1
|
Singh K, Lohchab RK, Goel G, Waziri SA, Aguedal H, Allab Y, Elmeliani MEAE, Iddou A, Liu B, Terashima M, Kaswan S. Innovative use of immobilized zinc oxide-impregnated activated carbon (ZnO@CB) for effective treatment of leachate: modeling and predictive assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36476-3. [PMID: 40358842 DOI: 10.1007/s11356-025-36476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
This study examined the viability of column method utilizing the immobilized zinc oxide-loaded activated carbon obtained from corncob (ZnO@CB) to treat the landfill leachate. Instrumental techniques like BET, FTIR, SEM-EDX, and XRD were applied for the characterization of the adsorbents. The break through curve (BTC) was evaluated by altering the flow rate, bed height, and initial concentration of NH3-N and COD. At 35 cm bed height with an initial level of 3264 mg-COD/L, the optimal adsorption capacity was observed to be 35.44 mg-COD/g. Meanwhile, the optimal NH3-N adsorption capacity was 4.81 mg-NH3-N/g at a flow @ 1 mL/min, with an initial concentration of 460 mg-NH3-N/L, and a bed height of 35 cm. Both NH3-N and COD adsorption exhibited a correlation coefficient higher than 0.98 as calculated by linear plots of bed depth service time (BDST) equations, indicating that the column structure model was appropriate. The results reveal that the performance of the adsorption process could be well predicted by artificial neural network (ANN) at 4, 7, and 1 neuron for input, middle, and output layers, with a mean absolute error of 0.0096 and 0.0093 for COD and NH3-N reduction, respectively. In the RF model, higher values of R2 (0.9876 for COD and 0.9874 for NH3-N) indicate the model accuracy. The regenerated adsorbent achieved 54.2% and 54.1% removal of COD and NH3-N and adsorbent usage was feasible for up to three cycles. Results of BDST, ANN, and RF models revealed that packed column with immobilized ZnO@CB adsorbent is an efficient method for treating landfill leachate, highlighting the potential of ZnO@CB for industrial applications.
Collapse
Affiliation(s)
- Kulbir Singh
- Department of Civil Engineering, MM Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, 133207, Haryana, India
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Rajesh Kumar Lohchab
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India.
| | - Gaurav Goel
- Department of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Sadiq Abdullahi Waziri
- Department of Civil Engineering, Indian Institute of Technology, Ropar, 140001, Punjab, India
- Department of Civil and Water Resources Engineering, University of Maiduguri, PMB 1069, Maiduguri, Nigeria
| | - Hakim Aguedal
- Department of Preparatory Classes, Higher School of Saharan Agriculture, 01000, Adrar, Algeria
| | - Yacine Allab
- Department of Preparatory Classes, Higher School of Saharan Agriculture, 01000, Adrar, Algeria
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, Houari Boumediene University of Science and Technology (USTHB), 16111, Bab Ezzouar, Algeria
| | - Mohamed El Amine Elaissaoui Elmeliani
- Department of Materials Engineering, Faculty of Chemistry, University of Sciences and Technology of Oran - Mohamed Boudiaf, 1505 Box,, El M'naouer, Oran, 31000, Algeria
- Terashima Laboratory, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Abdelkader Iddou
- Department of Preparatory Classes, Higher School of Saharan Agriculture, 01000, Adrar, Algeria
| | - Bing Liu
- Resources and Environment Innovation Institute, School of Municipal and Environmental Engineering, Shandong Jianzhu University, Shandong, 250101, China
| | - Mitsuharu Terashima
- Terashima Laboratory, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsuku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Suresh Kaswan
- Department of Computer Science and Engineering, Chandigarh University, Chandigarh, 140413, Punjab, India
| |
Collapse
|
2
|
Tkach VV, Morozova TV, de Mascarenhas Gaivão IO, Ivanushko YG, da Paiva Martins JIF, Barros AN. Advancements and Challenges in Sucralose Determination: A Comparative Review of Chromatographic, Electrochemical, and Spectrophotometric Methods. Foods 2025; 14:1267. [PMID: 40238521 PMCID: PMC11988418 DOI: 10.3390/foods14071267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
This review presents an in-depth analysis of the latest methods used for the determination of sucralose (E955), focusing on research conducted over the past 10 years. As a widely used sugar substitute in the food and pharmaceutical industries, sucralose has raised concerns about its environmental persistence, potential genotoxicity, and health impacts. This study examines several spectrophotometric, chromatographic, and electrochemical techniques, evaluating their sensitivity, selectivity, and limitations in differentiating sucralose from natural carbohydrates and other sweeteners. The review highlights the pressing need for novel detection methods that not only improve accuracy in trace detection but also address growing concerns about its bioaccumulation and conversion into harmful metabolites. Advancing these analytical techniques is essential for enhancing food safety, public health surveillance, and environmental risk assessment. Chromatographic methods are dominant in sucralose determination in foods and environmental objects, as they allow the determination of sucralose at micro- and nanomolar levels. However, spectrophotometric and electrochemical methods are frequently used as complementary to chromatographic methodologies, sensitizing them. On the other hand, purely spectrophotometric methods are less popular, and electrochemical methods remain underdeveloped. Therefore, the advancement of sucralose determination must be due to cheaper chromatographic and classical electrochemical methods.
Collapse
Affiliation(s)
- Volodymyr V. Tkach
- General and Material Chemistry Department, Chernivtsi National University, Kotrsyubynsky Str. 2, 58000 Chernivtsi, Ukraine
- Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-065 Porto, Portugal;
| | - Tetiana V. Morozova
- Ecology and Environmental Protection Department, National Transport University, Omelianovych-Pavlenko Str. 1, 01001 Kyiv, Ukraine;
| | | | - Yana G. Ivanushko
- Disaster and Military Medicine Department, Bukovinian State Medical University, Teatralna Sq. 9, 58001 Chernivtsi, Ukraine;
| | | | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Kilic NM, Singh S, Keles G, Cinti S, Kurbanoglu S, Odaci D. Novel Approaches to Enzyme-Based Electrochemical Nanobiosensors. BIOSENSORS 2023; 13:622. [PMID: 37366987 DOI: 10.3390/bios13060622] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
Electrochemistry is a genuinely interdisciplinary science that may be used in various physical, chemical, and biological domains. Moreover, using biosensors to quantify biological or biochemical processes is critical in medical, biological, and biotechnological applications. Nowadays, there are several electrochemical biosensors for various healthcare applications, such as for the determination of glucose, lactate, catecholamines, nucleic acid, uric acid, and so on. Enzyme-based analytical techniques rely on detecting the co-substrate or, more precisely, the products of a catalyzed reaction. The glucose oxidase enzyme is generally used in enzyme-based biosensors to measure glucose in tears, blood, etc. Moreover, among all nanomaterials, carbon-based nanomaterials have generally been utilized thanks to the unique properties of carbon. The sensitivity can be up to pM levels using enzyme-based nanobiosensor, and these sensors are very selective, as all enzymes are specific for their substrates. Furthermore, enzyme-based biosensors frequently have fast reaction times, allowing for real-time monitoring and analyses. These biosensors, however, have several drawbacks. Changes in temperature, pH, and other environmental factors can influence the stability and activity of the enzymes, affecting the reliability and repeatability of the readings. Additionally, the cost of the enzymes and their immobilization onto appropriate transducer surfaces might be prohibitively expensive, impeding the large-scale commercialization and widespread use of biosensors. This review discusses the design, detection, and immobilization techniques for enzyme-based electrochemical nanobiosensors, and recent applications in enzyme-based electrochemical studies are evaluated and tabulated.
Collapse
Affiliation(s)
- Nur Melis Kilic
- Faculty of Science Biochemistry Department, Ege University, 35100 Bornova, Turkey
| | - Sima Singh
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Gulsu Keles
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Dilek Odaci
- Faculty of Science Biochemistry Department, Ege University, 35100 Bornova, Turkey
| |
Collapse
|
4
|
Kunene K, Sayegh S, Weber M, Sabela M, Voiry D, Iatsunskyi I, Coy E, Kanchi S, Bisetty K, Bechelany M. Smart electrochemical immunosensing of aflatoxin B1 based on a palladium nanoparticle-boron nitride-coated carbon felt electrode for the wine industry. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Munteanu IG, Apetrei C. Assessment of the Antioxidant Activity of Catechin in Nutraceuticals: Comparison between a Newly Developed Electrochemical Method and Spectrophotometric Methods. Int J Mol Sci 2022; 23:ijms23158110. [PMID: 35897695 PMCID: PMC9329966 DOI: 10.3390/ijms23158110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
The analysis of antioxidants in different foodstuffs has become an active area of research, which has led to many recently developed antioxidant assays. Many antioxidants exhibit inherent electroactivity, and, therefore, the use of electrochemical methods could be a viable approach for evaluating the overall antioxidant activity of a matrix of nutraceuticals without the need for adding reactive species. Green tea is believed to be a healthy beverage due to a number of therapeutic benefits. Catechin, one of its constituents, is an important antioxidant and possesses free radical scavenging abilities. The present paper describes the electrochemical properties of three screen-printed electrodes (SPEs), the first one based on carbon nanotubes (CNTs), the second one based on gold nanoparticles (GNPs) and the third one based on carbon nanotubes and gold nanoparticles (CNTs-GNPs). All three electrodes were modified with the laccase (Lac) enzyme, using glutaraldehyde as a cross-linking agent between the amino groups on the laccase and aldehyde groups of the reticulation agent. As this enzyme is a thermostable catalyst, the performance of the biosensors has been greatly improved. Electro-oxidative properties of catechin were investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), and these demonstrated that the association of CNTs with GNPs significantly improved the sensitivity and selectivity of the biosensor. The corresponding limit of detection (LOD) was estimated to be 5.6 × 10−8 M catechin at the CNT-Lac/SPE, 1.3 × 10−7 M at the GNP-Lac/SPE and 4.9 × 10−8 M at the CNT-GNP-Lac/SPE. The biosensors were subjected to nutraceutical formulations containing green tea in order to study their catechin content, using CNT-GNP-Lac/SPE, through DPV. Using a paired t-test, the catechin content estimated was in agreement with the manufacturer’s specification. In addition, the relationship between the CNT-GNP-Lac/SPE response at a specific potential and the antioxidant activity of nutraceuticals, as determined by conventional spectrophotometric methods (DPPH, galvinoxyl and ABTS), is discussed in the context of developing a fast biosensor for the relative antioxidant activity quantification.
Collapse
|
6
|
Bathinapatla A, Gorle G, Kanchi S, Puthalapattu RP, Ling YC. An ultra-sensitive laccase/polyaziridine-bismuth selenide nanoplates modified GCE for detection of atenolol in pharmaceuticals and urine samples. Bioelectrochemistry 2022; 147:108212. [PMID: 35870314 DOI: 10.1016/j.bioelechem.2022.108212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
The analysis of β-blockers in pharmaceutical, biological and environmental samples has gained much interest due to their wide applications. The aim of this study was to develop an enzyme-based biosensor using hexagonal-shaped low-dimensional Bi2Se3 NPs decorated with laccase through polyaziridine (PAZ) modified glassy carbon electrode (Lac/PAZ-Bi2Se3 NPs/GCE). Surface properties were examined using SEM, TEM, EDX, XRD, XPS, FTIR, UV-Visible, and zeta potential. Electrochemical studies were performed with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The enzymatic biosensor exhibited excellent catalytic activity towards the oxidation of ATN at +1.05 V (vs Ag/AgCl). Under the optimum experimental conditions, Ip (µA) was linearly related to the concentrations of ATN in the range of 3 to 130 µM (R2 = 0.9972) with an LOD of 0.15 µM and 0.21 µM with and without Lac enzyme. Additionally, the validation of the biosensor was tested to determine ATN on within a day and between-day basis. The biosensor was applied successfully to detect ATN in real samples. The obtained recoveries range from 98.5 % to 99.2 % with an RSD (n = 5) of 0.95 (±0.02). The findings of this study have potential biomedical applications in drug detection employing a promising nano electrode sensor of Lac/PAZ-Bi2Se3 NPs/GCE.
Collapse
Affiliation(s)
| | - Govinda Gorle
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Suvardhan Kanchi
- Department of Chemistry, Sambhram Institute of Technology, Jalahalli East, Bengaluru 560097, India; Department of Chemistry, Sambhram University, Khamraqul Street, Jizzakh City 130100, Uzbekistan.
| | - Reddy Prasad Puthalapattu
- Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad-500043, Telangana, India
| | - Yong Chien Ling
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
7
|
Foliar application of nano-zinc oxide crystals improved zinc biofortification in cauliflower (Brassica oleracea L. var. botrytis). APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Afolabi TA, Ejeromedoghene O, Olorunlana GE, Afolabi TA, Alli YA. A selective and efficient chemosensor for the rapid detection of arsenic ions in aqueous medium. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04665-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Srisuwan P, Sappasombut A, Thongyod W, Jantarat T, Tipmanee V, Leesakul N, Sooksawat D. Highly sensitive and selective coumarin-based fluorescent chemosensor for Cu2+ detection. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Altunayar-Unsalan C, Unsalan O. Structural and anharmonic vibrational spectroscopic analysis of artificial sweetener alitame: A DFT study for molecular basis of sweet taste. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Killedar L, Ilager D, Shetti NP, Aminabhavi TM, Raghava Reddy K. Synthesis of ruthenium doped titanium dioxide nanoparticles for the electrochemical detection of diclofenac sodium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Mohamed O, Al-Othman A, Al-Nashash H, Tawalbeh M, Almomani F, Rezakazemi M. Fabrication of titanium dioxide nanomaterial for implantable highly flexible composite bioelectrode for biosensing applications. CHEMOSPHERE 2021; 273:129680. [PMID: 33486350 DOI: 10.1016/j.chemosphere.2021.129680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Implantable and stretchable electrodes have managed to progress the medical field from a medical diagnosis aspect to a patient treatment level. They offer the ability to detect biosignals and conduct electrical current to tissues that aid in muscle stimulation and axon regeneration. Current conventional electrodes are fabricated from stiff and very expensive, precious metals such as platinum. In this work, novel, low cost, and highly flexible electrode materials were fabricated based on titanium dioxide (TiO2) and polymethyl methacrylate (PMMA) supported by a silicone polymer matrix. The electrode materials were characterized by their electrochemical, mechanical, and surface properties. The electrodes possessed high flexibility with Young's modulus of 235 kPa, revealing highly stretchable characteristics. The impedance at 1 kHz was around 114.6 kΩ, and the charge capacity was 1.23 mC/cm2. The fabricated electrodes appeared to have a smooth surface, as seen in the scanning electron microscope micrographs, compared with electrodes in the literature. Long-time stability tests revealed an overall decrease in impedance and an increase in the charge capacity up to 475% of the initial value within three weeks.
Collapse
Affiliation(s)
- Omnia Mohamed
- Biomedical Engineering MSBME, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Hasan Al-Nashash
- Department of Electrical Engineering, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, United Arab Emirates.
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
13
|
Abstract
Bioelectrocatalysis using redox enzymes appears as a sustainable way for biosensing, electricity production, or biosynthesis of fine products. Despite advances in the knowledge of parameters that drive the efficiency of enzymatic electrocatalysis, the weak stability of bioelectrodes prevents large scale development of bioelectrocatalysis. In this review, starting from the understanding of the parameters that drive protein instability, we will discuss the main strategies available to improve all enzyme stability, including use of chemicals, protein engineering and immobilization. Considering in a second step the additional requirements for use of redox enzymes, we will evaluate how far these general strategies can be applied to bioelectrocatalysis.
Collapse
|
14
|
Lina G, Gao Y, Han L. Detecting Cu2+ and H2O in methanol based on aggregation-induced emission fluorescent enhancement. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1897114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Guo Lina
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, PR China
| | - Yuanyuan Gao
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, PR China
| | - Limin Han
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, PR China
| |
Collapse
|