1
|
Bagheri HF, Arvand M, Habibi MF. An ultra-sensitive tailor-made sensor for specific adsorption and separation of rutin based on imprinted cavities on magnetic sensing platform. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Askari T, Mohseni-Shahri FS, Verdian A. Design of a Liquid Crystal-Based Sensor for Ultrasensitive Detection of Sunset Yellow. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yonghui Li
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Dabing Ren
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Liping Sun
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health School of Medicine Nankai University Tianjin China
| |
Collapse
|
4
|
Yu X, Zhong T, Zhang Y, Zhao X, Xiao Y, Wang L, Liu X, Zhang X. Design, Preparation, and Application of Magnetic Nanoparticles for Food Safety Analysis: A Review of Recent Advances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:46-62. [PMID: 34957835 DOI: 10.1021/acs.jafc.1c03675] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review (with 126 references) aims at providing an updated overview of the recent developments and innovations of the preparation and application of magnetic nanoparticles for food safety analysis. During the past two decades, various magnetic nanoparticles with different sizes, shapes, and surface modifications have been designed, synthesized, and characterized with the prospering development of material science. Analytical scientists and food scientists are among the ones who bring these novel materials from laboratories to commercial applications. Powerful and versatile surface functional groups and high surface to mass ratios make these magnetic nanoparticles useful tools for high-efficiency capture and preconcentration of certain molecules, even when they exist in trace levels or complicated food matrices. This is why more and more methods for sensitive detection and quantification of hazards in foods are developed based on these magic magnetic tools. In this review, the principles and superiorities of using magnetic nanoparticles for food pollutant analysis are first introduced, like the mechanism of magnetic solid phase extraction, a most commonly used method for food safety-related sample pretreatment. Their design and preparation are presented afterward, alongside the mechanisms underlying their application for different analytical purposes. After that, recently developed magnetic nanoparticle-based methods for dealing with food pollutants such as organic pollutants, heavy metals, and pathogens in different food matrices are summarized in detail. In the end, some humble outlooks on future directions for work in this field are provided.
Collapse
Affiliation(s)
- Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Yujia Zhang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Marfà J, Pupin RR, Sotomayor M, Pividori MI. Magnetic-molecularly imprinted polymers in electrochemical sensors and biosensors. Anal Bioanal Chem 2021; 413:6141-6157. [PMID: 34164705 DOI: 10.1007/s00216-021-03461-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Magnetic particles, as well as molecularly imprinted polymers, have revolutionized separation and bioanalytical methodologies in the 1980s due to their wide range of applications. Today, biologically modified magnetic particles are used in many scientific and technological applications and are integrated in more than 50,000 diagnostic instruments for the detection of a huge range of analytes. However, the main drawback of this material is their stability and high cost. In this work, we review recent advances in the synthesis and characterization of hybrid molecularly imprinted polymers with magnetic properties, as a cheaper and robust alternative for the well-known biologically modified magnetic particles. The main advantages of these materials are, besides the magnetic properties, the possibility to be stored at room temperature without any loss in the activity. Among all the applications, this work reviews the direct detection of electroactive analytes based on the preconcentration by using magnetic-MIP integrated on magneto-actuated electrodes, including food safety, environmental monitoring, and clinical and pharmaceutical analysis. The main features of these electrochemical sensors, including their analytical performance, are summarized. This simple and rapid method will open the way to incorporate this material in different magneto-actuated devices with no need for extensive sample pretreatment and sophisticated instruments.
Collapse
Affiliation(s)
- J Marfà
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - R R Pupin
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - Mpt Sotomayor
- Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), Araraquara, SP, 14801-970, Brazil
| | - M I Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
6
|
Disposable Electrochemical Sensor for Food Colorants Detection by Reduced Graphene Oxide and Methionine Film Modified Screen Printed Carbon Electrode. Molecules 2021; 26:molecules26082312. [PMID: 33923482 PMCID: PMC8072545 DOI: 10.3390/molecules26082312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
A facile synthesis of reduced graphene oxide (rGO) and methionine film modified screen printed carbon electrode (rGO-methionine/SPCE) was proposed as a disposable sensor for determination of food colorants including amaranth, tartrazine, sunset yellow, and carminic acid. The fabrication process can be achieved in only 2 steps including drop-casting of rGO and electropolymerization of poly(L-methionine) film on SPCE. Surface morphology of modified electrode was studied by scanning electron microscopy (SEM). This work showed a successfully developed novel disposable sensor for detection of all 4 dyes as food colorants. The electrochemical behavior of all 4 food colorants were investigated on modified electrodes. The rGO-methionine/SPCE significantly enhanced catalytic activity of all 4 dyes. The pH value and accumulation time were optimized to obtain optimal condition of each colorant. Differential pulse voltammetry (DPV) was used for determination, and two linear detection ranges were observed for each dye. Linear detection ranges were found from 1 to 10 and 10 to 100 µM for amaranth, 1 to 10 and 10 to 85 µM for tartrazine, 1 to 10 and 10 to 50 µM for sunset yellow, and 1 to 20 and 20 to 60 µM for carminic acid. The limit of detection (LOD) was calculated at 57, 41, 48, and 36 nM for amaranth, tartrazine, sunset yellow, and carminic acid, respectively. In addition, the modified sensor also demonstrated high tolerance to interference substances, good repeatability, and high performance for real sample analysis.
Collapse
|
7
|
Liu Y, Huang Y, Wang D, Fan M, Gong Z. Molecularly imprinted polymers hydrogel for the rapid risk-category-specific screening of food using SPE followed by fluorescence spectrometric detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Fresco-Cala B, Batista AD, Cárdenas S. Molecularly Imprinted Polymer Micro- and Nano-Particles. A review. Molecules 2020; 25:E4740. [PMID: 33076552 PMCID: PMC7587572 DOI: 10.3390/molecules25204740] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, molecularly imprinted polymers (MIPs) have become an excellent solution to the selective and sensitive determination of target molecules in complex matrices where other similar and relative structural compounds could coexist. Although MIPs show the inherent properties of the polymers, including stability, robustness, and easy/cheap synthesis, some of their characteristics can be enhanced, or new functionalities can be obtained when nanoparticles are incorporated in their polymeric structure. The great variety of nanoparticles available significantly increase the possibility of finding the adequate design of nanostructured MIP for each analytical problem. Moreover, different structures (i.e., monolithic solids or MIPs micro/nanoparticles) can be produced depending on the used synthesis approach. This review aims to summarize and describe the most recent and innovative strategies since 2015, based on the combination of MIPs with nanoparticles. The role of the nanoparticles in the polymerization, as well as in the imprinting and adsorption efficiency, is also discussed through the review.
Collapse
Affiliation(s)
- Beatriz Fresco-Cala
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| | - Alex D. Batista
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany;
| | - Soledad Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain
| |
Collapse
|
9
|
Shaikshavali P, Reddy TM, Lakshmi Narayana A, Hussain OM, Venkataprasad G, Venu Gopal T. A powerful electrochemical sensor based on Fe3O4 nanoparticles-multiwalled carbon nanotubes hybrid for the effective monitoring of sunset yellow in soft drinks. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00569-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Liu C, Bi X, Zhang A, Qi B, Yan S. Preparation of an L-Cysteine Functionalized Magnetic Nanosorbent for the Sensitive Quantification of Heavy Metal Ions in Food by Graphite Furnace Atomic Absorption Spectrometry. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1729168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- CuiCui Liu
- Department of Food Science and Biology Engineering, Tianjin Agricultural University, Tianjin, China
| | - Xiaotong Bi
- Department of Food Science and Biology Engineering, Tianjin Agricultural University, Tianjin, China
| | - Ailin Zhang
- Department of Food Science and Biology Engineering, Tianjin Agricultural University, Tianjin, China
| | - Bin Qi
- Department of Food Science and Biology Engineering, Tianjin Agricultural University, Tianjin, China
| | - Shijie Yan
- Department of Food Science and Biology Engineering, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
11
|
Wang W, Gong Z, Yang S, Xiong T, Wang D, Fan M. Fluorescent and visual detection of norfloxacin in aqueous solutions with a molecularly imprinted polymer coated paper sensor. Talanta 2020; 208:120435. [DOI: 10.1016/j.talanta.2019.120435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/25/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022]
|
12
|
Yang Y, Yan W, Guo C, Zhang J, Yu L, Zhang G, Wang X, Fang G, Sun D. Magnetic molecularly imprinted electrochemical sensors: A review. Anal Chim Acta 2020; 1106:1-21. [PMID: 32145837 DOI: 10.1016/j.aca.2020.01.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
The preparation and practical applications of molecularly imprinted electrochemical sensors (MIECSs) remain challenging due to issues involving electrode surface renewal modes, low adsorption capacities, and sample preparation speeds. To solve these issues, magnetic molecularly imprinted electrochemical sensors (MMIECSs) have been extensively explored by various groups. Recently, MMIECSs fabricated based on diverse strategies have yielded insight into the development of MIECSs, and they have provided effective paths for sample preparation, immobilization and renewal of molecularly imprinted polymers (MIPs) on the electrode surface, leading to promising performances of MIECSs. This review comprehensively describes the research advances for various types of MMIECSs and their applications in the fields of food safety, environmental monitoring, and clinical and pharmaceutical analysis. Based on our understanding of MMIECSs, the literature in this field is thoroughly explored and classified in this review. The challenges existing in this research area and some potential strategies for the rational design of high-performance MMIECS are also outlined.
Collapse
Affiliation(s)
- Yukun Yang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Wenyan Yan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Caixia Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jinhua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Ligang Yu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaomin Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Yuci, 030619, China.
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Dandan Sun
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
13
|
Fathy MM, Fahmy HM, Saad OA, Elshemey WM. Silica-coated iron oxide nanoparticles as a novel nano-radiosensitizer for electron therapy. Life Sci 2019; 234:116756. [DOI: 10.1016/j.lfs.2019.116756] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022]
|
14
|
Determination of Sunset Yellow in Foodstuffs by Surface Modification of Nonconductive Polyester of Polyvinyl Alcohol Sheet Used as Overhead Projector Film. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01532-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Novel Electrochemical Sensors Based on Cuprous Oxide-Electrochemically Reduced Graphene Oxide Nanocomposites Modified Electrode toward Sensitive Detection of Sunset Yellow. Molecules 2018; 23:molecules23092130. [PMID: 30149513 PMCID: PMC6225380 DOI: 10.3390/molecules23092130] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/16/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Control and detection of sunset yellow is an utmost demanding issue, due to the presence of potential risks for human health if excessively consumed or added. Herein, cuprous oxide-electrochemically reduced graphene nanocomposite modified glassy carbon electrode (Cu2O-ErGO/GCE) was developed for the determination of sunset yellow. The Cu2O-ErGO/GCE was fabricated by drop-casting Cu2O-GO dispersion on the GCE surface following a potentiostatic reduction of graphene oxide (GO). Scanning electron microscope and X-ray powder diffractometer was used to characterize the morphology and microstructure of the modification materials, such as Cu2O nanoparticles and Cu2O-ErGO nanocomposites. The electrochemical behavior of sunset yellow on the bare GCE, ErGO/GCE, and Cu2O-ErGO/GCE were investigated by cyclic voltammetry and second-derivative linear sweep voltammetry, respectively. The analytical parameters (including pH value, sweep rate, and accumulation parameters) were explored systematically. The results show that the anodic peak currents of Cu2O-ErGO /GCE are 25-fold higher than that of the bare GCE, due to the synergistic enhancement effect between Cu2O nanoparticles and ErGO sheets. Under the optimum detection conditions, the anodic peak currents are well linear to the concentrations of sunset yellow, ranging from 2.0 × 10−8 mol/L to 2.0 × 10−5 mol/L and from 2.0 × 10−5 mol/L to 1.0 × 10−4 mol/L with a low limit of detection (S/N = 3, 6.0 × 10−9 mol/L). Moreover, Cu2O-ErGO/GCE was successfully used for the determination of sunset yellow in beverages and food with good recovery. This proposed Cu2O-ErGO/GCE has an attractive prospect applications on the determination of sunset yellow in diverse real samples.
Collapse
|
16
|
Veerakumar P, Rajkumar C, Chen SM, Thirumalraj B, Lin KC. Activated porous carbon supported rhenium composites as electrode materials for electrocatalytic and supercapacitor applications. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.165] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Wang M, Cui M, Zhao M, Cao H. Sensitive determination of Amaranth in foods using graphene nanomeshes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|