 2019; 287:1816-1829. [PMID: 31665825 DOI: 10.1111/febs.15112] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/10/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
Swertiamarin (SW), a representative component in Flos Lonicerae Japonicae, has been reported to exert significant activity in preventing infections. In this research, we aim to clarify the details of SW and its target to explore SW's underlying anti-inflammatory mechanisms. An azide labeled SW probe was synthesized for protein target fishing, and the results demonstrated that AKT could be captured specifically. Immunofluorescence colocalization with AKT was implemented by a click reaction of the SW probe and alkynyl CY5. The result showed that AKT was one of the targets of SW. Then, a competitive combination experiment using a set of AKT inhibitors and a membrane translocation experiment confirmed that SW might target the pleckstrin homology (PH) domain of AKT. This specific binding directly deactivated the phosphorylation of AKT on both Ser473 and Thr308, which induced the dephosphorylation of IKK and NF-κB. Finally, proinflammatory cytokines (TNF-α, IL-6, and IL-8) were suppressed both in cells and in acute lung injury animal model by targeting AKT-PH domain. This study demonstrated that SW functions as a natural AKT inhibitor and presents significant anti-inflammatory activity by directly regulating the AKT-PH domain and inhibiting downstream inflammatory molecules.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Honglei Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wenbo Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xin He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xiaoying Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Siess KM, Leonard TA. Lipid-dependent Akt-ivity: where, when, and how. Biochem Soc Trans 2019; 47:897-908. [PMID: 31147387 PMCID: PMC6599160 DOI: 10.1042/bst20190013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Akt is an essential protein kinase activated downstream of phosphoinositide 3-kinase and frequently hyperactivated in cancer. Canonically, Akt is activated by phosphoinositide-dependent kinase 1 and mechanistic target of rapamycin complex 2, which phosphorylate it on two regulatory residues in its kinase domain upon targeting of Akt to the plasma membrane by PI(3,4,5)P3 Recent evidence, however, has shown that, in addition to phosphorylation, Akt activity is allosterically coupled to the engagement of PI(3,4,5)P3 or PI(3,4)P2 in cellular membranes. Furthermore, the active membrane-bound conformation of Akt is protected from dephosphorylation, and Akt inactivation by phosphatases is rate-limited by its dissociation. Thus, Akt activity is restricted to membranes containing either PI(3,4,5)P3 or PI(3,4)P2 While PI(3,4,5)P3 has long been associated with signaling at the plasma membrane, PI(3,4)P2 is gaining increasing traction as a signaling lipid and has been implicated in controlling Akt activity throughout the endomembrane system. This has clear implications for the phosphorylation of both freely diffusible substrates and those localized to discrete subcellular compartments.
Collapse
Affiliation(s)
- Katharina M Siess
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030 Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
13
|
Yudushkin I. Getting the Akt Together: Guiding Intracellular Akt Activity by PI3K. Biomolecules 2019; 9:biom9020067. [PMID: 30781447 PMCID: PMC6406913 DOI: 10.3390/biom9020067] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023] Open
Abstract
Intracellular signaling pathways mediate the rapid response of cells to environmental cues. To control the fidelity of these responses, cells coordinate the activities of signaling enzymes with the strength, timing, and localization of the upstream stimuli. Protein kinase Akt links the PI3K-coupled receptors to cellular anabolic processes by phosphorylating multiple substrates. How the cells ensure that Akt activity remains proportional to upstream signals and control its substrate specificity is unclear. In this review, I examine how cell-autonomous and intrinsic allosteric mechanisms cooperate to ensure localized, context-specific signaling in the PI3K/Akt axis.
Collapse
Affiliation(s)
- Ivan Yudushkin
- Department of Structural and Computational Biology, University of Vienna, Max F. Perutz Laboratories Vienna BioCenter, Campus Vienna Biocenter 5, Rm. 1.624, 1030 Vienna, Austria.
| |
Collapse
|
14
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Akhtar N, Jabeen I, Jalal N, Antilla J. Structure-based pharmacophore models to probe anticancer activity of inhibitors of protein kinase B-beta (PKB β). Chem Biol Drug Des 2018; 93:325-336. [DOI: 10.1111/cbdd.13418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Noreen Akhtar
- Research Centre for Modeling and Simulation (RCMS); National University of Sciences and Technology (NUST); Islamabad Pakistan
| | - Ishrat Jabeen
- Research Centre for Modeling and Simulation (RCMS); National University of Sciences and Technology (NUST); Islamabad Pakistan
| | - Nasir Jalal
- School of Pharmaceutical Science and Technology; Tianjin University; Tianjin City China
| | - Jon Antilla
- School of Pharmaceutical Science and Technology; Tianjin University; Tianjin City China
| |
Collapse
|
16
|
Lučić I, Rathinaswamy MK, Truebestein L, Hamelin DJ, Burke JE, Leonard TA. Conformational sampling of membranes by Akt controls its activation and inactivation. Proc Natl Acad Sci U S A 2018; 115:E3940-E3949. [PMID: 29632185 PMCID: PMC5924885 DOI: 10.1073/pnas.1716109115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The protein kinase Akt controls myriad signaling processes in cells, ranging from growth and proliferation to differentiation and metabolism. Akt is activated by a combination of binding to the lipid second messenger PI(3,4,5)P3 and its subsequent phosphorylation by phosphoinositide-dependent kinase 1 and mechanistic target of rapamycin complex 2. The relative contributions of these mechanisms to Akt activity and signaling have hitherto not been understood. Here, we show that phosphorylation and activation by membrane binding are mutually interdependent. Moreover, the converse is also true: Akt is more rapidly dephosphorylated in the absence of PIP3, an autoinhibitory process driven by the interaction of its PH and kinase domains. We present biophysical evidence for the conformational changes in Akt that accompany its activation on membranes, show that Akt is robustly autoinhibited in the absence of PIP3 irrespective of its phosphorylation, and map the autoinhibitory PH-kinase interface. Finally, we present a model for the activation and inactivation of Akt by an ordered series of membrane binding, phosphorylation, dissociation, and dephosphorylation events.
Collapse
Affiliation(s)
- Iva Lučić
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, 1030 Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | - Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Linda Truebestein
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, 1030 Vienna, Austria
- Center for Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| | - David J Hamelin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, 1030 Vienna, Austria;
- Center for Medical Biochemistry, Medical University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
17
|
Ebner M, Lučić I, Leonard TA, Yudushkin I. PI(3,4,5)P 3 Engagement Restricts Akt Activity to Cellular Membranes. Mol Cell 2017; 65:416-431.e6. [PMID: 28157504 DOI: 10.1016/j.molcel.2016.12.028] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/19/2016] [Accepted: 12/29/2016] [Indexed: 01/13/2023]
Abstract
Protein kinase B/Akt regulates cellular metabolism, survival, and proliferation in response to hormones and growth factors. Hyperactivation of Akt is frequently observed in cancer, while Akt inactivation is associated with severe diabetes. Here, we investigated the molecular and cellular mechanisms that maintain Akt activity proportional to the activating stimulus. We show that binding of phosphatidylinositol-3,4,5-trisphosphate (PIP3) or PI(3,4)P2 to the PH domain allosterically activates Akt by promoting high-affinity substrate binding. Conversely, dissociation from PIP3 was rate limiting for Akt dephosphorylation, dependent on the presence of the PH domain. In cells, active Akt associated primarily with cellular membranes. In contrast, a transforming mutation that uncouples kinase activation from PIP3 resulted in the accumulation of hyperphosphorylated, active Akt in the cytosol. Our results suggest that intramolecular allosteric and cellular mechanisms cooperate to restrict Akt activity to cellular membranes, thereby enhancing the fidelity of Akt signaling and the specificity of downstream substrate phosphorylation.
Collapse
Affiliation(s)
- Michael Ebner
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Iva Lučić
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Ivan Yudushkin
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter (VBC), Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
18
|
Akhtar N, Jabeen I. A 2D-QSAR and Grid-Independent Molecular Descriptor (GRIND) Analysis of Quinoline-Type Inhibitors of Akt2: Exploration of the Binding Mode in the Pleckstrin Homology (PH) Domain. PLoS One 2016; 11:e0168806. [PMID: 28036396 PMCID: PMC5201309 DOI: 10.1371/journal.pone.0168806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Protein kinase B-β (PKBβ/Akt2) is a serine/threonine-specific protein kinase that has emerged as one of the most important regulators of cell growth, differentiation, and division. Upregulation of Akt2 in various human carcinomas, including ovarian, breast, and pancreatic, is a well-known tumorigenesis phenomenon. Early on, the concept of the simultaneous administration of anticancer drugs with inhibitors of Akt2 was advocated to overcome cell proliferation in the chemotherapeutic treatment of cancer. However, clinical studies have not lived up to the high expectations, and several phase II and phase III clinical studies have been terminated prematurely because of severe side effects related to the non-selective isomeric inhibition of Akt2. The notion that the sequence identity of pleckstrin homology (PH) domains within Akt-isoforms is less than 30% might indicate the possibility of the development of selective antagonists against the Akt2 PH domain. Therefore, in this study, various in silico tools were utilized to explore the hypothesis that quinoline-type inhibitors bind in the Akt2 PH domain. A Grid-Independent Molecular Descriptor (GRIND) analysis indicated that two hydrogen bond acceptors, two hydrogen bond donors and one hydrophobic feature at a certain distance from each other were important for the selective inhibition of Akt2. Our docking results delineated the importance of Lys30 as an anchor point for mapping the distances of important amino acid residues in the binding pocket, including Lys14, Glu17, Arg25, Asn53, Asn54 and Arg86. The binding regions identified complement the GRIND-based pharmacophoric features.
Collapse
Affiliation(s)
- Noreen Akhtar
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
19
|
El-Masry OS, Al-Sakkaf K, Brown BL, Dobson PRM. Differential crosstalk between the AMPK and PI3K/Akt pathways in breast cancer cells of differing genotypes: Leptin inhibits the effectiveness of AMPK activation. Oncol Rep 2015; 34:1675-80. [PMID: 26260992 PMCID: PMC4564084 DOI: 10.3892/or.2015.4198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/20/2015] [Indexed: 01/07/2023] Open
Abstract
AMP-activated protein kinase (AMPK), a sensor of cellular energy, is widely reported as a potential therapeutic target in treatment of breast and other cancers. The activated enzyme has been shown to be a promising anti-proliferative agent in breast cancer cell lines. However, little data exist on crosstalk between AMPK and the cellular survival axis of PI3K/Akt/mTOR pathway and the impact of microenvironment on cellular responses to AMPK activation. We present results which show differential crosstalk between AMPK and Akt, dependent on the cellular genetics of each breast cancer cell type. We also show that leptin blocks activation of AMPK and partially or completely attenuates the anti-proliferative effect of AMPK activation depending on the cell type. This suggests that leptin within the local environment might impose limitations on therapeutic usage of AMPK activators in cancer, thereby attenuating their effective use in many obese subjects.
Collapse
Affiliation(s)
- Omar S El-Masry
- Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2RX, UK
| | - Kaltoom Al-Sakkaf
- Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2RX, UK
| | - Barry L Brown
- Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2RX, UK
| | - Pauline R M Dobson
- Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2RX, UK
| |
Collapse
|
20
|
Jethwa N, Chung GHC, Lete MG, Alonso A, Byrne RD, Calleja V, Larijani B. Endomembrane PtdIns(3,4,5)P3 activates the PI3K-Akt pathway. J Cell Sci 2015; 128:3456-65. [PMID: 26240177 DOI: 10.1242/jcs.172775] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022] Open
Abstract
PKB/Akt activation is a common step in tumour growth, proliferation and survival. Akt activation is understood to occur at the plasma membrane of cells in response to growth factor stimulation and local production of the phosphoinositide lipid phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] following phosphoinositide 3-kinase (PI3K) activation. The metabolism and turnover of phosphoinositides is complex--they act as signalling molecules as well as structural components of biological membranes. The localisation and significance of internal pools of PtdIns(3,4,5)P3 has long been speculated upon. By using transfected and recombinant protein probes for PtdIns(3,4,5)P3, we show that PtdIns(3,4,5)P3 is enriched in the nuclear envelope and early endosomes. By exploiting an inducible dimerisation device to recruit Akt to these compartments, we demonstrate that Akt can be locally activated in a PtdIns(3,4,5)P3-dependent manner and has the potential to phosphorylate compartmentally localised downstream substrates. This could be an important mechanism to regulate Akt isoform substrate specificity or influence the timing and duration of PI3K pathway signalling. Defects in phosphoinositide metabolism and localisation are known to contribute to cancer, suggesting that interactions at subcellular compartments might be worthwhile targets for therapeutic intervention.
Collapse
Affiliation(s)
- Nirmal Jethwa
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK
| | - Gary H C Chung
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK
| | - Marta G Lete
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Barrio Sarriena s/n, Leioa 48940, Spain Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Unidad de Biofísica (CSIC, UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Alicia Alonso
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Richard D Byrne
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Véronique Calleja
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Protein Phosphorylation Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Banafshé Larijani
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Unidad de Biofísica (CSIC, UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| |
Collapse
|
21
|
Fang Z, Simard JR, Plenker D, Nguyen HD, Phan T, Wolle P, Baumeister S, Rauh D. Discovery of inter-domain stabilizers-a novel assay system for allosteric akt inhibitors. ACS Chem Biol 2015; 10:279-88. [PMID: 24959717 DOI: 10.1021/cb500355c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In addition to the catalytically active kinase domain, most kinases feature regulatory domains that govern their activity. Modulating and interfering with these interdomain interactions presents a major opportunity for understanding biological systems and developing novel therapeutics. Therefore, small molecule inhibitors that target these interactions through an allosteric mode of action have high intrinsic selectivity, as these interactions are often unique to a single kinase or kinase family. Here we report the development of iFLiK (interface-Fluorescent Labels in Kinases), a fluorescence-based assay that can monitor such interdomain interactions. Using iFLiK, we have demonstrated selective detection of allosteric Akt inhibitors that induce an inactive closed conformation unique to Akt. This methodology easily distinguished small molecule allosteric inhibitors from classic ATP-competitive inhibitors. Screening an in-house compound library with iFLiK, we were able to identify novel compounds with a scaffold that has not been previously described for allosteric Akt inhibitors.
Collapse
Affiliation(s)
- Zhizhou Fang
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
- Chemical
Genomics
Centre of the Max Planck Society, Otto-Hahn-Strasse
15, 44227 Dortmund, Germany
| | - Jeffrey R. Simard
- Chemical
Genomics
Centre of the Max Planck Society, Otto-Hahn-Strasse
15, 44227 Dortmund, Germany
| | - Dennis Plenker
- University of Cologne, Medical Faculty, Department
of Translational Genomics, Weyertal 115b, 50931 Cologne, Germany
| | - Hoang D. Nguyen
- Chemical
Genomics
Centre of the Max Planck Society, Otto-Hahn-Strasse
15, 44227 Dortmund, Germany
| | - Trang Phan
- Chemical
Genomics
Centre of the Max Planck Society, Otto-Hahn-Strasse
15, 44227 Dortmund, Germany
| | - Patrik Wolle
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Stefan Baumeister
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Daniel Rauh
- Technische Universität Dortmund, Fakultät
für Chemie und Chemische Biologie, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
- Chemical
Genomics
Centre of the Max Planck Society, Otto-Hahn-Strasse
15, 44227 Dortmund, Germany
| |
Collapse
|
22
|
de la Cruz-Herrera CF, Campagna M, Lang V, del Carmen González-Santamaría J, Marcos-Villar L, Rodríguez MS, Vidal A, Collado M, Rivas C. SUMOylation regulates AKT1 activity. Oncogene 2014; 34:1442-50. [PMID: 24704831 DOI: 10.1038/onc.2014.48] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/27/2013] [Accepted: 01/06/2014] [Indexed: 01/09/2023]
Abstract
Serine threonine kinase AKT has a central role in the cell, controlling survival, proliferation, metabolism and angiogenesis. Deregulation of its activity underlies a wide range of pathological situations, including cancer. Here we show that AKT is post-translationally modified by the small ubiquitin-like modifier (SUMO) protein. Interestingly, neither SUMO conjugation nor activation of SUMOylated AKT is regulated by the classical AKT targeting to the cell membrane or by the phosphoinositide 3-kinase pathway. We demonstrate that SUMO induces the activation of AKT, whereas, conversely, down-modulation of the SUMO machinery diminishes AKT activation and cell proliferation. Furthermore, an AKT SUMOylation mutant shows reduced activation, and decreased anti-apoptotic and pro-tumoral activities in comparison with the wild-type protein. These results identify SUMO as a novel key regulator of AKT phosphorylation and activity.
Collapse
Affiliation(s)
- C F de la Cruz-Herrera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - M Campagna
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - V Lang
- Ubiquitylation and Cancer Molecular Biology laboratory, Inbiomed, San Sebastian-Donostia, Gipuzkoa, Spain
| | | | - L Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - M S Rodríguez
- Ubiquitylation and Cancer Molecular Biology laboratory, Inbiomed, San Sebastian-Donostia, Gipuzkoa, Spain
| | - A Vidal
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - M Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - C Rivas
- 1] Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain [2] Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
23
|
Yilmaz OG, Olmez EO, Ulgen KO. Targeting the Akt1 allosteric site to identify novel scaffolds through virtual screening. Comput Biol Chem 2013; 48:1-13. [PMID: 24291487 DOI: 10.1016/j.compbiolchem.2013.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/20/2013] [Accepted: 10/21/2013] [Indexed: 11/28/2022]
Abstract
Preclinical data and tumor specimen studies report that AKT kinases are related to many human cancers. Therefore, identification and development of small molecule inhibitors targeting AKT and its signaling pathway can be therapeutic in treatment of cancer. Numerous studies report inhibitors that target the ATP-binding pocket in the kinase domains, but the similarity of this site, within the kinase family makes selectivity a major problem. The sequence identity amongst PH domains is significantly lower than that in kinase domains and developing more selective inhibitors is possible if PH domain is targeted. This in silico screening study is the first time report toward the identification of potential allosteric inhibitors expected to bind the cavity between kinase and PH domains of Akt1. Structural information of Akt1 was used to develop structure-based pharmacophore models comprising hydrophobic, acceptor, donor and ring features. The 3D structural information of previously identified allosteric Akt inhibitors obtained from literature was employed to develop a ligand-based pharmacophore model. Database was generated with drug like subset of ZINC and screening was performed based on 3D similarity to the selected pharmacophore hypotheses. Binding modes and affinities of the ligands were predicted by Glide software. Top scoring hits were further analyzed considering 2D similarity between the compounds, interactions with Akt1, fitness to pharmacophore models, ADME, druglikeness criteria and Induced-Fit docking. Using virtual screening methodologies, derivatives of 3-methyl-xanthine, quinoline-4-carboxamide and 2-[4-(cyclohexa-1,3-dien-1-yl)-1H-pyrazol-3-yl]phenol were proposed as potential leads for allosteric inhibition of Akt1.
Collapse
Affiliation(s)
- Oya Gursoy Yilmaz
- Bogazici University, Department of Chemical Engineering, 34342 Istanbul, Turkey.
| | - Elif Ozkirimli Olmez
- Bogazici University, Department of Chemical Engineering, 34342 Istanbul, Turkey.
| | - Kutlu O Ulgen
- Bogazici University, Department of Chemical Engineering, 34342 Istanbul, Turkey.
| |
Collapse
|
24
|
Vadlakonda L, Dash A, Pasupuleti M, Anil Kumar K, Reddanna P. The Paradox of Akt-mTOR Interactions. Front Oncol 2013; 3:165. [PMID: 23802099 PMCID: PMC3687210 DOI: 10.3389/fonc.2013.00165] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/07/2013] [Indexed: 12/20/2022] Open
Abstract
The serine threonine protein kinase, Akt, is at the central hub of signaling pathways that regulates cell growth, differentiation, and survival. The reciprocal relation that exists between the two activating phosphorylation sites of Akt, T308 and S473, and the two mTOR complexes, C1 and C2, forms the central controlling hub that regulates these cellular functions. In our previous review “PI3Kinase (PI3K)-AKT-mTOR and Wnt signaling pathways in cell cycle” we discussed the reciprocal relation between mTORC1 and C2 complexes in regulating cell metabolism and cell cycle progression in cancer cells. We present in this article, a hypothesis that activation of Akt-T308 phosphorylation in the presence of high ATP:AMP ratio promotes the stability of its phosphorylations and activates mTORC1 and the energy consuming biosynthetic processes. Depletion of energy leads to inactivation of mTORC1, activation of AMPK, FoxO, and promotes constitution of mTORC2 that leads to phosphorylation of Akt S473. Akt can also be activated independent of PI3K; this appears to have an advantage under situations like dietary restrictions, where insulin/insulin growth factor signaling could be a casualty.
Collapse
|
25
|
Fang Z, Grütter C, Rauh D. Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem Biol 2013; 8:58-70. [PMID: 23249378 DOI: 10.1021/cb300663j] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modulation of kinase function has become an important goal in modern drug discovery and chemical biology research. In cancer-targeted therapies, kinase inhibitors have been experiencing an upsurge, which can be measured by the increasing number of kinase inhibitors approved by the FDA in recent years. However, lack of efficacy, limited selectivity, and the emergence of acquired drug resistance still represent major bottlenecks in the clinic and challenge inhibitor development. Most known kinase inhibitors target the active kinase and are ATP competitive. A second class of small organic molecules, which address remote sites of the kinase and stabilize enzymatically inactive conformations, is rapidly moving to the forefront of kinase inhibitor research. Such allosteric modulators bind to sites that are less conserved across the kinome and only accessible upon conformational changes. These molecules are therefore thought to provide various advantages such as higher selectivity and extended drug target residence times. This review highlights various strategies that have been developed to utilizing exclusive structural features of kinases and thereby modulating their activity allosterically.
Collapse
Affiliation(s)
- Zhizhou Fang
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| | - Christian Grütter
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| | - Daniel Rauh
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| |
Collapse
|
26
|
Guo M, Huang BX. Integration of phosphoproteomic, chemical, and biological strategies for the functional analysis of targeted protein phosphorylation. Proteomics 2013; 13:424-37. [PMID: 23125184 DOI: 10.1002/pmic.201200274] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/04/2012] [Accepted: 09/20/2012] [Indexed: 12/20/2022]
Abstract
Reversible phosphorylation, tightly controlled by protein kinases and phosphatases, plays a central role in mediating biological processes, such as protein-protein interactions, subcellular translocation, and activation of cellular enzymes. MS-based phosphoproteomics has now allowed the detection and quantification of tens of thousands of phosphorylation sites from a typical biological sample in a single experiment, which has posed new challenges in functional analysis of each and every phosphorylation site on specific signaling phosphoproteins of interest. In this article, we review recent advances in the functional analysis of targeted phosphorylation carried out by various chemical and biological approaches in combination with the MS-based phosphoproteomics. This review focuses on three types of strategies, including forward functional analysis, defined for the result-driven phosphoproteomics efforts in determining the substrates of a specific protein kinase; reverse functional analysis, defined for tracking the kinase(s) for specific phosphosite(s) derived from the discovery-driven phosphoproteomics efforts; and MS-based analysis on the structure-function relationship of phosphoproteins. It is expected that this review will provide a state-of-the-art overview of functional analysis of site-specific phosphorylation and explore new perspectives and outline future challenges.
Collapse
Affiliation(s)
- Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| | | |
Collapse
|
27
|
Shen D, Bai M, Tang R, Xu B, Ju X, Pestell RG, Achilefu S. Dual fluorescent molecular substrates selectively report the activation, sustainability and reversibility of cellular PKB/Akt activity. Sci Rep 2013; 3:1697. [PMID: 23603888 PMCID: PMC3631771 DOI: 10.1038/srep01697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/05/2013] [Indexed: 11/09/2022] Open
Abstract
Using a newly developed near-infrared (NIR) dye that fluoresces at two different wavelengths (dichromic fluorescence, DCF), we discovered a new fluorescent substrate for Akt, also known as protein kinase B, and a method to quantitatively report this enzyme's activity in real time. Upon insulin activation of cellular Akt, the enzyme multi-phosphorylated a single serine residue of a diserine DCF substrate in a time-dependent manner, culminating in monophospho- to triphospho-serine products. The NIR DCF probe was highly selective for the Akt1 isoform, which was demonstrated using Akt1 knockout cells derived from MMTV-ErbB2 transgenic mice. The DCF mechanism provides unparalleled potential to assess the stimulation, sustainability, and reversibility of Akt activation longitudinally. Importantly, NIR fluorescence provides a pathway to translate findings from cells to living organisms, a condition that could eventually facilitate the use of these probes in humans.
Collapse
Affiliation(s)
- Duanwen Shen
- Departments of Radiology, Washington University in St. Louis, Missouri 63110, USA
- These authors contributed equally to this work
| | - Mingfeng Bai
- Departments of Radiology, Washington University in St. Louis, Missouri 63110, USA
- These authors contributed equally to this work
| | - Rui Tang
- Departments of Radiology, Washington University in St. Louis, Missouri 63110, USA
- These authors contributed equally to this work
| | - Baogang Xu
- Departments of Radiology, Washington University in St. Louis, Missouri 63110, USA
| | - Xiaoming Ju
- Departments of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107
| | - Richard G. Pestell
- Departments of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107
- Departments of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107
| | - Samuel Achilefu
- Departments of Radiology, Washington University in St. Louis, Missouri 63110, USA
- Departments of Biomedical Engineering, Washington University in St. Louis, Missouri 63110, USA
- Departments of Biochemistry & Molecular Biophysics, Washington University in St. Louis, Missouri 63110, USA
| |
Collapse
|
28
|
Disruption of PH-kinase domain interactions leads to oncogenic activation of AKT in human cancers. Proc Natl Acad Sci U S A 2012; 109:19368-73. [PMID: 23134728 DOI: 10.1073/pnas.1204384109] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain-kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH-KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH-KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH-KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH-KD interface.
Collapse
|
29
|
López E, Madero L, López-Pascual J, Latterich M. Clinical proteomics and OMICS clues useful in translational medicine research. Proteome Sci 2012; 10:35. [PMID: 22642823 PMCID: PMC3536680 DOI: 10.1186/1477-5956-10-35] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 05/04/2012] [Indexed: 12/21/2022] Open
Abstract
Since the advent of the new proteomics era more than a decade ago, large-scale studies of protein profiling have been used to identify distinctive molecular signatures in a wide array of biological systems, spanning areas of basic biological research, clinical diagnostics, and biomarker discovery directed toward therapeutic applications. Recent advances in protein separation and identification techniques have significantly improved proteomic approaches, leading to enhancement of the depth and breadth of proteome coverage. Proteomic signatures, specific for multiple diseases, including cancer and pre-invasive lesions, are emerging. This article combines, in a simple manner, relevant proteomic and OMICS clues used in the discovery and development of diagnostic and prognostic biomarkers that are applicable to all clinical fields, thus helping to improve applications of clinical proteomic strategies for translational medicine research.
Collapse
Affiliation(s)
- Elena López
- Centro de Investigación i + 12, Hospital 12 de Octubre, Av, De Córdoba s/n, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
30
|
Chen HC, Ziemba BP, Landgraf KE, Corbin JA, Falke JJ. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study. PLoS One 2012; 7:e33640. [PMID: 22479423 PMCID: PMC3316598 DOI: 10.1371/journal.pone.0033640] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 02/14/2012] [Indexed: 11/18/2022] Open
Abstract
The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3-bound GRP1 PH domain on supported lipid bilayers.
Collapse
Affiliation(s)
| | | | | | | | - Joseph J. Falke
- Department of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
31
|
Huang BX, Kim HY. Effects of ethanol on conformational changes of Akt studied by chemical cross-linking, mass spectrometry, and (18)O labeling. ACS Chem Biol 2012; 7:387-94. [PMID: 22129086 PMCID: PMC3475205 DOI: 10.1021/cb2003237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although PI3K/Akt signaling that regulates neuronal survival has been implicated in the deleterious effects of ethanol on the central nervous system, underlying molecular mechanisms have not been fully elucidated. Akt-membrane interaction is a prerequisite step for Akt activation since it induces interdomain conformational changes to an open conformer that allows Akt phosphorylation by upstream kinases. In this study, we investigated the effect of ethanol on Akt activation by quantitatively probing Akt conformation using chemical cross-linking, (18)O labeling and mass spectrometry. We found that ethanol at pharmacologically relevant concentrations (20 or 170 mM) directly interacts with Akt and alters the local pleckstrin homology domain configuration near the PIP(3)-binding site. We also found that ethanol significantly impairs subsequent membrane-induced interdomain conformational changes needed for Akt activation. The observed alteration of Akt conformation caused by ethanol during the activation sequence provides a new molecular basis for the effects of ethanol on Akt signaling. The in vitro conformation-based approach employed in this study should also be useful in probing the molecular mechanisms for the action of ethanol or drugs on other signaling proteins, particularly for those undergoing dramatic conformational change during activation processes such as members of AGC kinase super family.
Collapse
Affiliation(s)
- Bill X. Huang
- Laboratory of Molecular Signaling, DICBR, NIAAA, National Institutes of Health, Bethesda, Maryland 20892-9410, United States
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, DICBR, NIAAA, National Institutes of Health, Bethesda, Maryland 20892-9410, United States
| |
Collapse
|
32
|
Ziemba BP, Knight JD, Falke JJ. Assembly of membrane-bound protein complexes: detection and analysis by single molecule diffusion. Biochemistry 2012; 51:1638-47. [PMID: 22263647 DOI: 10.1021/bi201743a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein complexes assembled on membrane surfaces regulate a wide array of signaling pathways and cell processes. Thus, a molecular understanding of the membrane surface diffusion and regulatory events leading to the assembly of active membrane complexes is crucial to signaling biology and medicine. Here we present a novel single molecule diffusion analysis designed to detect complex formation on supported lipid bilayers. The usefulness of the method is illustrated by detection of an engineered, heterodimeric complex in which two membrane-bound pleckstrin homology (PH) domains associate stably, but reversibly, upon Ca(2+)-triggered binding of calmodulin (CaM) to a target peptide from myosin light chain kinase (MLCKp). Specifically, when a monomeric, fluorescent PH-CaM domain fusion protein diffusing on a supported bilayer binds a dark MLCKp-PH domain fusion protein, the heterodimeric complex is observed to diffuse nearly 2-fold more slowly than the monomer because both of its twin PH domains can simultaneously bind to the viscous bilayer. In a mixed population of monomers and heterodimers, the single molecule diffusion analysis resolves, identifies and quantitates the rapidly diffusing monomers and slowly diffusing heterodimers. The affinity of the CaM-MLCKp interaction is measured by titrating dark MLCKp-PH construct into the system, while monitoring the changing ratio of monomers and heterodimers, yielding a saturating binding curve. Strikingly, the apparent affinity of the CaM-MLCKp complex is ~10(2)-fold greater in the membrane system than in solution, apparently due to both faster complex association and slower complex dissociation on the membrane surface. More broadly, the present findings suggest that single molecule diffusion measurements on supported bilayers will provide an important tool for analyzing the 2D diffusion and assembly reactions governing the formation of diverse membrane-bound complexes, including key complexes from critical signaling pathways. The approach may also prove useful in pharmaceutical screening for compounds that inhibit membrane complex assembly or stability.
Collapse
Affiliation(s)
- Brian P Ziemba
- Department of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado at Boulder, Boulder, Colorado 80309-0215, United States
| | | | | |
Collapse
|
33
|
Chan TO, Pascal JM, Armen RS, Rodeck U. Autoregulation of kinase dephosphorylation by ATP binding in AGC protein kinases. Cell Cycle 2012; 11:475-8. [PMID: 22262182 DOI: 10.4161/cc.11.3.19059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non- ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.
Collapse
Affiliation(s)
- Tung O Chan
- Center for Translational Medicine, Department of Medicine, School of Pharmacy, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
34
|
Seco J, Ferrer-Costa C, Campanera JM, Soliva R, Barril X. Allosteric regulation of PKCθ: understanding multistep phosphorylation and priming by ligands in AGC kinases. Proteins 2011; 80:269-80. [PMID: 22072623 DOI: 10.1002/prot.23205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 09/12/2011] [Accepted: 09/18/2011] [Indexed: 01/13/2023]
Abstract
Protein kinases play critical roles in cellular activation and differentiation, and are involved in numerous pathophysiological processes. As a critical component of the regulatory circuitry of the cell, the kinase domain has the ability to integrate multiple signals, yielding a predetermined output. In PKC and other protein kinases of the AGC family, several phosphorylation sites control the activity, but these are in turn influenced by the presence of ligands in the binding pocket, which promotes phosphorylation. Here, we take PKC-theta as a prototypical member of the family and use molecular dynamics simulations to investigate the cross-talk that exists between regulatory and functional sites. We first show how the apo-unphosphorylated form of the kinase is populating a conformational space in which access to the ATP binding site and to the activation loop (AL) are simultaneously hindered. This could explain why the inactive state is not only catalytically incompetent but also resistant to activation. AL phosphorylation induces ATP binding site opening, which can then readily accept the cofactor. But the signal transmission mechanism works both ways, and if ligand binding to the unphosphorylated form occurs first, the AL is de-protected and becomes exposed to phosphorylation, thus providing an explanation for the paradoxical activation of PKCs by their inhibitors.
Collapse
Affiliation(s)
- Jesus Seco
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Pilling C, Landgraf KE, Falke JJ. The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4,5)P(3). Biochemistry 2011; 50:9845-56. [PMID: 21932773 DOI: 10.1021/bi2011306] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al. (2011) N. Engl. J. Med. 365, 611-619]. Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases, an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P(3)-specific binding pockets that functions to lower PI(4,5)P(2) affinity.
Collapse
Affiliation(s)
- Carissa Pilling
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, Colorado 80309-0215, United States
| | | | | |
Collapse
|
36
|
Dixit A, Verkhivker GM. Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases. PLoS Comput Biol 2011; 7:e1002179. [PMID: 21998569 PMCID: PMC3188506 DOI: 10.1371/journal.pcbi.1002179] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/16/2011] [Indexed: 12/15/2022] Open
Abstract
The emerging structural information about allosteric kinase complexes and the growing number of allosteric inhibitors call for a systematic strategy to delineate and classify mechanisms of allosteric regulation and long-range communication that control kinase activity. In this work, we have investigated mechanistic aspects of long-range communications in ABL and EGFR kinases based on the results of multiscale simulations of regulatory complexes and computational modeling of signal propagation in proteins. These approaches have been systematically employed to elucidate organizing molecular principles of allosteric signaling in the ABL and EGFR multi-domain regulatory complexes and analyze allosteric signatures of the gate-keeper cancer mutations. We have presented evidence that mechanisms of allosteric activation may have universally evolved in the ABL and EGFR regulatory complexes as a product of a functional cross-talk between the organizing αF-helix and conformationally adaptive αI-helix and αC-helix. These structural elements form a dynamic network of efficiently communicated clusters that may control the long-range interdomain coupling and allosteric activation. The results of this study have unveiled a unifying effect of the gate-keeper cancer mutations as catalysts of kinase activation, leading to the enhanced long-range communication among allosterically coupled segments and stabilization of the active kinase form. The results of this study can reconcile recent experimental studies of allosteric inhibition and long-range cooperativity between binding sites in protein kinases. The presented study offers a novel molecular insight into mechanistic aspects of allosteric kinase signaling and provides a quantitative picture of activation mechanisms in protein kinases at the atomic level. Despite recent progress in computational and experimental studies of dynamic regulation in protein kinases, a mechanistic understanding of long-range communication and mechanisms of mutation-induced signaling controlling kinase activity remains largely qualitative. In this study, we have performed a systematic modeling and analysis of allosteric activation in ABL and EGFR kinases at the increasing level of complexity - from catalytic domain to multi-domain regulatory complexes. The results of this study have revealed organizing structural and mechanistic principles of allosteric signaling in protein kinases. Although activation mechanisms in ABL and EGFR kinases have evolved through acquisition of structurally different regulatory complexes, we have found that long-range interdomain communication between common functional segments (αF-helix and αC-helix) may be important for allosteric activation. The results of study have revealed molecular signatures of activating cancer mutations and have shed the light on general mechanistic aspects of mutation-induced signaling in protein kinases. An advanced understanding and further characterization of molecular signatures of kinase mutations may aid in a better rationalization of mutational effects on clinical outcomes and facilitate molecular-based therapeutic strategies to combat kinase mutation-dependent tumorigenesis.
Collapse
Affiliation(s)
- Anshuman Dixit
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
| | - Gennady M. Verkhivker
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
López E, Wesselink JJ, López I, Mendieta J, Gómez-Puertas P, Muñoz SR. Technical phosphoproteomic and bioinformatic tools useful in cancer research. J Clin Bioinforma 2011; 1:26. [PMID: 21967744 PMCID: PMC3195713 DOI: 10.1186/2043-9113-1-26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/03/2011] [Indexed: 12/22/2022] Open
Abstract
Reversible protein phosphorylation is one of the most important forms of cellular regulation. Thus, phosphoproteomic analysis of protein phosphorylation in cells is a powerful tool to evaluate cell functional status. The importance of protein kinase-regulated signal transduction pathways in human cancer has led to the development of drugs that inhibit protein kinases at the apex or intermediary levels of these pathways. Phosphoproteomic analysis of these signalling pathways will provide important insights for operation and connectivity of these pathways to facilitate identification of the best targets for cancer therapies. Enrichment of phosphorylated proteins or peptides from tissue or bodily fluid samples is required. The application of technologies such as phosphoenrichments, mass spectrometry (MS) coupled to bioinformatics tools is crucial for the identification and quantification of protein phosphorylation sites for advancing in such relevant clinical research. A combination of different phosphopeptide enrichments, quantitative techniques and bioinformatic tools is necessary to achieve good phospho-regulation data and good structural analysis of protein studies. The current and most useful proteomics and bioinformatics techniques will be explained with research examples. Our aim in this article is to be helpful for cancer research via detailing proteomics and bioinformatic tools.
Collapse
Affiliation(s)
- Elena López
- Centro de Investigación i+12 del Hospital Universitario 12 de Octubre, Avda de Córdoba s/n Madrid, 28041, Spain
| | - Jan-Jaap Wesselink
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) Campus de Cantoblanco, c/Nicolás Cabrera, 1, 28049 Madrid, Spain.,Biomol-Informatics, S.L., Parque Científico de Madrid, Campus de Cantoblanco, c/Faraday 7, 28049 Madrid, Spain
| | - Isabel López
- Servicio de Hematología Hospital QUIRÓN, Madrid, Diego de Velázquez 1 28223, Pozuelo Madrid Spain
| | - Jesús Mendieta
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) Campus de Cantoblanco, c/Nicolás Cabrera, 1, 28049 Madrid, Spain.,Biomol-Informatics, S.L., Parque Científico de Madrid, Campus de Cantoblanco, c/Faraday 7, 28049 Madrid, Spain
| | - Paulino Gómez-Puertas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) Campus de Cantoblanco, c/Nicolás Cabrera, 1, 28049 Madrid, Spain
| | - Sarbelio Rodríguez Muñoz
- Servicio de Digestivo, Hospital Universitario 12 Octubre, Avda de Córdoba s/n Madrid, 28041, Spain
| |
Collapse
|
38
|
Meuillet EJ. Novel inhibitors of AKT: assessment of a different approach targeting the pleckstrin homology domain. Curr Med Chem 2011; 18:2727-42. [PMID: 21649580 DOI: 10.2174/092986711796011292] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 05/13/2011] [Indexed: 12/21/2022]
Abstract
Protein kinase B/AKT plays a central role in cancer. The serine/threonine kinase is overexpressed or constitutively active in many cancers and has been validated as a therapeutic target for cancer treatment. However, targeting the kinase activity has revealed itself to be a challenge due to non-selectivity of the compounds towards other kinases. This review summarizes other approaches scientists have developed to inhibit the activity and function of AKT. They consist in targeting the pleckstrin homology (PH) domain of AKT. Indeed, upon the generation of 3-phosphorylated phosphatidylinositol phosphates (PI3Ps) by PI3-kinase (PI3K), AKT translocates from the cytosol to the plasma membrane and binds to the PI3Ps via its PH domain. Thus, several analogs of PI3Ps (PI Analogs or PIAs), alkylphospholipids (APLs), such as edelfosine or inositol phophates (IPs) have been described that inhibit the binding of the PH domain to PI3Ps. Recent allostertic inhibitors and small molecules that do not bind the kinase domain but affect the kinase activity of AKT, presumably by interacting with the PH domain, have been also identified. Finally, several drug screening studies spawned novel chemical scaffolds that bind the PH domain of AKT. Together, these approaches have been more or less sucessfull in vitro and to some extent translated in preclinical studies. Several of these new AKT PH domain inhibitors exhibit promising anti-tumor activity in mouse models and some of them show synergy with ionizing radiation and chemotherapy. Early clinical trials have started and results will attest to the validity and efficacy of such approaches in the near future.
Collapse
Affiliation(s)
- E J Meuillet
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
39
|
Dobson M, Ramakrishnan G, Ma S, Kaplun L, Balan V, Fridman R, Tzivion G. Bimodal regulation of FoxO3 by AKT and 14-3-3. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:1453-64. [PMID: 21621563 PMCID: PMC3237389 DOI: 10.1016/j.bbamcr.2011.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/22/2011] [Accepted: 05/02/2011] [Indexed: 12/19/2022]
Abstract
FoxO3 is a member of FoxO family transcription factors that mediate cellular functions downstream of AKT. FoxO3 phosphorylation by AKT generates binding sites for 14-3-3, which in-turn regulates FoxO3 transcriptional activity and localization. We examine here the functional significance of AKT-FoxO3 interaction and further detail the mechanistic aspects of FoxO3 regulation by AKT and 14-3-3. Our data show that AKT overexpression increases the steady-state levels of FoxO3 protein in a manner dependent on AKT activity and its ability to bind FoxO3. Characterization of the AKT-FoxO3 interaction shows that the three AKT phosphorylation-site-recognition motifs (RxRxxS/T) present on FoxO3, which are required for FoxO3 phosphorylation, are dispensable for AKT binding, suggesting that AKT has a docking point on FoxO3 distinct from the phosphorylation-recognition motifs. Development of a FoxO3 mutant deficient in 14-3-3 binding (P34A), which can be phosphorylated by AKT, established that 14-3-3 binding and not AKT phosphorylation per se controls FoxO3 transcriptional activity. Intriguingly, 14-3-3 binding was found to stabilize FoxO3 by inhibiting its dephosphorylation and degradation rates. Collectively, our data support a model where both AKT and 14-3-3 positively regulate FoxO3 in addition to their established negative roles and that 14-3-3 availability could dictate the fate of phosphorylated FoxO3 toward degradation or recycling.
Collapse
Affiliation(s)
- Melissa Dobson
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
| | - Gopalakrishnan Ramakrishnan
- Cancer Institute and Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Stephanie Ma
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
| | - Ludmila Kaplun
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
| | - Vitaly Balan
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
| | - Rafael Fridman
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
| | - Guri Tzivion
- Karmanos Cancer Institute and Department of Pathology, Wayne State University, Detroit, Michigan 48201
- Cancer Institute and Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
40
|
Shearn CT, Fritz KS, Reigan P, Petersen DR. Modification of Akt2 by 4-Hydroxynonenal Inhibits Insulin-Dependent Akt Signaling in HepG2 Cells. Biochemistry 2011; 50:3984-96. [DOI: 10.1021/bi200029w] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. T. Shearn
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - K. S. Fritz
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - P. Reigan
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, University of Colorado—Denver, Aurora, Colorado 80045, United States
| |
Collapse
|
41
|
Huang BX, Akbar M, Kevala K, Kim HY. Phosphatidylserine is a critical modulator for Akt activation. J Cell Biol 2011; 192:979-92. [PMID: 21402788 PMCID: PMC3063130 DOI: 10.1083/jcb.201005100] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 02/17/2011] [Indexed: 12/25/2022] Open
Abstract
Akt activation relies on the binding of Akt to phosphatidylinositol-3,4,5-trisphosphate (PIP(3)) in the membrane. Here, we demonstrate that Akt activation requires not only PIP(3) but also membrane phosphatidylserine (PS). The extent of insulin-like growth factor-induced Akt activation and downstream signaling as well as cell survival under serum starvation conditions positively correlates with plasma membrane PS levels in living cells. PS promotes Akt-PIP(3) binding, participates in PIP(3)-induced Akt interdomain conformational changes for T308 phosphorylation, and causes an open conformation that allows for S473 phosphorylation by mTORC2. PS interacts with specific residues in the pleckstrin homology (PH) and regulatory (RD) domains of Akt. Disruption of PS-Akt interaction by mutation impairs Akt signaling and increases susceptibility to cell death. These data identify a critical function of PS for Akt activation and cell survival, particularly in conditions with limited PIP(3) availability. The novel molecular interaction mechanism for Akt activation suggests potential new targets for controlling Akt-dependent cell survival and proliferation.
Collapse
Affiliation(s)
- Bill X Huang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
42
|
Wu WI, Voegtli WC, Sturgis HL, Dizon FP, Vigers GPA, Brandhuber BJ. Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One 2010; 5:e12913. [PMID: 20886116 PMCID: PMC2944833 DOI: 10.1371/journal.pone.0012913] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 08/24/2010] [Indexed: 11/18/2022] Open
Abstract
AKT1 (NP_005154.2) is a member of the serine/threonine AGC protein kinase family involved in cellular metabolism, growth, proliferation and survival. The three human AKT isozymes are highly homologous multi-domain proteins with both overlapping and distinct cellular functions. Dysregulation of the AKT pathway has been identified in multiple human cancers. Several clinical trials are in progress to test the efficacy of AKT pathway inhibitors in treating cancer. Recently, a series of AKT isozyme-selective allosteric inhibitors have been reported. They require the presence of both the pleckstrin-homology (PH) and kinase domains of AKT, but their binding mode has not yet been elucidated. We present here a 2.7 Å resolution co-crystal structure of human AKT1 containing both the PH and kinase domains with a selective allosteric inhibitor bound in the interface. The structure reveals the interactions between the PH and kinase domains, as well as the critical amino residues that mediate binding of the inhibitor to AKT1. Our work also reveals an intricate balance in the enzymatic regulation of AKT, where the PH domain appears to lock the kinase in an inactive conformation and the kinase domain disrupts the phospholipid binding site of the PH domain. This information advances our knowledge in AKT1 structure and regulation, thereby providing a structural foundation for interpreting the effects of different classes of AKT inhibitors and designing selective ones.
Collapse
Affiliation(s)
- Wen-I Wu
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Walter C. Voegtli
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Hillary L. Sturgis
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Faith P. Dizon
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Guy P. A. Vigers
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
| | - Barbara J. Brandhuber
- Department of Structural Biology, Array BioPharma Inc., Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
43
|
Zhou QL, Jiang ZY, Mabardy AS, Del Campo CM, Lambright DG, Holik J, Fogarty KE, Straubhaar J, Nicoloro S, Chawla A, Czech MP. A novel pleckstrin homology domain-containing protein enhances insulin-stimulated Akt phosphorylation and GLUT4 translocation in adipocytes. J Biol Chem 2010; 285:27581-9. [PMID: 20587420 PMCID: PMC2934625 DOI: 10.1074/jbc.m110.146886] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase B/Akt protein kinases control an array of diverse functions, including cell growth, survival, proliferation, and metabolism. We report here the identification of pleckstrin homology-like domain family B member 1 (PHLDB1) as an insulin-responsive protein that enhances Akt activation. PHLDB1 contains a pleckstrin homology domain, which we show binds phosphatidylinositol PI(3,4)P2, PI(3,5)P2, and PI(3,4,5)P3, as well as a Forkhead-associated domain and coiled coil regions. PHLDB1 expression is increased during adipocyte differentiation, and it is abundant in many mouse tissues. Both endogenous and HA- or GFP-tagged PHLDB1 displayed a cytoplasmic disposition in unstimulated cultured adipocytes but translocated to the plasma membrane in response to insulin. Depletion of PHLDB1 by siRNA inhibited insulin stimulation of Akt phosphorylation but not tyrosine phosphorylation of IRS-1. RNAi-based silencing of PHLDB1 in cultured adipocytes also attenuated insulin-stimulated deoxyglucose transport and Myc-GLUT4-EGFP translocation to the plasma membrane, whereas knockdown of the PHLDB1 isoform PHLDB2 failed to attenuate insulin-stimulated deoxyglucose transport. Furthermore, adenovirus-mediated expression of PHLDB1 in adipocytes enhanced insulin-stimulated Akt and p70 S6 kinase phosphorylation, as well as GLUT4 translocation. These results indicate that PHLDB1 is a novel modulator of Akt protein kinase activation by insulin.
Collapse
Affiliation(s)
- Qiong L Zhou
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dannemann N, Hart JR, Ueno L, Vogt PK. Phosphatidylinositol 4,5-bisphosphate-specific AKT1 is oncogenic. Int J Cancer 2010; 127:239-44. [PMID: 19876913 DOI: 10.1002/ijc.25012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The protein kinase AKT1 (v-akt murine thymoma viral oncogene homolog 1), also referred to as protein kinase B (PKB), is an essential mediator of the phosphatidylinositol 3-kinase signaling pathway. Elevated activity of AKT1 is common in human cancer. Localization at the plasma membrane, leading to enhanced phosphorylation and activation of AKT1, is an important factor determining the oncogenicity of this kinase. Although the phosphatidylinositol 3-kinase signaling pathway is frequently upregulated in cancer, cancer-specific mutations in AKT1 are not common. Recently, such a mutation has been identified in breast, colon and ovarian cancers. The mutation is located in the pleckstrin homology (PH) domain of AKT1 and results in a glutamic acid to lysine substitution at residue 17. The resultant change in the conformation of the PH domain facilitates membrane binding of the mutant protein. Here we show that exchange of the PH domain leading to preferential binding of phosphatidylinositol 4,5-bisphosphate (PIP(2)) over phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) constitutively activates AKT1. AKT1 with this altered PIP affinity induces oncogenic transformation in cultures of chicken embryo fibroblasts and causes neoplastic growth and angiogenesis in the chorioallantoic membrane of the chicken embryo. Gain-of-function mutants of AKT1 may not be affected by PI3K inhibitors that are currently in development. Therefore, AKT1 remains a distinct and important cancer target.
Collapse
Affiliation(s)
- Nadine Dannemann
- The Scripps Research Institute, Molecular and Experimental Medicine, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
45
|
Csibi A, Communi D, Müller N, Bottari SP. Angiotensin II inhibits insulin-stimulated GLUT4 translocation and Akt activation through tyrosine nitration-dependent mechanisms. PLoS One 2010; 5:e10070. [PMID: 20383279 PMCID: PMC2850936 DOI: 10.1371/journal.pone.0010070] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 03/11/2010] [Indexed: 12/20/2022] Open
Abstract
Angiotensin II (Ang II) plays a major role in the pathogenesis of insulin resistance and diabetes by inhibiting insulin's metabolic and potentiating its trophic effects. Whereas the precise mechanisms involved remain ill-defined, they appear to be associated with and dependent upon increased oxidative stress. We found Ang II to block insulin-dependent GLUT4 translocation in L6 myotubes in an NO- and O2.−-dependent fashion suggesting the involvement of peroxynitrite. This hypothesis was confirmed by the ability of Ang II to induce tyrosine nitration of the MAP kinases ERK1/2 and of protein kinase B/Akt (Akt). Tyrosine nitration of ERK1/2 was required for their phosphorylation on Thr and Tyr and their subsequent activation, whereas it completely inhibited Akt phosphorylation on Ser473 and Thr308 as well as its activity. The inhibitory effect of nitration on Akt activity was confirmed by the ability of SIN-1 to completely block GSK3α phosphorylation in vitro. Inhibition of nitric oxide synthase and NAD(P)Hoxidase and scavenging of free radicals with myricetin restored insulin-stimulated Akt phosphorylation and GLUT4 translocation in the presence of Ang II. Similar restoration was obtained by inhibiting the ERK activating kinase MEK, indicating that these kinases regulate Akt activation. We found a conserved nitration site of ERK1/2 to be located in their kinase domain on Tyr156/139, close to their active site Asp166/149, in agreement with a permissive function of nitration for their activation. Taken together, our data show that Ang II inhibits insulin-mediated GLUT4 translocation in this skeletal muscle model through at least two pathways: first through the transient activation of ERK1/2 which inhibit IRS-1/2 and second through a direct inhibitory nitration of Akt. These observations indicate that not only oxidative but also nitrative stress play a key role in the pathogenesis of insulin resistance. They underline the role of protein nitration as a major mechanism in the regulation of Ang II and insulin signaling pathways and more particularly as a key regulator of protein kinase activity.
Collapse
Affiliation(s)
- Alfredo Csibi
- Laboratoire de Bioénergétique Fondamentale et Appliquée, INSERM U884, Grenoble Universités, Grenoble, France
| | | | | | | |
Collapse
|