1
|
Pradal I, González-Alonso V, Wardhana YR, Cnockaert M, Wieme AD, Vandamme P, De Vuyst L. Various cold storage-backslopping cycles show the robustness of Limosilactobacillus fermentum IMDO 130101 as starter culture for Type 3 sourdough production. Int J Food Microbiol 2024; 411:110522. [PMID: 38160537 DOI: 10.1016/j.ijfoodmicro.2023.110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
Type 3 sourdoughs, which are starter culture-initiated and subsequently backslopped, are less studied than other sourdough types. Yet, they can serve as a model to assess how competitive starter culture strains for sourdough production are and how the microbial composition of such sourdoughs may evolve over time. In the present study, Limosilactobacillus fermentum IMDO 130101 was used to produce Type 3 sourdoughs, prepared from wheat and wholemeal wheat flours. Therefore, an initial fermentation of the flour-water mixture was performed at 30 °C for 48 h. This was followed by cold storage-backslopping cycles, consisting of refreshments (50 %, v/v), fermentation steps of 16 h, and storage at 4 °C each week, every three weeks, and every six weeks. The microbial dynamics (culture-dependent and -independent approaches) and metabolite dynamics were measured. In all sourdoughs produced, starter culture strain monitoring, following an amplicon sequence variant approach, showed that Liml. fermentum IMDO 130101 prevailed during one month when the sourdoughs were refreshed each week, during 24 weeks when the sourdoughs were refreshed every three weeks, and during 12 weeks when the sourdoughs were refreshed every six weeks. This suggested the competitiveness and robustness of Liml. fermentum IMDO 130101 for a considerable duration but also showed that the strain is prone to microbial interference. For instance, Levilactobacillus brevis and Pediococcus spp. prevailed upon further cold storage and backslopping. Also, although no yeasts were inoculated into the flour-water mixtures, Kazachstania unispora, Torulaspora delbrueckii, and Wickerhamomyces anomalus were the main yeast species found. They appeared after several weeks of storage and backslopping, which however indicated the importance of an interplay between LAB and yeast species in sourdoughs. The main differences among the mature sourdoughs obtained could be explained by the different flours used, the refreshment conditions applied, and the sampling time (before and after backslopping). Finally, the metabolite quantifications revealed continued metabolite production during the cold storage periods, which may impact the sourdough properties and those of the breads made thereof.
Collapse
Affiliation(s)
- Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Víctor González-Alonso
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Yohanes Raditya Wardhana
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
2
|
Kim SA, Lee DH, Ryu BH, Han NS. Strain-specific barcode PCR and quantitative PCR assay for identification and enumeration of kimchi starter, Leuconostoc mesenteroides DRC1506. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Lima A, França A, Muzny CA, Taylor CM, Cerca N. DNA extraction leads to bias in bacterial quantification by qPCR. Appl Microbiol Biotechnol 2022; 106:7993-8006. [PMID: 36374332 PMCID: PMC10493044 DOI: 10.1007/s00253-022-12276-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022]
Abstract
Quantitative PCR (qPCR) has become a widely used technique for bacterial quantification. The affordability, ease of experimental design, reproducibility, and robustness of qPCR experiments contribute to its success. The establishment of guidelines for minimum information for publication of qPCR experiments, now more than 10 years ago, aimed to mitigate the publication of contradictory data. Unfortunately, there are still a significant number of recent research articles that do not consider the main pitfalls of qPCR for quantification of biological samples, which undoubtedly leads to biased experimental conclusions. qPCR experiments have two main issues that need to be properly tackled: those related to the extraction and purification of genomic DNA and those related to the thermal amplification process. This mini-review provides an updated literature survey that critically analyzes the following key aspects of bacterial quantification by qPCR: (i) the normalization of qPCR results by using exogenous controls, (ii) the construction of adequate calibration curves, and (iii) the determination of qPCR reaction efficiency. It is primarily focused on original papers published last year, where qPCR was applied to quantify bacterial species in different types of biological samples, including multi-species biofilms, human fluids, and water and soil samples. KEY POINTS: • qPCR is a widely used technique used for absolute bacterial quantification. • Recently published papers lack proper qPCR methodologies. • Not including proper qPCR controls significantly affect experimental conclusions.
Collapse
Affiliation(s)
- Angela Lima
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Christina A Muzny
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology, and Parasitology & Microbial Genomics Resource Group, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal.
- LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
4
|
Yao Z, Zhu Y, Wu Q, Xu Y. Challenges and perspectives of quantitative microbiome profiling in food fermentations. Crit Rev Food Sci Nutr 2022; 64:4995-5015. [PMID: 36412251 DOI: 10.1080/10408398.2022.2147899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spontaneously fermented foods are consumed and appreciated for thousands of years although they are usually produced with fluctuated productivity and quality, potentially threatening both food safety and food security. To guarantee consistent fermentation productivity and quality, it is essential to control the complex microbiota, the most crucial factor in food fermentations. The prerequisite for the control is to comprehensively understand the structure and function of the microbiota. How to quantify the actual microbiota is of paramount importance. Among various microbial quantitative methods evolved, quantitative microbiome profiling, namely to quantify all microbial taxa by absolute abundance, is the best method to understand the complex microbiota, although it is still at its pioneering stage for food fermentations. Here, we provide an overview of microbial quantitative methods, including the development from conventional methods to the advanced quantitative microbiome profiling, and the application examples of these methods. Moreover, we address potential challenges and perspectives of quantitative microbiome profiling methods, as well as future research needs for the ultimate goal of rational and optimal control of microbiota in spontaneous food fermentations. Our review can serve as reference for the traditional food fermentation sector for stable fermentation productivity, quality and safety.
Collapse
Affiliation(s)
- Zhihao Yao
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yang Zhu
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Baek HW, Bae JH, Lee YG, Kim SA, Min W, Shim S, Han NS, Seo JH. Dynamic interactions of lactic acid bacteria in Korean sourdough during back-slopping process. J Appl Microbiol 2021; 131:2325-2335. [PMID: 33797823 DOI: 10.1111/jam.15097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 11/28/2022]
Abstract
AIMS This study aimed to clarify the cause of quality reduction in Korean sourdough after successive back-slopping. METHODS AND RESULTS We investigated the dynamic changes in lactic acid bacteria during the back-slopping process using genetic fingerprinting techniques. During the initial propagation phases, the dominant lactic acid bacteria were Fructilactobacillus sanfranciscensis (<5 log CFU per g sourdough), Latilactobacillus curvatus (9·5 log CFU per g sourdough) and Levilactobacillus brevis (6·5 log CFU per g sourdough). However, after the 11th propagation, F. sanfranciscensis became more prominent (>9·0 log CFU per g sourdough), whereas L. curvatus and L. brevis rapidly decreased. Monitoring these bacteria in the co-culture system revealed that acid-tolerant F. sanfranciscensis rapidly utilized maltose (1·65 g l-1 h-1 ) and produced large amounts of lactic acid, whereas L. brevis and L. curvatus consumed maltose slowly and L. curvatus was poorly tolerant to lactic acid. CONCLUSION The results indicate that competition exists between the lactic acid bacteria in sourdough during the back-slopping process, and microbial succession by acid-tolerant species results in quality reduction of sourdough. SIGNIFICANCE AND IMPACT OF THE STUDY This study uncovered the cause of microbial changes during the propagation of Korean sourdough and proposed a strategy to develop starters to produce high-quality bakery products.
Collapse
Affiliation(s)
- H-W Baek
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - J-H Bae
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Y-G Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - S-A Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - W Min
- Department of Food Science and Development, Kyungil University, Gyeongsan, Republic of Korea
| | - S Shim
- Research Institute of Food and Biotechnology, SPC Group, Seoul, Republic of Korea
| | - N S Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - J-H Seo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.,Research Institute of Food and Biotechnology, SPC Group, Seoul, Republic of Korea
| |
Collapse
|