1
|
Fujikawa T, Uemura S, Hasegawa D, Morisada N, Nakamura S, Kozaki A, Saito A, Kishimoto K, Ishida T, Mori T, Yakushijin K, Katayama Y, Yamashita D, Wakamatsu M, Hamada M, Muramatsu H, Takahashi Y, Kosaka Y. Novel mutation in KIF23 causing congenital dyserythropoietic anemia type III in patients who underwent allogeneic hematopoietic stem cell transplantation. Pediatr Blood Cancer 2024; 71:e30736. [PMID: 38523246 DOI: 10.1002/pbc.30736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 03/26/2024]
Affiliation(s)
- Tomoko Fujikawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Suguru Uemura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Naoya Morisada
- Department of Clinical Genetics, Kobe Children's Hospital, Kobe, Japan
| | - Sayaka Nakamura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Aiko Kozaki
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Atsuro Saito
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kenji Kishimoto
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Toshiaki Ishida
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Takeshi Mori
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kimikazu Yakushijin
- Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe, Japan
| | | | - Daiki Yamashita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoharu Hamada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| |
Collapse
|
2
|
Chueh HW, Shim YJ, Jung HL, Kim N, Hwang SM, Kim M, Choi HS. Current Status of Molecular Diagnosis of Hereditary Hemolytic Anemia in Korea. J Korean Med Sci 2024; 39:e162. [PMID: 38742293 PMCID: PMC11091231 DOI: 10.3346/jkms.2024.39.e162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hereditary hemolytic anemia (HHA) is considered a group of rare hematological diseases in Korea, primarily because of its unique ethnic characteristics and diagnostic challenges. Recently, the prevalence of HHA has increased in Korea, reflecting the increasing number of international marriages and increased awareness of the disease. In particular, the diagnosis of red blood cell (RBC) enzymopathy experienced a resurgence, given the advances in diagnostic techniques. In 2007, the RBC Disorder Working Party of the Korean Society of Hematology developed the Korean Standard Operating Procedure for the Diagnosis of Hereditary Hemolytic Anemia, which has been continuously updated since then. The latest Korean clinical practice guidelines for diagnosing HHA recommends performing next-generation sequencing as a preliminary step before analyzing RBC membrane proteins and enzymes. Recent breakthroughs in molecular genetic testing methods, particularly next-generation sequencing, are proving critical in identifying and providing insight into cases of HHA with previously unknown diagnoses. These innovative molecular genetic testing methods have now become important tools for the management and care planning of patients with HHA. This review aims to provide a comprehensive overview of recent advances in molecular genetic testing for the diagnosis of HHA, with particular emphasis on the Korean context.
Collapse
Affiliation(s)
- Hee Won Chueh
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Ye Jee Shim
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Lim Jung
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Namhee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hyoung Soo Choi
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
3
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 PMCID: PMC12121306 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Nagahama J, Nishikawa T, Nakamura T, Nakagawa S, Kodama Y, Terazono H, Wakamatsu M, Muramatsu H, Yamashiro Y, Kanno H, Okamoto Y. Severe β-thalassemia (Hb Zunyi) mimicking congenital dyserythropoietic anemia. Pediatr Blood Cancer 2023; 70:e30706. [PMID: 37794572 DOI: 10.1002/pbc.30706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Jun Nagahama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuro Nishikawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tatsuro Nakamura
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shunsuke Nakagawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuichi Kodama
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hideyuki Terazono
- Department of Clinical Pharmacy and Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Manabu Wakamatsu
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Nagoya University, Aichi, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Nagoya University, Aichi, Japan
| | - Yasuhiro Yamashiro
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
5
|
Roy NBA, Da Costa L, Russo R, Bianchi P, Mañú-Pereira MDM, Fermo E, Andolfo I, Clark B, Proven M, Sanchez M, van Wijk R, van der Zwaag B, Layton M, Rees D, Iolascon A. The use of next-generation sequencing in the diagnosis of rare inherited anaemias: A Joint BSH/EHA Good Practice Paper. Br J Haematol 2022; 198:459-477. [PMID: 35661144 DOI: 10.1111/bjh.18191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Noémi B A Roy
- Department of Haematology, Oxford University Hospitals, NHS Foundation Trust, Oxford, UK.,NIHR BRC Blood Theme, Oxford, UK
| | | | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Paola Bianchi
- UOS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | | | - Elisa Fermo
- UOS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Melanie Proven
- Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mayka Sanchez
- Department of Basic Sciences, Iron metabolism: Regulation and Diseases, Universitat Internacional de Catalunya (UIC), Barcelona, Spain.,BloodGenetics S.L. Diagnostics in Inherited Blood Diseases, Barcelona, Spain
| | - Richard van Wijk
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bert van der Zwaag
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mark Layton
- Imperial College London, Hammersmith Hospital, London, UK
| | - David Rees
- King's College Hospital, King's College London, UK
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | |
Collapse
|
6
|
The Use of Next-generation Sequencing in the Diagnosis of Rare Inherited Anaemias: A Joint BSH/EHA Good Practice Paper. Hemasphere 2022; 6:e739. [PMID: 35686139 PMCID: PMC9170004 DOI: 10.1097/hs9.0000000000000739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Abstract
Congenital dyserythropoietic anemias (CDAs) are a heterogeneous group of inherited anemias that affect the normal differentiation-proliferation pathways of the erythroid lineage. They belong to the wide group of ineffective erythropoiesis conditions that mainly result in monolinear cytopenia. CDAs are classified into the 3 major types (I, II, III), plus the transcription factor-related CDAs, and the CDA variants, on the basis of the distinctive morphological, clinical, and genetic features. Next-generation sequencing has revolutionized the field of diagnosis of and research into CDAs, with reduced time to diagnosis, and ameliorated differential diagnosis in terms of identification of new causative/modifier genes and polygenic conditions. The main improvements regarding CDAs have been in the study of iron metabolism in CDAII. The erythroblast-derived hormone erythroferrone specifically inhibits hepcidin production, and its role in the mediation of hepatic iron overload has been dissected out. We discuss here the most recent advances in this field regarding the molecular genetics and pathogenic mechanisms of CDAs, through an analysis of the clinical and molecular classifications, and the complications and clinical management of patients. We summarize also the main cellular and animal models developed to date and the possible future therapies.
Collapse
|
8
|
Russo R, Marra R, Rosato BE, Iolascon A, Andolfo I. Genetics and Genomics Approaches for Diagnosis and Research Into Hereditary Anemias. Front Physiol 2020; 11:613559. [PMID: 33414725 PMCID: PMC7783452 DOI: 10.3389/fphys.2020.613559] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023] Open
Abstract
The hereditary anemias are a relatively heterogeneous set of disorders that can show wide clinical and genetic heterogeneity, which often hampers correct clinical diagnosis. The classical diagnostic workflow for these conditions generally used to start with analysis of the family and personal histories, followed by biochemical and morphological evaluations, and ending with genetic testing. However, the diagnostic framework has changed more recently, and genetic testing is now a suitable approach for differential diagnosis of these patients. There are several approaches to this genetic testing, the choice of which depends on phenotyping, genetic heterogeneity, and gene size. For patients who show complete phenotyping, single-gene testing remains recommended. However, genetic analysis now includes next-generation sequencing, which is generally based on custom-designed targeting panels and whole-exome sequencing. The use of next-generation sequencing also allows the identification of new causative genes, and of polygenic conditions and genetic factors that modify disease severity of hereditary anemias. In the research field, whole-genome sequencing is useful for the identification of non-coding causative mutations, which might account for the disruption of transcriptional factor occupancy sites and cis-regulatory elements. Moreover, advances in high-throughput sequencing techniques have now resulted in the identification of genome-wide profiling of the chromatin structures known as the topologically associating domains. These represent a recurrent disease mechanism that exposes genes to inappropriate regulatory elements, causing errors in gene expression. This review focuses on the challenges of diagnosis and research into hereditary anemias, with indications of both the advantages and disadvantages. Finally, we consider the future perspectives for the use of next-generation sequencing technologies in this era of precision medicine.
Collapse
Affiliation(s)
- Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Roberta Marra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Barbara Eleni Rosato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
9
|
Novel COL4A1 mutations identified in infants with congenital hemolytic anemia in association with brain malformations. Hum Genome Var 2020; 7:42. [PMID: 33298904 PMCID: PMC7695726 DOI: 10.1038/s41439-020-00130-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
Genetic causes of undiagnosed hemolytic anemia in nineteen patients were analyzed by whole-exome sequencing, and novel COL4A1 variants were identified in four patients (21%). All patients were complicated with congenital malformations of the brain, such as porencephaly or schizencephaly. In these patients, hemolysis became less severe within 2 months after birth, and red cell transfusion was no longer required after 50 days, whereas chronic hemolysis continued.
Collapse
|
10
|
Mansour-Hendili L, Aissat A, Badaoui B, Sakka M, Gameiro C, Ortonne V, Wagner-Ballon O, Pissard S, Picard V, Ghazal K, Bahuau M, Guitton C, Mansour Z, Duplan M, Petit A, Costedoat-Chalumeau N, Michel M, Bartolucci P, Moutereau S, Funalot B, Galactéros F. Exome sequencing for diagnosis of congenital hemolytic anemia. Orphanet J Rare Dis 2020; 15:180. [PMID: 32641076 PMCID: PMC7341591 DOI: 10.1186/s13023-020-01425-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Congenital hemolytic anemia constitutes a heterogeneous group of rare genetic disorders of red blood cells. Diagnosis is based on clinical data, family history and phenotypic testing, genetic analyses being usually performed as a late step. In this study, we explored 40 patients with congenital hemolytic anemia by whole exome sequencing: 20 patients with hereditary spherocytosis and 20 patients with unexplained hemolysis. Results A probable genetic cause of disease was identified in 82.5% of the patients (33/40): 100% of those with suspected hereditary spherocytosis (20/20) and 65% of those with unexplained hemolysis (13/20). We found that several patients carried genetic variations in more than one gene (3/20 in the hereditary spherocytosis group, 6/13 fully elucidated patients in the unexplained hemolysis group), giving a more accurate picture of the genetic complexity of congenital hemolytic anemia. In addition, whole exome sequencing allowed us to identify genetic variants in non-congenital hemolytic anemia genes that explained part of the phenotype in 3 patients. Conclusion The rapid development of next generation sequencing has rendered the genetic study of these diseases much easier and cheaper. Whole exome sequencing in congenital hemolytic anemia could provide a more precise and quicker diagnosis, improve patients’ healthcare and probably has to be democratized notably for complex cases.
Collapse
Affiliation(s)
- Lamisse Mansour-Hendili
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France. .,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.
| | - Abdelrazak Aissat
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Bouchra Badaoui
- Département d'hématologie et d'immunologie, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Mehdi Sakka
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Christine Gameiro
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Valérie Ortonne
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Orianne Wagner-Ballon
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département d'hématologie et d'immunologie, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Serge Pissard
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Véronique Picard
- Département d'hématologie, AP-HP, Hôpital Bicêtre, F-94270, Le Kremlin-Bicêtre, France
| | - Khaldoun Ghazal
- Département de Biochimie, AP-HP, Hôpital Bicêtre, F-94270, Le Kremlin-Bicêtre, France
| | - Michel Bahuau
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Corinne Guitton
- Département d'hématologie pédiatrique, AP-HP, Hôpital Bicêtre, F-94270, Le Kremlin-Bicêtre, France
| | - Ziad Mansour
- Clinique ADASSA, Maternité, F-67000, Strasbourg, France
| | - Mylène Duplan
- Département d'onco-hématologie pédiatrique, CHU d'Angers, 4 Rue Larrey, 49100, Angers, France
| | - Arnaud Petit
- Département d'onco-hématologie pédiatrique, AP-HP, Hôpital Armand Trousseau, F-75012, Paris, France
| | | | - Marc Michel
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département de médecine interne, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Pablo Bartolucci
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département de médecine interne, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Unité des maladies génétiques du globule rouge (UMGGR), AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| | - Stéphane Moutereau
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Benoît Funalot
- Département de Biochimie-Biologie Moléculaire, Pharmacologie, Génétique Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France
| | - Frédéric Galactéros
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Creteil, France.,Département de médecine interne, AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France.,Unité des maladies génétiques du globule rouge (UMGGR), AP-HP, Hôpitaux Universitaires Henri Mondor, F-94010, Creteil, France
| |
Collapse
|