1
|
Lee Y, Baek J, Kwon Y. Assessing dietary bisphenol A exposure among Koreans: comprehensive database construction and analysis using the Korea National Health and Nutrition Examination Survey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1018-1055. [PMID: 38923903 DOI: 10.1080/19440049.2024.2362252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Bisphenol A (BPA) exposure primarily occurs through dietary intake. This study aimed to estimate the extent of dietary BPA exposure among Koreans. A thorough literature search was conducted to establish a BPA content database encompassing common foods consumed in Korea, including various food raw materials and processed food products. Dietary exposure levels were estimated by integrating the constructed BPA database with comprehensive nationwide 24 h-dietary recall datasets. The finding revealed that dietary BPA exposure was low for most Koreans, with a mean of 14.5 ng/kg bw/day, but was higher for preschool-age children (over 23 ng). Canned foods accounted for 9-36% of the total dietary exposure of the highest dietary exposure groups; while across all age groups, a considerable amount was derived from canned tuna, contribution of canned fruits and canned coffee (milk-containing) was high for preschool-age children and adults, respectively. Notably, for adults, a substantial proportion also stemmed from beer packaged in cans. While diet contributed over 80% of aggregate exposure for most age groups, preschool-age children experienced 60% exposure through diet due to additional exposure from indoor dust. Even at the high exposure scenario, aggregate BPA exposure levels remained lower than the current tolerable daily intake (TDI) set by the Korean agency (20 μg/kg bw/day). Nevertheless, most Koreans were exposed to BPA levels surpassing the strictest TDI (0.2 ng/kg bw/day) set by the European Food Safety Authority.
Collapse
Affiliation(s)
- Yoonjoo Lee
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Jiyun Baek
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| | - Youngjoo Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul, Korea
| |
Collapse
|
2
|
Zhang Y, Hao L, Li J, Liu W, Wang Z, Wu Q, Wang C. Synthesis of amine-functionalized magnetic porous organic polymers for effective extraction of phenolic endocrine disrupting chemicals. J Chromatogr A 2023; 1706:464271. [PMID: 37544235 DOI: 10.1016/j.chroma.2023.464271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Amine-functionalized porous organic polymers (EDA-POP-PC and EDA-POP-BT) were prepared by post-modification of POP-PC and POP-BT with ethylenediamine (EDA) for the first time. The POP-PC and POP-BT were obtained through Friedel-Crafts acylation reaction of potassium tetraphenylborate with p-phthaloyl chloride (PC) and 1,3,5-benzenetricarbonyl trichloride (BT), respectively. The EDA-POPs exhibited superior adsorption capacity for phenolic endocrine disrupting chemicals (EDCs). After magnetically functionalization, the obtained M-EDA-POP-PC was employed as a magnetic adsorbent for enrichment of phenolic EDCs from real samples prior to high performance liquid chromatography-ultraviolet detection. The current strategy showed low detection limits (S/N = 3) of 0.02-0.07, 0.04-0.08 and 0.04-0.10 ng mL-1 for river water, white peach juice and lychee juice, respectively. The method recoveries were 81.7%-115% with relative standard deviations below 8.6%. The proposed strategy showed good practicality for sensitive determination of phenolic EDCs in real samples.
Collapse
Affiliation(s)
- Yuting Zhang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Jie Li
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
3
|
Poonia K, Raizada P, Singh A, Verma N, Ahamad T, Alshehri SM, Khan AAP, Singh P, Hussain CM. Magnetic molecularly imprinted polymer photocatalysts: synthesis, applications and future perspective. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Chakraborty P, Bharat GK, Gaonkar O, Mukhopadhyay M, Chandra S, Steindal EH, Nizzetto L. Endocrine-disrupting chemicals used as common plastic additives: Levels, profiles, and human dietary exposure from the Indian food basket. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152200. [PMID: 34890663 DOI: 10.1016/j.scitotenv.2021.152200] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) such as phthalic acid esters (PAEs) and bisphenol A (BPA) are the most widely used plastic additives in polymeric materials. These EDCs are ubiquitously distributed in the environment. Hence selected PAEs and BPA were investigated in twenty-five food types and drinking water (supply and packaged) from the metropolitan city, Delhi, and the peri-urban areas of a non-metropolitan city, Dehradun. Except cabbage and orange, the sum of thirteen PAEs (∑13PAEs) and BPA in all the other food types were significantly higher in Delhi over Dehradun (p < 0.01). Highest mean ∑13PAEs (665 ng/g) and BPA (73 ng/g) were observed in cottage cheese and potatoes, respectively followed by fish (PAEs - 477 ng/g, BPA - 16 ng/g). Supply water from the west zone of Delhi was found to contain the highest concentration of BPA (309 ng/L) and ∑13PAEs (5765 ng/L) with the dominance of diethyl phthalate (DEP). Based on the compositional profile and compound-wise principal component analysis, environmental contamination and food processing were attributed as significant sources of most priority PAEs in food samples. Di-ethyl hexyl phthalate (DEHP) was over 100-fold higher in the bottled water from local brands than composite bottled water samples. Packaging material was identified as a source for di-n-butyl phthalate (DnBP) in packaged food. This study observed the highest estimated daily dietary intake (EDI) in the high-fat-containing food products viz., cottage cheese, and fish from north Delhi. High bioaccumulation of BPA can be a possible reason for elevated EDI in vegetables and local fish of Delhi. Unlike Dehradun, EDI for ∑13PAEs and BPA was slightly higher for the non-vegetarian adult when compared to the vegetarian adult. DEHP and DnBP exhibited the highest estimated estrogenic potential for bottled water from local brands. Dietary exposure due to six priority PAEs contamination in food stuffs was two to four-fold higher in Delhi than Dehradun for adult man and woman.
Collapse
Affiliation(s)
- Paromita Chakraborty
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India; Nuevo Chakra (OPC) Pvt Ltd., Mumbai, Maharashtra, India.
| | | | - Omkar Gaonkar
- Nuevo Chakra (OPC) Pvt Ltd., Mumbai, Maharashtra, India
| | - Moitraiyee Mukhopadhyay
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India; Department of Civil Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India
| | - Sarath Chandra
- Environmental Science and Technology Laboratory, Department of Chemical Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India; Department of Civil Engineering, SRM Institute of Science and Technology, Kancheepuram district, Tamil Nadu 603203, India
| | - Eirik Hovland Steindal
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway; Department of International Environment and Development Studies, Norwegian University of Life Sciences, Ås, Norway
| | - Luca Nizzetto
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway; RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| |
Collapse
|
5
|
Recent advances of magnetic molecularly imprinted materials: From materials design to complex sample pretreatment. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Huang C, Wang H, Ma S, Bo C, Ou J, Gong B. Recent application of molecular imprinting technique in food safety. J Chromatogr A 2021; 1657:462579. [PMID: 34607292 DOI: 10.1016/j.chroma.2021.462579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022]
Abstract
Due to the extensive use of chemical substances such as pesticides, antibiotics and food additives, food safety issues have gradually attracted people's attention. The extensive use of these chemicals seriously damages human health. In order to detect trace chemical residues in food, researchers have to find several simple, economical and effective tools for qualitative and quantitative analysis. As a kind of material that specifically and selectively recognize template molecules from real samples, molecular imprinting technique (MIT) has widely applied in food samples analysis. This article mainly reviews the application of molecularly imprinted polymer (MIP) in the detection of chemical residues from food in the past five years. Some recent and novel methods for fabrication of MIP are reviewed. Their application of sample pretreatment, sensors, etc. in food analysis is reviewed. The application of molecular imprinting in chromatographic stationary phase is referred. Additionally, the challenges faced by MIP are discussed.
Collapse
Affiliation(s)
- Chao Huang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Hongwei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
7
|
Wan Q, Liu H, Deng Z, Bu J, Li T, Yang Y, Zhong S. A critical review of molecularly imprinted solid phase extraction technology. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02744-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Ye H, Shao J, Shi Y, Tan S, Su K, Zhang L, Shan X. Magnetic molecularly imprinted polymers for extraction of S-phenylmercapturic acid from urine samples followed by high-performance liquid chromatography. J Mol Recognit 2021; 34:e2930. [PMID: 34432338 DOI: 10.1002/jmr.2930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/13/2020] [Accepted: 07/31/2021] [Indexed: 11/11/2022]
Abstract
In this study, magnetic molecularly imprinted polymers (MMIPs) were prepared and used as sorbents for extraction of S-phenylmercapturic acid (S-PMA) from urine samples, followed by high-performance liquid chromatography ultraviolet-visible (HPLC-UV/Vis) analysis. The MMIPs were synthesized by the copolymerization reaction of (phenylthio) acetic acid (template molecule), methacrylic acid (functional monomers) and ethylene glycol dimethacrylate (cross-linkers). The morphology, structure property and surface groups of the prepared MMIPs were characterized by scan electron microscopy, transmission electron microscopy, infrared spectroscopy, X-ray diffraction pattern, thermogravimetric analyses, Brunauer-Emmett-Teller and vibrating sample magnetometer. The selectivity of the MMIPs was investigated in the presence of interferents. Various parameters affecting the S-PMA extraction efficiency were investigated, including MMIPs amount, pH, sample volume, desorption solvent, as well as extraction and desorption time. The obtained optimal parameters were as follows: MMIPs amount (20 mg), pH (3.0), sample volume (5 mL), desorption solvent (methanol/acetic acid [9/1, v/v]), extraction time (30 minutes) and desorption time (2 minutes). The method was validated according to the Food and Drug Administration Guidance for Industry on Bioanalytical Method Validation. The calibration curve for the analyte was linear in the concentration range of 0.030-1.0 mg/L (r = 0.9995). The LOD and LOQ of the method were 0.0080 and 0.0267 mg/L, respectively. The enrichment factor of the MMIPs was 5. The relative standard deviations of intra- and inter-day tests were in the range of 3.8-5.1% and 3.9-6.3%, respectively. The recoveries at three different concentrations of 0.10, 0.50 and 0.80 mg/L ranged between 95.2% and 98.6%. In addition, the MMIPs could be reused for at least eight times. The proposed method was successfully applied to the determination of S-PMA in urine samples. In addition, this developed method could be used as a tool in the early screening and clinical diagnosis of benzene intoxication.
Collapse
Affiliation(s)
- Haipeng Ye
- Laboratory of Health testing, Hangzhou Occupational Disease Prevention and Control Hospital, Wenhui Street, Hangzhou, China
| | - Ji Shao
- Laboratory of Health testing, Hangzhou Occupational Disease Prevention and Control Hospital, Wenhui Street, Hangzhou, China
| | - Yanpeng Shi
- Laboratory of Health testing, Hangzhou Occupational Disease Prevention and Control Hospital, Wenhui Street, Hangzhou, China
| | - Siwei Tan
- Laboratory of Health testing, Hangzhou Occupational Disease Prevention and Control Hospital, Wenhui Street, Hangzhou, China
| | - Kewen Su
- Laboratory of Health testing, Hangzhou Occupational Disease Prevention and Control Hospital, Wenhui Street, Hangzhou, China
| | - Ling Zhang
- Laboratory of Health testing, Hangzhou Occupational Disease Prevention and Control Hospital, Wenhui Street, Hangzhou, China
| | - Xiaoyue Shan
- Laboratory of Health testing, Hangzhou Occupational Disease Prevention and Control Hospital, Wenhui Street, Hangzhou, China
| |
Collapse
|
9
|
Fizir M, Dahiru NS, Cui Y, Zhi H, Dramou P, He H. Simple and Efficient Detection Approach of Quercetin from Biological Matrix by Novel Surface Imprinted Polymer Based Magnetic Halloysite Nanotubes Prepared by a Sol-Gel Method. J Chromatogr Sci 2021; 59:681-695. [PMID: 33395480 DOI: 10.1093/chromsci/bmaa120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 12/25/2022]
Abstract
Molecular imprinted polymers coated magnetic halloysite nanotubes (MHNTs-MIPs) were prepared through sol-gel method by using quercetin (Que), APTES and TEOS as template, monomer and cross-linker agent, respectively. The synthesized MHNTs-MIPs were characterized by fourier transform infrared, scanning electron microscope, transmission electron microscope, XRD and vibrating sample magnetometer. Various parameters influencing the binding capacity of the MHNTs-MIPs were investigated with the help of response surface methodology. Selectivity experiments showed that the MHNTs-MIPs exhibited the maximum selective rebinding to Que. Therefore, the MHNTs-MIPs was applied as a solid-phase extraction adsorbent for the extraction and preconcentration of quercetin and luteolin in serum and urine samples. The limits of detection for quercetin and luteolin range from 0.51 to 1.32 ng mL-1 in serum and from 0.23 to 1.05 ng mL-1 in urine, the recoveries are between 95.20 and 103.73% with the RSD less than 5.77%. While the recovery hardly decreased after several cycles. The designed MHNTs-MIP with high affinity, sensitivity and maximum selectivity toward Que in SPE might recommend a novel method for the extraction of flavonoids in other samples like natural products.
Collapse
Affiliation(s)
- Meriem Fizir
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China.,Laboratoire de Valorisation des Substances Naturelles, Université Djilali Bounaâma, Khemis-Miliana, Algeria
| | - Nasiru Sintali Dahiru
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China
| | - Yanru Cui
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China
| | - Hao Zhi
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China
| | - Pierre Dramou
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China
| | - Hua He
- Department of Analytical Chemistry, School of Sciences, China Pharmaceutical University, 24 Tongjia Alley, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Pharmaceutical University, Ministry of Education, 639 Longmian Avenue, Nanjing, 211198, Jiangsu Province, China
| |
Collapse
|
10
|
da Silva Costa R, Sainara Maia Fernandes T, de Sousa Almeida E, Tomé Oliveira J, Carvalho Guedes JA, Julião Zocolo G, Wagner de Sousa F, do Nascimento RF. Potential risk of BPA and phthalates in commercial water bottles: a minireview. JOURNAL OF WATER AND HEALTH 2021; 19:411-435. [PMID: 34152295 DOI: 10.2166/wh.2021.202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global water bottling market grows annually. Today, to ensure consumer safety, it is important to verify the possible migration of compounds from bottles into the water contained in them. Potential health risks due to the prevalence of bisphenol A (BPA) and phthalates (PAEs) exposure through water bottle consumption have become an important issue. BPA, benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) can cause adverse effects on human health. Papers of literature published in English, with BPA, BBP, DBP and DEHP detections during 2017, by 2019 by liquid chromatography and gas chromatography analysis methods were searched. The highest concentrations of BPA, BBP, DBP and DEHP in all the bottled waters studied were found to be 5.7, 12.11, 82.8 and 64.0 μg/L, respectively. DBP was the most compound detected and the main contributor by bottled water consumption with 23.7% of the Tolerable Daily Intake (TDI). Based on the risk assessment, BPA, BBP, DBP and DEHP in commercial water bottles do not pose a serious concern for humans. The average estrogen equivalent level revealed that BPA, BBP, DBP and DEHP in bottled waters may induce adverse estrogenic effects on human health.
Collapse
Affiliation(s)
- Rouse da Silva Costa
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Tatiana Sainara Maia Fernandes
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Edmilson de Sousa Almeida
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Juliene Tomé Oliveira
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| | - Jhonyson Arruda Carvalho Guedes
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail: ; Embrapa Tropical Agroindustry, R. Dra Sara Mesquita 2270, 60511-110 Fortaleza, CE, Brazil
| | | | - Francisco Wagner de Sousa
- Department of Education - Chemistry Licenciate, Federal Institute of Education, Science and Technology, R. Francisco da Rocha Martins S/N, 61609-090 Caucaia, CE, Brazil
| | - Ronaldo Ferreira do Nascimento
- Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, R. Humberto Monte S/N, 60455700 Fortaleza, CE, Brazil E-mail:
| |
Collapse
|
11
|
Role of Functional Monomers upon the Properties of Bisphenol A Molecularly Imprinted Silica Films. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11072956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, two types of bisphenol A molecularly imprinted films (BPA-MIP) were successfully prepared via sol-gel derived methods using two different organosilane functional monomers N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (DAMO-T) or (3-mercaptopropyl)trimethoxysilane (MPTES). The physical-chemical characterization of films, in terms of morphology, structure, thermal analysis, and optical features, suggested that thinner films with a homogenous porous structure were more likely to retain BPA molecules. The MIP films revealed the rapid and quantitative adsorption of BPA, registering the most specific binding in the first five minutes of contact with the BPA-MIP film. Silica films were effectively regenerated for further usage for at least five times, demonstrating their high stability and reusability. Even if the performance of films for BPA uptake dropped dramatically after the third adsorption/reconditioning cycle, this synthesis method for BPA-MIP films has proven to be a reliable and cheap way to prepare sensitive films with potential application for re-usable optical sensors.
Collapse
|
12
|
Rational design and synthesis of molecularly imprinted polymers (MIP) for purifying tylosin by seeded precipitation polymerization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Pan M, Liu K, Yang J, Hong L, Xie X, Wang S. Review of Research into the Determination of Acrylamide in Foods. Foods 2020; 9:E524. [PMID: 32331265 PMCID: PMC7230758 DOI: 10.3390/foods9040524] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Acrylamide (AA) is produced by high-temperature processing of high carbohydrate foods, such as frying and baking, and has been proved to be carcinogenic. Because of its potential carcinogenicity, it is very important to detect the content of AA in foods. In this paper, the conventional instrumental analysis methods of AA in food and the new rapid immunoassay and sensor detection are reviewed, and the advantages and disadvantages of various analysis technologies are compared, in order to provide new ideas for the development of more efficient and practical analysis methods and detection equipment.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
14
|
Moein MM, Abdel-Rehim A, Abdel-Rehim M. Recent Applications of Molecularly Imprinted Sol-Gel Methodology in Sample Preparation. Molecules 2019; 24:E2889. [PMID: 31395795 PMCID: PMC6720762 DOI: 10.3390/molecules24162889] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Due to their selectivity and chemical stability, molecularly imprinted polymers have attracted great interest in sample preparation. Imprinted polymers have been applied for the extraction and the enrichment of different sorts of trace analytes in biological and environmental samples before their analysis. Additionally, MIPs are utilized in various sample preparation techniques such as SPE, SPME, SBSE and MEPS. Nevertheless, molecularly imprinted polymers suffer from thermal (stable only up to 150 °C) and mechanical stability issues, improper porosity and poor capacity. The sol-gel methodology as a promising alternative to address these limitations allowing the production of sorbents with controlled porosity and higher surface area. Thus the combination of molecularly imprinted technology and sol-gel technology can create influential materials with high selectivity, high capacity and high thermal stability. This work aims to present an overview of molecularly imprinted sol-gel polymerization methods and their applications in analytical and bioanalytical fields.
Collapse
Affiliation(s)
- Mohammad Mahdi Moein
- Department of Radiopharmacy, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - Abbi Abdel-Rehim
- Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Mohamed Abdel-Rehim
- Karolinska Institutet, Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, S-171 76 Stockholm, Sweden.
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-164 40 Stockholm, Sweden.
| |
Collapse
|
15
|
Madikizela LM, Ncube S, Chimuka L. Recent Developments in Selective Materials for Solid Phase Extraction. Chromatographia 2018. [DOI: 10.1007/s10337-018-3644-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Ardekani R, Borhani S, Rezaei B. Simple preparation and characterization of molecularly imprinted nylon 6 nanofibers for the extraction of bisphenol A from wastewater. J Appl Polym Sci 2018. [DOI: 10.1002/app.47112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Razieh Ardekani
- Department of Textile EngineeringIsfahan University of Technology Isfahan, 84156‐83111 Iran
| | - Sedigheh Borhani
- Department of Textile EngineeringIsfahan University of Technology Isfahan, 84156‐83111 Iran
| | - Behzad Rezaei
- Department of ChemistryIsfahan University of Technology Isfahan, 84156‐83111 Iran
| |
Collapse
|
17
|
Hassanzadeh M, Ghaemy M. Preparation of bio-based keratin-derived magnetic molecularly imprinted polymer nanoparticles for the facile and selective separation of bisphenol A from water. J Sep Sci 2018; 41:2296-2304. [DOI: 10.1002/jssc.201701452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/11/2018] [Accepted: 02/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Marjan Hassanzadeh
- Polymer Chemistry Research Laboratory; Faculty of Chemistry; University of Mazandaran; Babolsar Iran
| | - Mousa Ghaemy
- Polymer Chemistry Research Laboratory; Faculty of Chemistry; University of Mazandaran; Babolsar Iran
| |
Collapse
|
18
|
Amininasab SM, Holakooei P, Shami Z, Hassanzadeh M. Preparation and evaluation of functionalized goethite nanorods coated by molecularly imprinted polymer for selective extraction of bisphenol A in aqueous medium. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1481-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|