1
|
Demir D. Insights into the New Molecular Updates in Acute Myeloid Leukemia Pathogenesis. Genes (Basel) 2023; 14:1424. [PMID: 37510328 PMCID: PMC10378849 DOI: 10.3390/genes14071424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
As our understanding of the biologic basis of acute myeloid leukemia evolves, so do the classification systems used to describe this group of cancers. Early classification systems focused on the morphologic features of blasts and other cell populations; however, the explosion in genomic technologies has led to rapid growth in our understanding of these diseases and thus the refinement of classification systems. Recently, two new systems, the International Consensus Classification system and the 5th edition of the World Health Organization classification of tumors of hematopoietic and lymphoid tissues, were published to incorporate the latest genomic advances in blood cancer. This article reviews the major updates in acute myeloid leukemia in both systems and highlights the biologic insights that have driven these changes.
Collapse
Affiliation(s)
- Derya Demir
- Department of Pathology, Ege University Faculty of Medicine, Izmir 35100, Turkey
| |
Collapse
|
2
|
Nie Y, Su L, Li W, Gao S. Novel insights of acute myeloid leukemia with CEBPA deregulation: Heterogeneity dissection and re-stratification. Crit Rev Oncol Hematol 2021; 163:103379. [PMID: 34087345 DOI: 10.1016/j.critrevonc.2021.103379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/21/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia with bi-allelic CEBPA mutation was categorized as an independent disease entity with favorable prognosis, however, recent researches have revealed huge heterogeneity within this disease group, and for some patients, relapse remained a major cause of treatment failure. Further risk stratification is essentially needed. Here by reviewing the latest literature, we summarized the characteristics of CEBPA mutation profiles and clinical features, with a special intention of dissecting the heterogeneity within the seemingly homogeneous AML with bi-allelic CEBPA mutations. Specifically, non-classical CEBPA mutation, miscellaneous companion genetic aberrations and the presence of germline CEBPA mutation are three major sources of heterogeneity. Identifying these factors can help us predict patients at a higher risk of relapse, for whom aggressive treatment may be recommended. Novel therapeutic approaches regarding manipulating potentially druggable targets as well as the debate over post remission consolidation regimens has also been discussed.
Collapse
Affiliation(s)
- Yuanyuan Nie
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Wei Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China; Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, 130012, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Zhao X, Liu HQ, Wang LN, Yang L, Liu XL. Current and emerging molecular and epigenetic disease entities in acute myeloid leukemia and a critical assessment of their therapeutic modalities. Semin Cancer Biol 2020; 83:121-135. [PMID: 33242577 DOI: 10.1016/j.semcancer.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
Acute myeloid leukemia (AML) is the most frequently diagnosed acute leukemia, and its incidence increases with age. Although the etiology of AML remains unknown, exposure to genotoxic agents or some prior hematologic disorders could lead to the development of this condition. The pathogenesis of AML involves the development of malignant transformation of hematopoietic stem cells that undergo successive genomic alterations, ultimately giving rise to a full-blown disease. From the disease biology perspective, AML is considered to be extremely complex with significant genetic, epigenetic, and phenotypic variations. Molecular and cytogenetic alterations in AML include mutations in those subsets of genes that are involved in normal cell proliferation, maturation and survival, thus posing significant challenge to targeting these pathways without attendant toxicity. In addition, multiple malignant cells co-exist in the majority of AML patients. Individual subclones are characterized by unique genetic and epigenetic abnormalities, which contribute to the differences in their response to treatment. As a result, despite a dramatic progress in our understanding of the pathobiology of AML, not much has changed in therapeutic approaches to treat AML in the past four decades. Dose and regimen modifications with improved supportive care have contributed to improved outcomes by reducing toxicity-related side effects. Several drug candidates are currently being developed, including targeted small-molecule inhibitors, cytotoxic chemotherapies, monoclonal antibodies and epigenetic drugs. This review summarizes the current state of affairs in the pathobiological and therapeutic aspects of AML.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, China
| | - Huan-Qiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Li-Na Wang
- Department of Paediatrics, The First Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People's Hospital of Jilin Province, Changchun, China.
| | - Xiao-Liang Liu
- Department of Hematology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Yu X, Li H, Hu P, Qing Y, Wang X, Zhu M, Wang H, Wang Z, Xu J, Guo Q, Hui H. Natural HDAC-1/8 inhibitor baicalein exerts therapeutic effect in CBF-AML. Clin Transl Med 2020; 10:e154. [PMID: 32898337 PMCID: PMC7449246 DOI: 10.1002/ctm2.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although targeting histone deacetylases (HDACs) may be an effective strategy for core binding factor-acute myeloid leukemia (CBF-AML) harboring t(8;21) or inv(16), HDAC inhibitors are reported to be limited by drug-resistant characteristic. Our purpose is to evaluate the anti-leukemia effects of Baicalein on CBF-AML and clarify its underlying mechanism. METHODS Enzyme activity assay was used to measure the activity inhibition of HDACs. Rhodamine123 and RT-qPCR were employed to evaluate the distribution of drugs and the change of ATP-binding cassette (ABC) transporter genes. CCK8, Annexin V/PI, and FACS staining certified the effects of Baicalein on cell growth, apoptosis, and differentiation. Duolink and IP assay assessed the interaction between HDAC-1 and ubiquitin, HSP90 and AML1-ETO, and Ac-p53 and CBFβ-MYH11. AML cell lines and primary AML cells-bearing NOD/SCID mice models were used to evaluate the anti-leukemic efficiency and potential mechanism of Baicalein in vivo. RESULTS Baicalein showed HDAC-1/8 inhibition to trigger growth suppression and differentiation induction of AML cell lines and primary AML cells. Although the inhibitory action on HDAC-1 was mild, Baicalein could induce the degradation of HDAC-1 via ubiquitin proteasome pathway, thereby upregulating the acetylation of Histone H3 without promoting ABC transporter genes expression. Meanwhile, Baicalein increased the acetylation of HSP90 and lessened its connection to AML1/ETO, consequently leading to degradation of AML1-ETO in t(8;21)q(22;22) AML cells. In inv(16) AML cells, Baicalein possessed the capacity of apoptosis induction accompanied with p53-mediated apoptosis genes expression. Moreover, CBFβ-MYH11-bound p53 acetylation was restored via HDAC-8 inhibition induced by Baicalein contributing the diminishing of survival of CD34+ inv(16) AML cells. CONCLUSIONS These findings improved the understanding of the epigenetic regulation of Baicalein, and warrant therapeutic potential of Baicalein for CBF-AML.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
- Department of PharmacologySchool of medicine & Holostic integrative medicineNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Hui Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Po Hu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Yingjie Qing
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Xiangyuan Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Mengyuan Zhu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Hongzheng Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Zhanyu Wang
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Jingyan Xu
- Department of HematologyThe Affiliated DrumTower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Qinglong Guo
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| | - Hui Hui
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Carcinogenesis and InterventionKey Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationJiangsu Key Laboratory of Drug Design and OptimizationChina Pharmaceutical UniversityChina Pharmaceutical UniversityNanjingJiangsuChina
| |
Collapse
|
5
|
Wang W, Yang Q, Xie K, Wang P, Luo R, Yan Z, Gao X, Zhang B, Huang X, Gun S. Transcriptional Regulation of HMOX1 Gene in Hezuo Tibetan Pigs: Roles of WT1, Sp1, and C/EBPα. Genes (Basel) 2020; 11:genes11040352. [PMID: 32224871 PMCID: PMC7231170 DOI: 10.3390/genes11040352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Heme oxygenase 1 (HMOX1) is a stress-inducing enzyme with multiple cardiovascular protective functions, especially in hypoxia stress. However, transcriptional regulation of swine HMOX1 gene remains unclear. In the present study, we first detected tissue expression profiles of HMOX1 gene in adult Hezuo Tibetan pig and analyzed the gene structure. We found that the expression level of HMOX1 gene was highest in the spleen of the Hezuo Tibetan pig, followed by liver, lung, and kidney. A series of 5’ deletion promoter plasmids in pGL3-basic vector were used to identify the core promoter region and confirmed that the minimum core promoter region of swine HMOX1 gene was located at −387 bp to −158 bp region. Then we used bioinformatics analysis to predict transcription factors in this region. Combined with site-directed mutagenesis and RNA interference assays, it was demonstrated that the three transcription factors WT1, Sp1 and C/EBPα were important transcription regulators of HMOX1 gene. In summary, our study may lay the groundwork for further functional study of HMOX1 gene.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Bo Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (W.W.); (Q.Y.); (K.X.); (P.W.); (R.L.); (Z.Y.); (X.G.); (B.Z.); (X.H.)
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1804
| |
Collapse
|
6
|
Thacker G, Mishra M, Sharma A, Singh AK, Sanyal S, Trivedi AK. CDK2 destabilizes tumor suppressor C/EBPα expression through ubiquitin‐mediated proteasome degradation in acute myeloid leukemia. J Cell Biochem 2019; 121:2839-2850. [DOI: 10.1002/jcb.29516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/08/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Gatha Thacker
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | - Mukul Mishra
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | - Akshay Sharma
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | | | - Sabyasachi Sanyal
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
| | - Arun Kumar Trivedi
- Division of Cancer BiologyCSIR‐Central Drug Research Institute Lucknow UP India
- Academy of Scientific and Innovative Research (AcSIR), CSIR‐CDRI Lucknow UP India
| |
Collapse
|
7
|
Expression and regulation of C/EBPα in normal myelopoiesis and in malignant transformation. Blood 2017; 129:2083-2091. [PMID: 28179278 DOI: 10.1182/blood-2016-09-687822] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022] Open
Abstract
One of the most studied transcription factors in hematopoiesis is the leucine zipper CCAAT-enhancer binding protein α (C/EBPα), which is mainly involved in cell fate decisions for myeloid differentiation. Its involvement in acute myeloid leukemia (AML) is diverse, with patients frequently exhibiting mutations, deregulation of gene expression, or alterations in the function of C/EBPα. In this review, we emphasize the importance of C/EBPα for neutrophil maturation, its role in myeloid priming of hematopoietic stem and progenitor cells, and its indispensable requirement for AML development. We discuss that mutations in the open reading frame of CEBPA lead to an altered C/EBPα function, affecting the expression of downstream genes and consequently deregulating myelopoiesis. The emerging transcriptional mechanisms of CEBPA are discussed based on recent studies. Novel insights on how these mechanisms may be deregulated by oncoproteins or mutations/variants in CEBPA enhancers are suggested in principal to reveal novel mechanisms of how CEBPA is deregulated at the transcriptional level.
Collapse
|
8
|
Shen XH, Sun NN, Yin YF, Liu SF, Liu XL, Peng HL, Dai CW, Xu YX, Deng MY, Luo YY, Zheng WL, Zhang GS. A TET2 rs3733609 C/T genotype is associated with predisposition to the myeloproliferative neoplasms harboring JAK2(V617F) and confers a proliferative potential on erythroid lineages. Oncotarget 2017; 7:9550-60. [PMID: 26843622 PMCID: PMC4891059 DOI: 10.18632/oncotarget.7072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
Common germline single-nucleotide polymorphisms (SNPs) at JAK2 locus have been associated with Myeloproliferative neoplasms (MPN). And, the germline sequence variant rs2736100 C in TERT is related to risk of MPN, suggesting a complex association between SNPs and the pathogenesis of MPN. Our previous study (unpublished data) showed that there was a high frequency distribution in rs3733609 C/T genotype at Ten-Eleven Translocation 2 (TET2) locus in one Chinese familial primary myelofibrosis. In the present study, we evaluate the role and clinical significance of rs3733609 C/T genotype in JAK2V617F-positive sporadic MPN (n = 181). TET2 rs3733609 C/T genotype had a higher incidence (13.81%; 25/181) in JAK2V617F-positive sporadic MPN patients than that in normal controls (n = 236) (6.35%; 15/236), which was predisposing to MPN (odds ratio(OR) = 2.361; P = 0.01). MPN patients with rs3733609 C/T genotype had increased leukocyte and platelets counts, elevated hemoglobin concentration in comparison with T/T genotype. Thrombotic events were more common in MPN patients with rs3733609 C/T than those with T/T genotype (P < 0.01). We confirmed that rs3733609 C/T genotype downregulated TET2 mRNA transcription, and the mechanism may be involved in a disruption of the interaction between CCAAT/enhancer binding protein alpha (C/EBPA) and TET2 rs3733609 C/T locus.TET2 rs3733609 C/T genotype stimulated the erythroid hematopoiesis in MPN patients. Altogether, we found a novel hereditary susceptible factor-TET2 rs3733609 C/T variant for the development of MPN, suggesting the variant may be partially responsible for the pathogenesis and accumulation of MPN.
Collapse
Affiliation(s)
- Xiao-hui Shen
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Nan-nan Sun
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ya-fei Yin
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Su-fang Liu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiao-liu Liu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Hong-ling Peng
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Chong-wen Dai
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yun-xiao Xu
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming-yang Deng
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yun-ya Luo
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wen-li Zheng
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Guang-sen Zhang
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
9
|
Jules J, Chen W, Feng X, Li YP. CCAAT/Enhancer-binding Protein α (C/EBPα) Is Important for Osteoclast Differentiation and Activity. J Biol Chem 2016; 291:16390-403. [PMID: 27129246 DOI: 10.1074/jbc.m115.674598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/22/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBPα) can appoint mouse bone marrow (MBM) cells to the osteoclast (OC) lineage for osteoclastogenesis. However, whether C/EBPα is also involved in OC differentiation and activity is unknown. Here we demonstrated that C/EBPα overexpression in MBM cells can promote OC differentiation and strongly induce the expression of the OC genes encoding the nuclear factor of activated T-cells, c1 (NFATc1), cathepsin K (Cstk), and tartrate-resistant acid phosphatase 5 (TRAP) with receptor activator of NF-κB ligand-evoked OC lineage priming. Furthermore, while investigating the specific stage of OC differentiation that is regulated by C/EBPα, our gene overexpression studies revealed that, although C/EBPα plays a stronger role in the early stage of OC differentiation, it is also involved in the later stage. Accordingly, C/EBPα knockdown drastically inhibits osteoclastogenesis and markedly abrogates the expression of NFATc1, Cstk, and TRAP during OC differentiation. Consistently, C/EBPα silencing revealed that, although lack of C/EBPα affects all stages of OC differentiation, it has more impact on the early stage. Importantly, we showed that ectopic expression of rat C/EBPα restores osteoclastogenesis in C/EBPα-depleted MBM cells. Furthermore, our subsequent functional assays showed that C/EBPα exhibits a dispensable role on actin ring formation by mature OCs but is critically involved in bone resorption by stimulating extracellular acidification and regulating cell survival. We revealed that C/EBPα is important for receptor activator of NF-κB ligand-induced Akt activation, which is crucial for OC survival. Collectively, these results indicate that C/EBPα functions throughout osteoclastogenesis as well as in OC function. This study provides additional understanding of the roles of C/EBPα in OC biology.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Wei Chen
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Xu Feng
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Yi-Ping Li
- From the Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
10
|
Ma WY, Jia K, Zhang Y. IL-17 promotes keratinocyte proliferation via the downregulation of C/EBPα. Exp Ther Med 2015; 11:631-636. [PMID: 26893658 DOI: 10.3892/etm.2015.2939] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 11/05/2015] [Indexed: 01/20/2023] Open
Abstract
Psoriasis vulgaris is a common chronic inflammatory skin disease characterized by the hyperproliferation and abnormal differentiation of keratinocytes. CCATT/enhancer binding protein α (C/EBPα) is abundant in the epidermis and is associated with the proliferation of keratinocytes. However, the role of C/EBPα in the proliferation of keratinocytes and the pathogenesis of psoriasis vulgaris are yet to be elucidated. In the present study, using two-step immunohistochemistry, the expression levels of C/EBPα and Ki-67 were examined in skin biopsies harvested from 30 patients with psoriasis vulgaris and 30 healthy control subjects. The proliferation index (PI) was calculated and the correlation between C/EBPα expression levels and the PI was assessed using Pearson's correlation coefficient. In addition, the effect on HaCaT immortalized human keratinocytic cells of treatment with various concentrations of interleukin (IL)-17 was investigated. Subsequently, cell proliferation rates were examined using a Cell Counting kit-8 assay and the mRNA and protein expression levels of C/EBPα were analyzed using semiquantitative reverse transcription-polymerase chain reaction and western blotting, respectively, in order to analyze the effects of IL-17 stimulation on C/EBPα expression levels. C/EBPα expression was predominantly detected in the cytoplasm of the keratinocytes and C/EBPα expression levels were significantly lower in the psoriatic lesions (P<0.05), as compared with the control group. An inverse correlation was detected between the expression levels of C/EBPα and the PI in the psoriatic lesions. Furthermore, a significant increase in the cell proliferation rate and significant reductions in the mRNA and protein expression levels of C/EBPα were detected in HaCaT cells following treatment with IL-17. These results demonstrated that C/EBPα may act as a downstream target of IL-17 and may be associated with the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Wei-Yuan Ma
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R.China
| | - Kun Jia
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R.China
| | - Yan Zhang
- School of Medicine, Shandong University, Jinan, Shandong 250012, P.R.China
| |
Collapse
|
11
|
Libura M, Pawełczyk M, Florek I, Matiakowska K, Jaźwiec B, Borg K, Solarska I, Zawada M, Czekalska S, Libura J, Salamanczuk Z, Jakóbczyk M, Mucha B, Duszeńko E, Soszyńska K, Karabin K, Piątkowska-Jakubas B, Całbecka M, Gajkowska-Kulig J, Gadomska G, Kiełbiński M, Ejduk A, Kata D, Grosicki S, Kyrcz-Krzemień S, Warzocha K, Kuliczkowski K, Skotnicki A, Jęrzejczak WW, Haus O. CEBPA copy number variations in normal karyotype acute myeloid leukemia: Possible role of breakpoint-associated microhomology and chromatin status in CEBPA mutagenesis. Blood Cells Mol Dis 2015; 55:284-92. [PMID: 26460249 DOI: 10.1016/j.bcmd.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 10/23/2022]
Abstract
Copy number variations (CNV) in CEBPA locus represent heterogeneous group of mutations accompanying acute myeloid leukemia (AML). The aim of this study was to characterize different CEBPA mutation categories in regard to biological data like age, cytology, CD7, and molecular markers, and identify possible factors affecting their etiology. We report here the incidence of 12.6% of CEBPA mutants in the population of 262 normal karyotype AML (NK-AML) patients. We confirmed that double mutant AMLs presented uniform biological features when compared to single CEBPA mutations and accompanied mostly younger patients. We hypothesized that pathogenesis of distinct CEBPA mutation categories might be influenced by different factors. The detailed sequence analysis revealed frequent breakpoint-associated microhomologies of 2 to 12bp. The analysis of distribution of microhomology motifs along CEBPA gene showed that longer stretches of microhomology at the mutational junctions were relatively rare by chance which suggests their functional role in the CEBPA mutagenesis. Additionally, accurate quantification of CEBPA transcript levels showed that double CEBPA mutations correlated with high-level CEBPA expression, whereas single N-terminal CEBPA mutations were associated with low-level CEBPA expression. This might suggest that high-level CEBPA expression and/or accessibility of CEBPA locus contribute to B-ZIP in-frame duplications.
Collapse
Affiliation(s)
- Marta Libura
- Department of Haematology, Oncology and Internal Diseases, Medical University and University Hospital, 1A Banacha Str., 02-097 Warsaw, Poland.
| | - Marta Pawełczyk
- Department of Haematology, Oncology and Internal Diseases, Medical University and University Hospital, 1A Banacha Str., 02-097 Warsaw, Poland.
| | - Izabella Florek
- Department of Haematology, Faculty of Medicine Jagiellonian University, 19 Kopernika Str., 31-501 Cracow, Poland.
| | - Karolina Matiakowska
- Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowska-Curie Str., 85-094 Bydgoszcz, Poland.
| | - Bożena Jaźwiec
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Medical University, 4 Pasteura Str., 50-367 Wrocław, Poland.
| | - Katarzyna Borg
- Institute of Haematology and Transfusion Medicine, 14 Gandhi Str., 02-776 Warsaw, Poland.
| | - Iwona Solarska
- Institute of Haematology and Transfusion Medicine, 14 Gandhi Str., 02-776 Warsaw, Poland.
| | - Magdalena Zawada
- Department of Haematology, Faculty of Medicine Jagiellonian University, 19 Kopernika Str., 31-501 Cracow, Poland.
| | - Sylwia Czekalska
- Department of Haematology, Faculty of Medicine Jagiellonian University, 19 Kopernika Str., 31-501 Cracow, Poland.
| | - Jolanta Libura
- Department of Haematology, Oncology and Internal Diseases, Medical University and University Hospital, 1A Banacha Str., 02-097 Warsaw, Poland.
| | - Zoriana Salamanczuk
- Department of Haematology, Faculty of Medicine Jagiellonian University, 19 Kopernika Str., 31-501 Cracow, Poland.
| | - Małgorzata Jakóbczyk
- Department of Haematology, Faculty of Medicine Jagiellonian University, 19 Kopernika Str., 31-501 Cracow, Poland.
| | - Barbara Mucha
- Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowska-Curie Str., 85-094 Bydgoszcz, Poland.
| | - Ewa Duszeńko
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Medical University, 4 Pasteura Str., 50-367 Wrocław, Poland.
| | - Krystyna Soszyńska
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Medical University, 4 Pasteura Str., 50-367 Wrocław, Poland.
| | - Karolina Karabin
- Department of Haematology, Oncology and Internal Diseases, Medical University and University Hospital, 1A Banacha Str., 02-097 Warsaw, Poland.
| | - Beata Piątkowska-Jakubas
- Department of Haematology, Faculty of Medicine Jagiellonian University, 19 Kopernika Str., 31-501 Cracow, Poland.
| | - Małgorzata Całbecka
- Department of Haematology, Copernicus Hospital, 17/19 Batory Str., 87-100 Toruń, Poland.
| | | | - Grażyna Gadomska
- Department of Haematology, Dr Biziel University Hospital, 75 Ujejskiego Str., 85-168 Bydgoszcz, Poland.
| | - Marek Kiełbiński
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Medical University, 4 Pasteura Str., 50-367 Wrocław, Poland.
| | - Anna Ejduk
- Institute of Haematology and Transfusion Medicine, 14 Gandhi Str., 02-776 Warsaw, Poland.
| | - Dariusz Kata
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, 20/24 Francuska str., 40-027 Katowice, Poland.
| | - Sebastian Grosicki
- Department of Hematology, SPZOZ ZSM Chorzów, 11 Strzelców Bytomskich Str., 41-500 Chorzów, Poland.
| | - Sławomira Kyrcz-Krzemień
- Department of Hematology and Bone Marrow Transplantation, Medical University of Silesia, 20/24 Francuska str., 40-027 Katowice, Poland.
| | - Krzysztof Warzocha
- Institute of Haematology and Transfusion Medicine, 14 Gandhi Str., 02-776 Warsaw, Poland.
| | - Kazimierz Kuliczkowski
- Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Medical University, 4 Pasteura Str., 50-367 Wrocław, Poland.
| | - Aleksander Skotnicki
- Department of Haematology, Faculty of Medicine Jagiellonian University, 19 Kopernika Str., 31-501 Cracow, Poland.
| | - Wiesław Wiktor Jęrzejczak
- Department of Haematology, Oncology and Internal Diseases, Medical University and University Hospital, 1A Banacha Str., 02-097 Warsaw, Poland.
| | - Olga Haus
- Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowska-Curie Str., 85-094 Bydgoszcz, Poland; Department of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Medical University, 4 Pasteura Str., 50-367 Wrocław, Poland.
| |
Collapse
|
12
|
Hematopoietic myeloid cell differentiation diminishes nucleotide excision repair. Int J Hematol 2014; 100:260-5. [PMID: 25027282 DOI: 10.1007/s12185-014-1625-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
Abstract
Myeloid cell differentiation is the process by which stem cells develop into mature monocytes or granulocytes. This process is achieved by the sequential activation of variety of genes. Disruption of this process can result in immunodeficiency, bone marrow failure syndrome, or leukemia. Acute promyelocytic leukemia (APL) is characterized by the t(15;17) translocation and can be treated by a combination of all-trans retinoic acid (ATRA) and anthracycline. This treatment can induce leukemic cell differentiation, leading to extremely high remission rates. XAB2, a molecule involved in nucleotide excision repair (NER), is downregulated during granulocyte differentiation and shows reduced expression in NB4 APL-derived cells in vitro. Differentiation of APL by ATRA treatment reduced XAB2 expression levels in vivo. These observations suggest that cellular differentiation is associated with reduced NER activity and provides new insights into combined differentiation induction. NB4 cells were more susceptible than the immature myeloid leukemic cell lines, Kasumi-3 and Kasumi-1, to the DNA interstrand crosslinking agent cisplatin.
Collapse
|
13
|
C/EBPα is an essential collaborator in Hoxa9/Meis1-mediated leukemogenesis. Proc Natl Acad Sci U S A 2014; 111:9899-904. [PMID: 24958854 DOI: 10.1073/pnas.1402238111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Homeobox A9 (HOXA9) is a homeodomain-containing transcription factor that plays a key role in hematopoietic stem cell expansion and is commonly deregulated in human acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia (AML) lead to overexpression of HOXA9, almost always in association with overexpression of its cofactor meis homeobox 1 (MEIS1) . A wide range of data suggests that HOXA9 and MEIS1 play a synergistic causative role in AML, although the molecular mechanisms leading to transformation by HOXA9 and MEIS1 remain elusive. In this study, we identify CCAAT/enhancer binding protein alpha (C/EBPα) as a critical collaborator required for Hoxa9/Meis1-mediated leukemogenesis. We show that C/EBPα is required for the proliferation of Hoxa9/Meis1-transformed cells in culture and that loss of C/EBPα greatly improves survival in both primary and secondary murine models of Hoxa9/Meis1-induced leukemia. Over 50% of Hoxa9 genome-wide binding sites are cobound by C/EBPα, which coregulates a number of downstream target genes involved in the regulation of cell proliferation and differentiation. Finally, we show that Hoxa9 represses the locus of the cyclin-dependent kinase inhibitors Cdkn2a/b in concert with C/EBPα to overcome a block in G1 cell cycle progression. Together, our results suggest a previously unidentified role for C/EBPα in maintaining the proliferation required for Hoxa9/Meis1-mediated leukemogenesis.
Collapse
|
14
|
Abstract
The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein α (C/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop for E2F1, C/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C/EBPα-p42, and in normal granulocyte/macrophage progenitor cells, we detect C/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle or Trib2 knockdown resulted in a block in AML cell proliferation. Our work proposes a novel paradigm whereby E2F1 plays a key role in the regulation of Trib2 expression important for AML cell proliferation control. Importantly, we identify the contribution of dysregulated C/EBPα and E2F1 to elevated Trib2 expression and leukemic cell survival, which likely contributes to the initiation and maintenance of AML and may have significant implications for normal and malignant hematopoiesis.
Collapse
|
15
|
Ohlsson E, Hasemann MS, Willer A, Lauridsen FKB, Rapin N, Jendholm J, Porse BT. Initiation of MLL-rearranged AML is dependent on C/EBPα. ACTA ACUST UNITED AC 2013; 211:5-13. [PMID: 24367003 PMCID: PMC3892979 DOI: 10.1084/jem.20130932] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
C/EBPα collaborates with MLL-ENL to activate a group of genes that, together with Hoxa9 and Meis1, are responsible for the early events that transforms normal hematopoietic cells into leukemic cells MLL-fusion proteins are potent inducers of oncogenic transformation, and their expression is considered to be the main oncogenic driving force in ∼10% of human acute myeloid leukemia (AML) patients. These oncogenic fusion proteins are responsible for the initiation of a downstream transcriptional program leading to the expression of factors such as MEIS1 and HOXA9, which in turn can replace MLL-fusion proteins in overexpression experiments. To what extent MLL fusion proteins act on their own during tumor initiation, or if they collaborate with other transcriptional regulators, is unclear. Here, we have compared gene expression profiles from human MLL-rearranged AML to normal progenitors and identified the myeloid tumor suppressor C/EBPα as a putative collaborator in MLL-rearranged AML. Interestingly, we find that deletion of Cebpa rendered murine hematopoietic progenitors completely resistant to MLL-ENL–induced leukemic transformation, whereas C/EBPα was dispensable in already established AMLs. Furthermore, we show that Cebpa-deficient granulocytic-monocytic progenitors were equally resistant to transformation and that C/EBPα collaborates with MLL-ENL in the induction of a transcriptional program, which is also apparent in human AML. Thus, our studies demonstrate a key role of C/EBPα in MLL fusion–driven transformation and find that it sharply demarcates tumor initiation and maintenance.
Collapse
Affiliation(s)
- Ewa Ohlsson
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences; 2 Biotech Research and Innovation Center (BRIC); 3 Danish Stem Cell Centre (DanStem) Faculty of Health Sciences; 4 The Bioinformatic Centre, Department of Biology, Faculty of Natural Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
16
|
Transcription factor C/EBPα-induced microRNA-30c inactivates Notch1 during granulopoiesis and is downregulated in acute myeloid leukemia. Blood 2013; 122:2433-42. [PMID: 23974200 DOI: 10.1182/blood-2012-12-472183] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor CCAAT enhancer binding protein α (C/EBPα) is a master regulator in granulopoiesis and is frequently disrupted in acute myeloid leukemia (AML). We have previously shown that C/EBPα exerts its effects by regulating microRNAs (miRs) such as miR-223 and miR-34a. Here, we confirm miR-30c as a novel important target of C/EBPα during granulopoiesis. Thus, wild-type C/EBPα-p42 directly upregulates miR-30c expression, whereas C/EBPα-p30, found in AML, does not. miR-30c is downregulated in AML, especially in normal karyotype AML patients with CEBPA mutations. An induced C/EBPα knockout in mice leads to a significant downregulation of miR-30c expression in bone marrow cells. We identified NOTCH1 as a direct target of miR-30c. Finally, a block of miR-30c prevents C/EBPα-induced downregulation of Notch1 protein and leads to a reduced CD11b expression in myeloid differentiation. Our study presents the first evidence that C/EBPα, miR-30c, and Notch1 together play a critical role in granulocytic differentiation and AML, and particularly in AML with CEBPA mutations. These data reveal the importance of deregulated miRNA expression in leukemia and may provide novel biomarkers and therapeutic targets in AML.
Collapse
|
17
|
Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Phillips CM, Hall W, Gjelstad IMF, Lairon D, Saris W, Kieć-Wilk B, Karlström B, Drevon CA, Defoort C, Blaak EE, Dembinska-Kieć A, Risérus U, Lovegrove JA, Roche HM, Lopez-Miranda J. A gene variation (rs12691) in the CCAT/enhancer binding protein α modulates glucose metabolism in metabolic syndrome. Nutr Metab Cardiovasc Dis 2013; 23:417-423. [PMID: 22269963 DOI: 10.1016/j.numecd.2011.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/20/2011] [Accepted: 09/23/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS CCAAT/enhancer-binding protein alpha (CEBPA) is a transcription factor involved in adipogenesis and energy homeostasis. Caloric restriction reduces CEBPA protein expression in patients with metabolic syndrome (MetS). A previous report linked rs12691 SNP in CEBPA to altered concentration of fasting triglycerides. Our objective was to assess the effects of rs12691 in glucose metabolism in Metabolic Syndrome (MetS) patients. METHODS AND RESULTS Glucose metabolism was assessed by static (glucose, insulin, adiponectin, leptin and resistin plasma concentrations) and dynamic (disposition index, insulin sensitivity index, HOMA-IR and acute insulin response to glucose) indices, performed at baseline and after 12 weeks of 4 dietary interventions (high saturated fatty acid (SFA), high monounsaturated fatty acid (MUFA), low-fat and low-fat-high-n3 polyunsaturated fatty acid (PUFA)) in 486 subjects with MetS. Carriers of the minor A allele of rs12691 had altered disposition index (p = 0.0003), lower acute insulin response (p = 0.005) and a lower insulin sensitivity index (p = 0.025) indicating a lower insulin sensitivity and a lower insulin secretion, at baseline and at the end of the diets. Furthermore, A allele carriers displayed lower HDL concentration. CONCLUSION The presence of the A allele of rs12691 influences glucose metabolism of MetS patients.
Collapse
Affiliation(s)
- J Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Medicine, IMIBIC/Hospital Universitario Reina Sofía/Universidad de Córdoba, Cordoba, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Thiel AT, Feng Z, Pant DK, Chodosh LA, Hua X. The trithorax protein partner menin acts in tandem with EZH2 to suppress C/EBPα and differentiation in MLL-AF9 leukemia. Haematologica 2013; 98:918-27. [PMID: 23349306 DOI: 10.3324/haematol.2012.074195] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Trithorax and polycomb group proteins antagonistically regulate the transcription of many genes, and cancer can result from the disruption of this regulation. Deregulation of trithorax function occurs through chromosomal translocations involving the trithorax gene MLL, leading to the expression of MLL fusion proteins and acute leukemia. It is poorly understood how MLL fusion proteins block differentiation, a hallmark of leukemogenesis. We analyzed the effect of acute depletion of menin, a close partner of MLL that is critical for MLL and MLL-AF9 recruitment to target genes, on MLL-AF9 leukemia cell differentiation using an in vivo model. We performed cDNA microarray analysis of menin-regulated genes from primary leukemia cells to determine menin-regulated pathways involved in suppressing MLL-AF9 leukemia cell differentiation. We found that menin binds the promoter of the polycomb gene Ezh2, and promotes its expression. EZH2 interacts with the differentiation-promoting transcription factor C/EBPα and represses C/EBPα target genes. Menin depletion reduces MLL binding to the Ezh2 locus, EZH2 expression, and EZH2 binding and repressive H3K27 methylation at C/EBPα target genes, thereby inducing the expression of pro-differentiation C/EBPα targets. In conclusion, our results show that in contrast to its classical role antagonizing trithorax function, the polycomb group protein EZH2 collaborates with trithorax-associated menin to block MLL-AF9 leukemia cell differentiation, uncovering a novel mechanism for suppression of C/EBPα and leukemia cell differentiation, through menin-mediated upregulation of EZH2.
Collapse
Affiliation(s)
- Austin T Thiel
- Abramson Family Cancer Research Institute, Department of Cancer Biology, Abramson Cancer Center, the University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
A hallmark of cancer is the disruption of differentiation within tumor cells. Internal tandem duplication mutations of the FLT3 kinase (FLT3/ITD) occur commonly in acute myeloid leukemia (AML) and are associated with poor survival, leading to efforts to develop FLT3 kinase inhibitors. However, FLT3 inhibitors have thus far met with limited success, inducing only a clearance of peripheral blasts with minimal BM responses. Quizartinib is a novel potent and selective FLT3 inhibitor currently being studied in clinical trials. In 13 of 14 FLT3/ITD AML patients with normal karyotype treated with quizartinib, we observed terminal myeloid differentiation of BM blasts in association with a clinical differentiation syndrome. The single patient whose blasts failed to differentiate had a preexisting C/EBPα mutation and another developed a C/EBPα mutation at disease progression, suggesting a mechanism of resistance to FLT3 inhibition. In vitro, in primary blasts cocultured with human BM stroma, FLT3 inhibition with quizartinib induced cell-cycle arrest and differentiation rather than apoptosis. The present study is the first description of terminal differentiation of cancer cells in patients treated with a tyrosine kinase inhibitor. These data highlight the importance of the differentiation block in the patho-genesis of AML.
Collapse
|
20
|
Post-transcriptional modulation of C/EBPα prompts monocytic differentiation and apoptosis in acute myelomonocytic leukaemia cells. Leuk Res 2012; 36:735-41. [PMID: 22349414 DOI: 10.1016/j.leukres.2012.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/08/2012] [Accepted: 01/11/2012] [Indexed: 11/21/2022]
Abstract
CCAAT/enhancer binding protein alpha (C/EBPα) induction induces monocytic differentiation even in acute myeloid leukaemia (AML). In this study, the induction/activation of C/EBPα in myelomonocytic AML was investigated using a combination of all-trans retinoic acid (ATRA) and RAD001 (Everolimus), a mammalian target of rapamycin complex 1 (mTORC1) inhibitor. Combining these agents increased PU.1, C/EBPε and C/EBPα expression, increased the p42/p30 C/EBPα ratio, and decreased C/EBPα phosphorylation at serine 21, and was accompanied by growth inhibition, induction of CD11b expression and apoptosis in AML cell lines. Thus, agents that induce sufficient levels of C/EBPα expression might be useful in treating AML.
Collapse
|
21
|
Reckzeh K, Bereshchenko O, Mead A, Rehn M, Kharazi S, Jacobsen SE, Nerlov C, Cammenga J. Molecular and cellular effects of oncogene cooperation in a genetically accurate AML mouse model. Leukemia 2012; 26:1527-36. [PMID: 22318449 DOI: 10.1038/leu.2012.37] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biallelic CEBPA mutations and FMS-like tyrosine kinase receptor 3 (FLT3) length mutations are frequently identified in human acute myeloid leukemia (AML) with normal cytogenetics. However, the molecular and cellular mechanisms of oncogene cooperation remain unclear because of a lack of disease models. We have generated an AML mouse model using knockin mouse strains to study cooperation of an internal tandem duplication (ITD) mutation in the Flt3 gene with commonly observed CCAAT/enhancer binding protein alpha (C/EBPα) mutations. This study provides evidence that FLT3 ITD cooperates in leukemogenesis by enhancing the generation of leukemia-initiating granulocyte-monocyte progenitors (GMPs) otherwise prevented by a block in differentiation and skewed lineage priming induced by biallelic C/EBPα mutations. These cellular changes are accompanied by an upregulation of hematopoietic stem cell and STAT5 target genes. By gene expression analysis in premalignant populations, we further show a role of FLT3 ITD in activating genes involved in survival/transformation and chemoresistance. Both multipotent progenitors and GMP cells contain the potential to induce AML similar to corresponding cells in human AML samples showing that this model resembles human disease.
Collapse
Affiliation(s)
- K Reckzeh
- Department of Molecular Medicine and Gene Therapy, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sakamoto KM. Editorial: granulopoiesis versus monopoiesis: a consequence of transcription factors dancing with the right partners. J Leukoc Biol 2011; 90:637-8. [PMID: 21965310 DOI: 10.1189/jlb.0411187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
Schuck JB, Sun H, Penberthy WT, Cooper NGF, Li X, Smith ME. Transcriptomic analysis of the zebrafish inner ear points to growth hormone mediated regeneration following acoustic trauma. BMC Neurosci 2011; 12:88. [PMID: 21888654 PMCID: PMC3175199 DOI: 10.1186/1471-2202-12-88] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/02/2011] [Indexed: 01/13/2023] Open
Abstract
Background Unlike mammals, teleost fishes are capable of regenerating sensory inner ear hair cells that have been lost following acoustic or ototoxic trauma. Previous work indicated that immediately following sound exposure, zebrafish saccules exhibit significant hair cell loss that recovers to pre-treatment levels within 14 days. Following acoustic trauma in the zebrafish inner ear, we used microarray analysis to identify genes involved in inner ear repair following acoustic exposure. Additionally, we investigated the effect of growth hormone (GH) on cell proliferation in control zebrafish utricles and saccules, since GH was significantly up-regulated following acoustic trauma. Results Microarray analysis, validated with the aid of quantitative real-time PCR, revealed several genes that were highly regulated during the process of regeneration in the zebrafish inner ear. Genes that had fold changes of ≥ 1.4 and P -values ≤ 0.05 were considered significantly regulated and were used for subsequent analysis. Categories of biological function that were significantly regulated included cancer, cellular growth and proliferation, and inflammation. Of particular significance, a greater than 64-fold increase in growth hormone (gh1) transcripts occurred, peaking at 2 days post-sound exposure (dpse) and decreasing to approximately 5.5-fold by 4 dpse. Pathway Analysis software was used to reveal networks of regulated genes and showed how GH affected these networks. Subsequent experiments showed that intraperitoneal injection of salmon growth hormone significantly increased cell proliferation in the zebrafish inner ear. Many other gene transcripts were also differentially regulated, including heavy and light chain myosin transcripts, both of which were down-regulated following sound exposure, and major histocompatability class I and II genes, several of which were significantly regulated on 2 dpse. Conclusions Transcripts for GH, MHC Class I and II genes, and heavy- and light-chain myosins, as well as many others genes, were differentially regulated in the zebrafish inner ear following overexposure to sound. GH injection increased cell proliferation in the inner ear of non-sound-exposed zebrafish, suggesting that GH could play an important role in sensory hair cell regeneration in the teleost ear.
Collapse
Affiliation(s)
- Julie B Schuck
- Department of Biology, Western Kentucky University, 1906 College Heights Blvd, Bowling Green, KY 42101, USA
| | | | | | | | | | | |
Collapse
|
24
|
Tominaga-Sato S, Tsushima H, Ando K, Itonaga H, Imaizumi Y, Imanishi D, Iwanaga M, Taguchi J, Fukushima T, Yoshida S, Hata T, Moriuchi Y, Kuriyama K, Mano H, Tomonaga M, Miyazaki Y. Expression of myeloperoxidase and gene mutations in AML patients with normal karyotype: double CEBPA mutations are associated with high percentage of MPO positivity in leukemic blasts. Int J Hematol 2011; 94:81-89. [DOI: 10.1007/s12185-011-0883-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
|