1
|
Monteiro SS, Almeida RL, Santos NC, Pereira EM, Silva AP, Oliveira HML, Pasquali MADB. New Functional Foods with Cactus Components: Sustainable Perspectives and Future Trends. Foods 2023; 12:2494. [PMID: 37444232 DOI: 10.3390/foods12132494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The growing interest in a healthy lifestyle has contributed to disseminating perspectives on more sustainable natural resource management. This review describes promising aspects of using cacti in the food industry, addressing sustainable, nutritional, and functional aspects of the plant's production. Our study provides an overview of the potential of cacti for the food industry to encourage the sustainable cultivation of underutilized cactus species and their commercial exploitation. The commercial production of cacti has advantages over other agricultural practices by mitigating damage to ecosystems and encouraging migration to sustainable agriculture. The application of cactus ingredients in food development has been broad, whether in producing breads, jellies, gums, dyes, probiotics, and postbiotic and paraprobiotic foods. However, in the field of probiotic foods, future research should focus on technologies applied in processing and researching interactions between probiotics and raw materials to determine the functionality and bioactivity of products.
Collapse
Affiliation(s)
- Shênia Santos Monteiro
- Post-Graduate Program in Engineering and Management of Natural Resources, Center for Technology and Natural Resources, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| | - Raphael Lucas Almeida
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Newton Carlos Santos
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | | | - Amanda Priscila Silva
- Post-Graduate Program in Process Engineering, Center for Science and Technology, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| | - Hugo Miguel Lisboa Oliveira
- Post-Graduate Program in Process Engineering, Center for Science and Technology, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| | - Matheus Augusto de Bittencourt Pasquali
- Post-Graduate Program in Engineering and Management of Natural Resources, Center for Technology and Natural Resources, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-140, Brazil
| |
Collapse
|
2
|
Rodrigues C, de Paula CD, Lahbouki S, Meddich A, Outzourhit A, Rashad M, Pari L, Coelhoso I, Fernando AL, Souza VGL. Opuntia spp.: An Overview of the Bioactive Profile and Food Applications of This Versatile Crop Adapted to Arid Lands. Foods 2023; 12:foods12071465. [PMID: 37048286 PMCID: PMC10094368 DOI: 10.3390/foods12071465] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Opuntia spp. are crops well adapted to adverse environments and have great economic potential. Their constituents, including fruits, cladodes, and flowers, have a high nutritional value and are rich in value-added compounds. Cladodes have an appreciable content in dietary fiber, as well as bioactive compounds such as kaempferol, quercetin, and isorhamnetin. Fruits are a major source of bioactive compounds such as phenolic acids and vitamin C. The seeds are mainly composed of unsaturated fatty acids and vitamin E. The flowers are also rich in phenolic compounds. Therefore, in addition to their traditional uses, the different plant fractions can be processed to meet multiple applications in the food industry. Several bakery products have been developed with the incorporation of cladode flour. Pectin and mucilage obtained from cladodes can act as edible films and coatings. Fruits, fruit extracts, and fruit by-products have been mixed into food products, increasing their antioxidant capacity and extending their shelf life. Betalains, obtained from fruits, can be used as food colorants and demonstrate promising applications as a sensor in food packaging. This work reviews the most valuable components of the different fractions of this plant and emphasizes its most recent food applications, demonstrating its outstanding value.
Collapse
Affiliation(s)
- Carolina Rodrigues
- MEtRICs/CubicB, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Camila Damásio de Paula
- MEtRICs/CubicB, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Soufiane Lahbouki
- MEtRICs/CubicB, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Nanomaterials for Energy and Environment Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abdelkader Outzourhit
- Laboratory of Nanomaterials for Energy and Environment Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Mohamed Rashad
- Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Luigi Pari
- CREA Research Centre for Engineering and Agro-Food Processing, Monterotondo, 00015 Rome, Italy
| | - Isabel Coelhoso
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana Luísa Fernando
- MEtRICs/CubicB, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Victor G. L. Souza
- MEtRICs/CubicB, Departamento de Química, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
- INL, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Correspondence:
| |
Collapse
|
3
|
Zeng Y, Zhou W, Yu J, Zhao L, Wang K, Hu Z, Liu X. By-Products of Fruit and Vegetables: Antioxidant Properties of Extractable and Non-Extractable Phenolic Compounds. Antioxidants (Basel) 2023; 12:antiox12020418. [PMID: 36829977 PMCID: PMC9951942 DOI: 10.3390/antiox12020418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Non-extractable phenolic compounds (NEPs), or bound phenolic compounds, represent a crucial component of polyphenols. They are an essential fraction that remains in the residual matrix after the extraction of extractable phenolic compounds (EPs), making them a valuable resource for numerous applications. These compounds encompass a diverse range of phenolic compounds, ranging from low molecular weight phenolic to high polymeric polyphenols attached to other macro molecules, e.g., cell walls and proteins. Their status as natural, green antioxidants have been well established, with numerous studies showcasing their anti-inflammatory, anti-aging, anti-cancer, and hypoglycemic activities. These properties make them a highly desirable alternative to synthetic antioxidants. Fruit and vegetable (F&Veg) wastes, e.g., peels, pomace, and seeds, generated during the harvest, transport, and processing of F&Vegs, are abundant in NEPs and EPs. This review delves into the various types, contents, structures, and antioxidant activities of NEPs and EPs in F&Veg wastes. The relationship between the structure of these compounds and their antioxidant activity is explored in detail, highlighting the importance of structure-activity relationships in the field of natural antioxidants. Their potential applications ranging from functional food and beverage products to nutraceutical and cosmetic products. A glimpse into their bright future as a valuable resource for a greener, healthier, and more sustainable future, and calling for researchers, industrialists, and policymakers to explore their full potential, are elaborated.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310058, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| |
Collapse
|
4
|
Pastorelli G, Serra V, Vannuccini C, Attard E. Opuntia spp. as Alternative Fodder for Sustainable Livestock Production. Animals (Basel) 2022; 12:ani12131597. [PMID: 35804498 PMCID: PMC9265056 DOI: 10.3390/ani12131597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
During the past decades, livestock production has increased significantly, which has led to the degradation of rangelands due to overgrazing. The lack of water in several arid areas has led to a decline in crop and animal husbandry. As a consequence, the demand for drought-resistant crops has increased significantly so as to keep crop and animal husbandry systems viable and sustainable. Cactaceae have adaptive characteristics that ensure their development progress under drought conditions. The present review provides information on the nutritive value of Opuntia in animal fodder production, its effects on animal performance, and the quality of the animal-derived products. In conclusion, the use of Opuntia as innovative alternative feed would render animal production systems more sustainable.
Collapse
Affiliation(s)
- Grazia Pastorelli
- Department of Veterinary Medicine and Animal Sciences, University of Milano, Via dell’Università 6, 26900 Lodi, Italy;
- Correspondence: (G.P.); (V.S.); Tel.: +39-02-503-34576 (G.P.); +39-02-503-34762 (V.S.)
| | - Valentina Serra
- Department of Veterinary Medicine and Animal Sciences, University of Milano, Via dell’Università 6, 26900 Lodi, Italy;
- Correspondence: (G.P.); (V.S.); Tel.: +39-02-503-34576 (G.P.); +39-02-503-34762 (V.S.)
| | - Camilla Vannuccini
- Department of Veterinary Medicine and Animal Sciences, University of Milano, Via dell’Università 6, 26900 Lodi, Italy;
| | - Everaldo Attard
- Division of Rural Sciences and Food Systems, Institute of Earth Systems, University of Malta, MSD 2080 Msida, Malta;
| |
Collapse
|
7
|
Cereus peruvianus Mill. (Cactaceae) as a source of natural antioxidants: Phenolic compounds and antioxidant activity of cladode extracts in two collection periods. Curr Res Food Sci 2022; 5:984-991. [PMID: 35721394 PMCID: PMC9204656 DOI: 10.1016/j.crfs.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
The economic potential of the cactus species Cereus peruvianus Mill. (syn. C. hildmannianus K. Schum.) has already been demonstrated through the generation of products and patents. However, the phenolic compounds and antioxidant activity have not yet been evaluated. The aim of our study was to determine the total phenolic compounds, evaluate the antioxidant activity and characterize the phenolic compounds of cladode extracts from C. peruvianus grown in the southern region of Brazil, in two collection periods. Higher total content of phenolic compounds and antioxidant activity were detected in the cladode extract collected in 2016 than in the cladode extract collected in 2015. The profile of phenolic compounds identified five flavonoids that had not previously been reported in species of the genus Cereus. The phenolic compounds linked to antioxidant activities identified in the cladode extract from C. peruvianus support the use of this species in human food as a source of natural antioxidants. Total phenolic compounds were determined in cladode extracts from Cereus peruvianus. The antioxidant activity and the phenolic compounds were evaluated and characterized. Different total content of phenolic compounds was detected in two collection periods. The production of phenolic compounds by the same plant underwent annual variation. Five flavonoids that had not previously been reported in Cereus genus were identified.
Collapse
|