1
|
Graça JS, Silva JGS, Dias LG, Odorissi Xavier AA, Alves-Filho EG, Pimentel TC, Brito ES, Rodrigues S, Pallone JAL, Mariutti LRB, Mercadante AZ, Bragagnolo N, Sant'Ana AS. Pre-exposure of Lactobacillus acidophilus to stress conditions impacts the metabolites and bioaccessibility of calcium and carotenoids in fermented dairy products. Food Res Int 2025; 200:115526. [PMID: 39779154 DOI: 10.1016/j.foodres.2024.115526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
This study evaluated the impact of fermentation with Lactobacillus acidophilus pre-subjected to acid, osmotic, and oxidative stress conditions on the production of metabolites and the bioaccessibility of nutrients and bioactive compounds in fermented milks and yogurts. The products were added with orange bagasse (additional calcium - Ca source) and buriti pulp (carotenoids source). Gas chromatography coupled with mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) were used to analyze the volatile and non-volatile compounds metabolites from fermentation, respectively. In vitro digestion assays (dialysis and micellization) evaluated the bioaccessibility of Ca and carotenoids. Results showed that fermentation with L. acidophilus, previously exposed to acid, osmotic, and oxidative stress conditions, increased the production of volatiles such as higher alcohols and compounds derived from amino acid catabolism (1-butanol, 1-decanol, 1-nonanol, nonanoic acid, 2-ethyl 1-hexanol, 1-methoxy-2-propanol). Also, when this microorganism was subjected to osmotic and oxidative stress, an increase in the bioaccessibility of Ca in natural fermented milks from 4.1 % to 13.3-15.5 % and in the same products fortified with orange bagasse from 5.3 % to 9.3-10.8 % (when compared to the non-stressed condition) were observed. Conversely, the use of L. acidophilus - non-stressed or subjected to oxidative stress - reduced the bioaccessibility of carotenoids in products containing buriti pulp from 9.6 % to 7.8 % and 4.1 % (in yogurts); and, from 4.1 % to 2.0 % (in fermented milks), when compared to control. Thus, the pre-exposure of probiotics to stress conditions may impact not only the sensory and biochemical characteristics of fermented products, but also the bioaccessibility of nutrients and bioactive compounds.
Collapse
Affiliation(s)
- Juliana S Graça
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Joyce G S Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Laísa G Dias
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Ana Augusta Odorissi Xavier
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Elenilson G Alves-Filho
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Campus do Pici, Bloco 858, 60440-900 Fortaleza, CE, Brazil
| | | | - Edy S Brito
- Embrapa Agroindústria Tropical, Rua Dra Sara Mesquita, 2270, Pici, 60511-110 Fortaleza, CE, Brazil
| | - Sueli Rodrigues
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Campus do Pici, Bloco 858, 60440-900 Fortaleza, CE, Brazil
| | - Juliana A L Pallone
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Lilian R B Mariutti
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Adriana Z Mercadante
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Neura Bragagnolo
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Tagliapietra BL, Salvador-Reyes R, Pinto CC, de Souza SM, Pallone JAL, de Araújo Bezerra J, Moreira Mar J, Aparecido Sanches E, Clerici MTPS. Nutritional and techno-functional properties of the brown seaweed Sargassum filipendula. Food Res Int 2024; 191:114728. [PMID: 39059922 DOI: 10.1016/j.foodres.2024.114728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
With the increasing need to promote healthy and sustainable diets, seaweeds emerge as an environmentally friendly food source, offering a promising alternative for food production. The aim of this study was to characterize the brown seaweed Sargassum filipendula from the coast of São Paulo, Brazil, regarding its nutritional and techno-functional properties using two dehydration methods, oven drying and lyophilized. A commercial dried sample was used as a control. Analyses of proximate composition, mineral determination, amino acid determination, antioxidant capacity, pH, color, scanning electron microscopy, X-ray diffraction, thermal properties, Fourier-transform infrared spectroscopy, and techno-functional properties were performed. Seaweed flours showed significant differences in physicochemical composition, with dietary fiber content of seaweed flours exceeding 70 %. Glutamic and aspartic acids were the most abundant amino acids, with contents of 88.56 and 56.88 mg/g of protein in Sargassum oven drying. Both for antioxidant potential and bioactive compounds, Sargassum lyophilized flours showed the highest levels of compounds. Sargassum lyophilized exhibited lighter color compared to Sargassum oven drying and Sargassum commercial. Emulsion formation, foam formation capacity and stability were higher in Sargassum lyophilized, as well as water and oil absorption. The results suggest that seaweeds can be used to formulate a wide variety of food products, such as sausages, bread, cakes, soups, and sauces.
Collapse
Affiliation(s)
- Bruna Lago Tagliapietra
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Campinas, São Paulo, Brazil.
| | | | - Camila Costa Pinto
- Federal University of Amazonas, Manaus, Amazonas, Brazil; Federal Institute of Education, Science and Technology of Amazonas, Presidente Figueiredo, Amazonas, Brazil.
| | | | - Juliana Azevedo Lima Pallone
- Universidade Estadual de Campinas, School of Food Engineering, Department of Food Science and Nutrition, Campinas, São Paulo, Brazil.
| | - Jaqueline de Araújo Bezerra
- Federal University of Amazonas, Manaus, Amazonas, Brazil; Analytical Center of the Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus, Amazonas, Brazil.
| | - Josiana Moreira Mar
- Federal University of Amazonas, Manaus, Amazonas, Brazil; Analytical Center of the Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus, Amazonas, Brazil.
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers, Materials Physics Department, Federal University of Amazonas, Manaus, Amazonas, Brazil.
| | | |
Collapse
|
3
|
Corrêa PG, Moura LGS, Amaral ACF, Almeida MMHD, Souza FDCDA, Aguiar JPL, Aleluia RL, Silva JRDA. Evaluation of the Amazonian fruit Ambelania acida: Chemical and nutritional studies. J Food Sci 2023; 88:757-771. [PMID: 36633002 DOI: 10.1111/1750-3841.16455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
Ambelania acida is native to the Amazon region, with few published studies of its fruits. We examined the proximate composition of its fruits, including minerals, fatty acids, volatile organic compounds (VOCs), as well as its antioxidant capacity. The protein contents (2.61%) of the pulp and seeds (13.6%) were higher than observed in other taxa of the family or in other tropical fruits. Peel and pulp showed high contents of potassium, calcium, and magnesium, and the potassium content in the pulp was 1125 mg/100 g. The peel had higher contents of total phenolics, tannins, and ortho-diphenols than the pulp, as well as better antioxidant activity as evidenced by 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), and Fe2+ chelating activity assays. GC-MS analyses identified 42 VOCs in the peel and pulp, with more than 90% being classified as terpenes. Eleven types of fatty acids were identified in the lipid fractions of the peel, pulp, and seeds. Linoleic acid, an essential fatty acid for humans, was the principal fatty acid in the edible portion of the fruit, therefore, evidencing its nutritionally significant profile for the fruits when considering the relationship among polyunsaturated, saturated, and monounsaturated fatty acids. The information gathered here indicates that this native fruit is a healthy food source and its cultivation and consumption should be stimulated.
Collapse
Affiliation(s)
- Pollyane Gomes Corrêa
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, Amazonas, Brazil
| | | | - Ana Claudia Fernandes Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maíra Martins H de Almeida
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisca das Chagas do Amaral Souza
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, Amazonas, Brazil
| | - Jaime Paiva Lopes Aguiar
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, Amazonas, Brazil
| | - Renê Lemos Aleluia
- Laboratory of Plant Genetics and Toxicology, Department of Biological Sciences Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | |
Collapse
|
4
|
Corrêa PG, Moura LGS, Amaral ACF, do Amaral Souza FDC, Aguiar JPL, Aleluia RL, de Andrade Silva JR. Chemical and nutritional characterization of Ambelania duckei (Apocynaceae) an unexplored fruit from the Amazon region. Food Res Int 2023; 163:112290. [PMID: 36596195 DOI: 10.1016/j.foodres.2022.112290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Ambelania duckei Markgr is a species of the Apocynaceae family, native to the Amazon region that is unexplored from a nutritional point of view and studied in relation to its chemical constituents. This work presents an unprecedented study of the proximate composition, lipid profile, a chromatographic analysis, and the antioxidant activity of extracts obtained from the pulp, peel and seeds of the fruit. The results showed that potassium, calcium, and magnesium stood out as the most abundant key minerals in the fruit peel and pulp, with an emphasis on the potassium present in the fruit pulp at 1750.0 mg/100 g. The peel had the highest content of total phenolics (374.86 mg/g), flavonoids (15.54 mg/g), tannins (27.45 mg/g) and O-diphenols (379.36 mg/g; 645.71 mg/g). The antioxidant activity (AA) was highest in the peel compared to the pulp in the DPPH, ABTS, and ORAC tests showing: IC50 of 29.82; 43.67; and 407.13 µg/mL, respectively but a lower activity for the Fe2+ chelator. The analysis of the lipid fractions from the peel, pulp, and seeds of the A. duckei fruit resulted in 14 types of fatty acids. The major fatty acids found in the three parts of the fruit were oleic acid (peel, 22.52 %), palmitic acid (pulp, 17.34 %), and linoleic acid (seeds, 47.99 %). The lipid profile and nutritional aspects had a PUFA/SFA ratio (0.4-1.8) in the different parts of the A. duckei fruit; the atherogenic and thrombogenic indexes were higher in the peel (1.23) and pulp (0.62), respectively. The ratio between the hypocholesterolemic and hypercholesterolemic fatty acids (0.5 - 3.8) calculated for the fruit are within the desirable range for a nutritious food. The chromatographic analysis of the volatile organic compounds (VOCs) from the peel and pulp of the fruit, identified 74 VOCs, of which 60.9 % are related to terpenes, and emit notes such as cucumber, green, fatty, floral, and mint, due to the presence of substances with OAVs > 10, especially α-ionone, 1,8-cineole, 2,4-decadienal, and dodecanal. The analysis of the MS and MS/MS spectra of the chromatograms obtained by LC- QTOF-HRMS led to the identification of 26 compounds in the peel, seeds and pulp of A. duckei, such as fatty acids, phenolic acid, flavonoids, proanthocyanidins, alkaloids, and terpenoids. The results show that the pulp of A. duckei has potential as nourishing food and the nutritional and chemical aspects of the peel can be applied to commercial applications.
Collapse
Affiliation(s)
- Pollyane Gomes Corrêa
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Ana Claudia Fernandes Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Francisca das Chagas do Amaral Souza
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, AM, Brazil
| | - Jaime Paiva Lopes Aguiar
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, AM, Brazil
| | - Renê Lemos Aleluia
- Laboratory of Plant Genetics and Toxicology, Department of Biological Sciences Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | |
Collapse
|
5
|
de Souza FG, de Araújo FF, Orlando EA, Rodrigues FM, Chávez DWH, Pallone JAL, Neri-Numa IA, Sawaya ACHF, Pastore GM. Characterization of Buritirana ( Mauritiella armata) Fruits from the Brazilian Cerrado: Biometric and Physicochemical Attributes, Chemical Composition and Antioxidant and Antibacterial Potential. Foods 2022; 11:786. [PMID: 35327209 PMCID: PMC8949527 DOI: 10.3390/foods11060786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
The buritirana is a little-explored species of the Arecaceae family. The biometric and physicochemical characteristics, nutritional and chemical composition and antioxidant and antibacterial potential of the buritirana fruit fractions were evaluated here for the first time. The fruits presented an oblong shape. The pulp represented 16.58% of the whole-fruit weight (10.07 g). The moisture, ash and soluble fiber contents were similar for the whole fraction without seed (WS) and pulp. Although the total carbohydrate content was the same for seed and peel (23.24 g·100 g-1), the seed showed higher protein and insoluble fiber contents. Except for glucose (1256.63 mg·100 g-1), the seed showed the highest concentrations of mono-, di- and oligosaccharides. Mineral content ranged from 0.43 to 800 mg·100 g-1 in all fractions. The peel fraction showed the highest content of vitamin C. The physicochemical results indicate the pulp and WS fraction have potential for the production of fruit-derived food products. Protocatechuic and quinic acids and epicatechin/catechin were found in all fractions. The assay antioxidant capacity DPPH, phenolic content and total flavonoids were higher in the pulp; TEAC and ORACHF values were lower in the seed. Volatile organic compounds were not identified, and the fractions did not show antibacterial activity.
Collapse
Affiliation(s)
- Florisvaldo Gama de Souza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Fábio Fernandes de Araújo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Eduardo Adilson Orlando
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Fernando Morais Rodrigues
- Department of Food Science and Technology, Federal Institute of Education, Science and Technology of Tocantins, Paraíso of Tocantins 77600-000, TO, Brazil;
| | - Davy William Hidalgo Chávez
- Department of Food Science and Technology, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
| | - Juliana Azevedo Lima Pallone
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | - Iramaia Angélica Neri-Numa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (F.F.d.A.); (E.A.O.); (J.A.L.P.); (I.A.N.-N.); (G.M.P.)
| |
Collapse
|
6
|
de Araújo FF, de Paulo Farias D, Neri-Numa IA, Dias-Audibert FL, Delafiori J, de Souza FG, Catharino RR, do Sacramento CK, Pastore GM. Chemical characterization of Eugenia stipitata: A native fruit from the Amazon rich in nutrients and source of bioactive compounds. Food Res Int 2020; 139:109904. [PMID: 33509473 DOI: 10.1016/j.foodres.2020.109904] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
Eugenia stipitata is a fruit native to the Brazilian Amazonian region, belonging to the Myrtaceae family whose chemical composition has been little evidenced. In this study, we evaluated for the first time the nutritional composition, bioactive compounds and antioxidant properties of two fractions of this fruit. It was observed that the edible fraction had a higher content of minerals such as K, Ca and Mg (827.66 ± 14.51; 107.16 ± 1.54; and 75.65 ± 1.28 mg 100 g-1 dw, respectively), sucrose (38.01 ± 2.94 mg g-1 dw), fructose (17.58 ± 0.80 mg g-1 dw), and maltotetraose (1.63 ± 0.09 mg g-1 dw). In this same fraction, about 30 volatile compounds were found, mainly biciclo(3.2.1)octan-3-one, 6 (2-hydroxyethyl)-, endo-; butanoic acid, 2-methyl-, hexyl ester and p-ocimene. In turn, the seed had the highest number of compounds identified by ESI-LTQ-MS/MS (including vanillic acid, gallic acid hexoside, catechin hexoside, luteolin hexoside, among others), higher content of phenolics (142.43 ± 0.82 mg GAE g-1 dw), flavonoids (43.73 ± 0.23 mg CE g-1 dw), and antioxidant capacity (139.59 ± 2.47; 447.94 ± 2.70; and 100.07 ± 10.50 µM TE g-1 dw for DPPH, ABTS, and ORAC, respectively). These results suggest that Eugenia stipitata has excellent nutritional value and great functional potential, and may contribute to a greater commercial exploitation of this fruit, not only in food, but also in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Fábio Fernandes de Araújo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil.
| | - David de Paulo Farias
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil.
| | - Iramaia Angélica Neri-Numa
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil
| | - Flávia Luísa Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | - Florisvaldo Gama de Souza
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| | | | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862 Campinas, SP, Brazil
| |
Collapse
|
7
|
Distribution of nutrients and functional potential in fractions of Eugenia pyriformis: An underutilized native Brazilian fruit. Food Res Int 2020; 137:109522. [DOI: 10.1016/j.foodres.2020.109522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 01/26/2023]
|
8
|
Brito T, Pereira A, Pastore G, Moreira R, Ferreira M, Fai A. Chemical composition and physicochemical characterization for cabbage and pineapple by-products flour valorization. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Silva JGS, Rebellato AP, Caramês ETDS, Greiner R, Pallone JAL. In vitro digestion effect on mineral bioaccessibility and antioxidant bioactive compounds of plant-based beverages. Food Res Int 2020; 130:108993. [PMID: 32156408 DOI: 10.1016/j.foodres.2020.108993] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 01/25/2023]
Abstract
Consumption of plant-based beverages (PBB) is a growing trend; and have been used as viable substitutes for dairy based products. To date, no study has comparatively analyzed mineral composition and effect of in vitro digestion on the bioaccessibility of different PBB. The aim of this research was to investigate the content of essential minerals (calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn)) and to estimate the effect of in vitro digestion in plant-based beverages, and their antioxidant bioactive compounds (phenolic compounds and antioxidant capacity). Moreover, the presence of antinutritional factors, such as myo-inositol phosphates fractions, were evaluated. Samples of PBB (rice, cashew nut, almond, peanut, coconut, oat, soy, blended or not with another ingredients, fortified with minerals or naturally present) and milk for comparison were evaluated. TPC ranged from 0.2 mg GAEq/L for coconut to 12.4 mg GAEq/L for rice and, the antioxidant capacity (DPPH) ranged from 3.1 to 306.5 µmol TE/L for samples containing peanut and oat, respectively. Only a few samples presented myo-inositol phosphates fractions in their composition, mostly IP5 and IP6, especially cashew nut beverages. Mineral content showed a wide range for Ca, ranging from 10 to 1697.33 mg/L for rice and coconut, respectively. The Mg content ranged from 6.29 to 251.23-268.43 mg/L for rice and cashew nut beverages, respectively. Fe content ranged from 0.76 mg/L to 12.89 mg/L for the samples of rice. Zinc content ranged from 0.57 mg/L to 8.13 mg/L for samples of oat and soy, respectively. Significant variation was observed for Ca (8.2-306.6 mg/L) and Mg (1.9-107.4 mg/L) dialyzed between the beverages, with lower concentrations of Fe (1.0 mg/L) and Zn (0.5 mg/L) in dialyzed fractions. This study provides at least 975 analytically determined laboratory results, providing important information for characterization and comparison of different plant-based beverages.
Collapse
Affiliation(s)
| | - Ana Paula Rebellato
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | | |
Collapse
|
10
|
A comprehensive characterization of Solanum lycocarpum St. Hill and Solanum oocarpum Sendtn: Chemical composition and antioxidant properties. Food Res Int 2019; 124:61-69. [DOI: 10.1016/j.foodres.2018.09.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 11/24/2022]
|
11
|
Pereira GA, Silva EK, Peixoto Araujo NM, Arruda HS, Meireles MAA, Pastore GM. Obtaining a novel mucilage from mutamba seeds exploring different high-intensity ultrasound process conditions. ULTRASONICS SONOCHEMISTRY 2019; 55:332-340. [PMID: 30857825 DOI: 10.1016/j.ultsonch.2019.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
We evaluated the effect of ultrasonic power (200-600 W) and process time (1-7 min) on the recovery of a novel polysaccharide from mutamba (Guazuma ulmifolia Lam.) seeds applying high-intensity ultrasound. Ultrasound process conditions intensification gradually was removing the mucilage layer around the hydrated seeds. Then, the scanning electron micrographs showed that the mucilage was removed completely at the highest applied energy density (10,080 J/mL). Although the colour of mutamba seed mucilage (MSM) have been changed due to increase of energy density, it not affects its practical use because the MSM can be purified to remove impurities. The results obtained in this study demonstrated that the ultrasound process conditions intensification did not affect the primary structure of MSM according to ζ-potential, FTIR spectrum, and monosaccharide residues data. In conclusion, ultrasound process conditions intensification allows the full recovery of the MSM at a short process time (7 min) without altering its quality and the primary structure.
Collapse
Affiliation(s)
- Gustavo Araujo Pereira
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil.
| | - Eric Keven Silva
- LASEFI, Department of Food Engineering, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Nayara Macêdo Peixoto Araujo
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Henrique Silvano Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - M Angela A Meireles
- LASEFI, Department of Food Engineering, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, UNICAMP, Campinas, SP 13083-862, Brazil
| |
Collapse
|
12
|
Neves DA, Schmiele M, Pallone JAL, Orlando EA, Risso EM, Cunha ECE, Godoy HT. Chemical and nutritional characterization of raw and hydrothermal processed jambu (Acmella oleracea (L.) R.K. Jansen). Food Res Int 2019; 116:1144-1152. [DOI: 10.1016/j.foodres.2018.09.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
13
|
Rodrigues AP, Pereira GA, Tomé PHF, Arruda HS, Eberlin MN, Pastore GM. Chemical Composition and Antioxidant Activity of Monguba (Pachira aquatica) Seeds. Food Res Int 2019; 121:880-887. [PMID: 31108821 DOI: 10.1016/j.foodres.2019.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 01/18/2023]
Abstract
Monguba fruit has a seed with a chestnut-like flavor that can be consumed boiled, fried, and roasted. These nutritious seeds also have been used in popular medicine to treat several diseases. Nevertheless, the nutritional and functional potential of monguba seed is still underexploited. In this sense, we investigated the nutritional and functional components of monguba seeds. These seeds showed high total content of sugars, mainly sucrose, whereas the content of the raffinose family oligosaccharides was low. The mineral assay showed high amount of minerals, namely potassium, calcium, magnesium and zinc, which indicate that monguba seeds can be a new source of these minerals. UHPLC-ESI-MS/MS analysis showed caffeic, ferulic and 4-hydroxybenzoic acids as the main phenolic compounds, mainly in the esterified form, in these seeds. Monguba seed showed high lipid content, in which the main compounds were palmitic acid and γ-tocopherol. The soluble and insoluble phenolic fractions from monguba seeds showed high antioxidant activity measured by the oxygen radical absorption capacity (ORAC) and the trolox equivalent antioxidant capacity (TEAC) assays. Therefore, the monguba seeds have great potential to be explored by food, pharmaceutical and cosmetic industries due to their chemical composition.
Collapse
Affiliation(s)
- Alexsandra Pereira Rodrigues
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas - UNICAMP, Campinas, SP 13083-862, Brazil.
| | - Gustavo Araujo Pereira
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas - UNICAMP, Campinas, SP 13083-862, Brazil
| | - Pedro Henrique Ferreira Tomé
- Federal Institute of Education, Science and Technology of Triângulo Mineiro, IFTM, Uberlândia, MG 38400-974, Brazil
| | - Henrique Silvano Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas - UNICAMP, Campinas, SP 13083-862, Brazil
| | - Marcos Nogueira Eberlin
- Thomson Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, SP 13083-970, Brazil
| | - Glaucia Maria Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas - UNICAMP, Campinas, SP 13083-862, Brazil
| |
Collapse
|
14
|
Uysal S, Cvetanović A, Zengin G, Đurović S, Zeković Z, Aktumsek A. Effects of Orange Leaves Extraction Conditions on Antioxidant and Phenolic Content: Optimization Using Response Surface Methodology. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1382501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sengul Uysal
- Department of Biology, Faculty of Science, Selcuk University, Konya, Republic of Turkey
| | - Aleksandra Cvetanović
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Republic of Turkey
| | - Saša Đurović
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia
- Institute of General and Physical Chemistry, Belgrade, Republic of Serbia
| | - Zoran Zeković
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia
| | - Abdurrahman Aktumsek
- Department of Biology, Faculty of Science, Selcuk University, Konya, Republic of Turkey
| |
Collapse
|