1
|
Cardioprotective Signaling Pathways in Obese Mice Submitted to Regular Exercise: Effect on Oxysterols. Int J Mol Sci 2022; 23:ijms231810840. [PMID: 36142751 PMCID: PMC9501447 DOI: 10.3390/ijms231810840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/29/2022] Open
Abstract
Exercise induces cardioprotection against myocardial infarction, despite obesity, by restoring pro-survival pathways and increasing resistance of mitochondrial permeability transition pore (mPTP) opening at reperfusion. Among the mechanisms involved in the inactivation of these pathways, oxysterols appear interesting. Thus, we investigated the influence of regular exercise on the reperfusion injury salvage kinase (RISK) pathway, oxysterols, and mitochondria, in the absence of ischemia-reperfusion. We also studied 7β-hydroxycholesterol (7βOH) concentration (mass spectrometry) in human lean and obese subjects. Wild-type (WT) and obese (ob/ob) mice were assigned to sedentary conditions or regular treadmill exercise. Exercise significantly increased Akt phosphorylation, whereas 7βOH concentration was reduced. Moreover, exercise induced the translocation of PKCε from the cytosol to mitochondria. However, exercise did not affect the calcium concentration required to open mPTP in the mitochondria, neither in WT nor in ob/ob animals. Finally, human plasma 7βOH concentration was consistent with observations made in mice. In conclusion, regular exercise enhanced the RISK pathway by increasing kinase phosphorylation and PKCε translocation and decreasing 7βOH concentration. This activation needs the combination with stress conditions, i.e., ischemia-reperfusion, in order to inhibit mPTP opening at the onset of reperfusion. The human findings suggest 7βOH as a candidate marker for evaluating cardiovascular risk factors in obesity.
Collapse
|
2
|
Chen N, Qi Y, Ma X, Xiao X, Liu Q, Xia T, Xiang J, Zeng J, Tang J. Rediscovery of Traditional Plant Medicine: An Underestimated Anticancer Drug of Chelerythrine. Front Pharmacol 2022; 13:906301. [PMID: 35721116 PMCID: PMC9198297 DOI: 10.3389/fphar.2022.906301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
In many studies, the extensive and significant anticancer activity of chelerythrine (CHE) was identified, which is the primary natural active compound in four traditional botanical drugs and can be applied as a promising treatment in various solid tumors. So this review aimed to summarize the anticancer capacities and the antitumor mechanism of CHE. The literature searches revolving around CHE have been carried out on PubMed, Web of Science, ScienceDirect, and MEDLINE databases. Increasing evidence indicates that CHE, as a benzophenanthridine alkaloid, exhibits its excellent anticancer activity as CHE can intervene in tumor progression and inhibit tumor growth in multiple ways, such as induction of cancer cell apoptosis, cell cycle arrest, prevention of tumor invasion and metastasis, autophagy-mediated cell death, bind selectively to telomeric G-quadruplex and strongly inhibit the telomerase activity through G-quadruplex stabilization, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), and PKC. The role of CHE against diverse types of cancers has been investigated in many studies and has been identified as the main antitumor drug candidate in drug discovery programs. The current complex data suggest the potential value in clinical application and the future direction of CHE as a therapeutic drug in cancer. Furthermore, the limitations and the present problems are also highlighted in this review. Despite the unclearly delineated molecular targets of CHE, extensive research in this area provided continuously fresh data exploitable in the clinic while addressing the present requirement for further studies such as toxicological studies, combination medication, and the development of novel chemical methods or biomaterials to extend the effects of CHE or the development of its derivatives and analogs, contributing to the effective transformation of this underestimated anticancer drug into clinical practice. We believe that this review can provide support for the clinical application of a new anticancer drug in the future.
Collapse
Affiliation(s)
- Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulin Qi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingsong Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Xia
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juyi Xiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Geriatric Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Thijssen DHJ, Uthman L, Somani Y, van Royen N. Short-term exercise-induced protection of cardiovascular function and health: why and how fast does the heart benefit from exercise? J Physiol 2022; 600:1339-1355. [PMID: 35239189 PMCID: PMC9311195 DOI: 10.1113/jp282000#support-information-section] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/10/2021] [Indexed: 05/28/2023] Open
Abstract
Regular exercise training has potent and powerful protective effects against the development of cardiovascular disease. These cardioprotective effects of regular exercise training are partly explained through the effects of exercise on traditional cardiovascular risk factors and improvement in cardiac and vascular health, which take several weeks to months to develop. This review focuses on the observation that single bouts of exercise may also possess an underrecognized, clinically useful form of immediate cardioprotection. Studies, performed in both animals and humans, demonstrate that single or short-term exercise-induced protection (SEP) attenuates the magnitude of cardiac and/or vascular damage in response to prolonged ischaemia and reperfusion injury. This review highlights preclinical evidence supporting the hypothesis that SEP activates multiple pathways to confer immediate protection against ischaemic events, reduce the severity of potentially lethal ischaemic myocardial injury, and therefore act as a physiological first line of defence against injury. Given the fact that the extent of SEP could be modulated by exercise-related and subject-related factors, it is important to recognize and consider these factors to optimize future clinical implications of SEP. This review also summarizes potential effector signalling pathways (i.e. communication between exercising muscles to vascular/cardiac tissue) and intracellular pathways (i.e. reducing tissue damage) that ultimately confer protection against cardiac and vascular injury. Finally, we discuss potential future directions for designing adequate human and animal studies that will support developing effective SEP strategies for the (multi-)diseased and aged individual. KEY POINTS: Single or short-term exercise-induced protection (SEP) attenuates the magnitude of cardiac and/or vascular damage in response to prolonged ischaemia and reperfusion injury (IR injury). SEP activates multiple pathways to confer cardiac protection, which develops remotely at the site of the activated muscle by release of circulating molecules, which transfer towards activation of intramyocardial signalling that promotes cell survival during episodes of IR injury. SEP represents an attractive intervention in aged individuals and in those with co-morbidities. The immediate protection, low cost and simplicity to increase the 'dose' of SEP offers unique opportunities in the clinical applications of SEP.
Collapse
Affiliation(s)
- Dick H. J. Thijssen
- Radboud Institute for Health SciencesDepartments of PhysiologyNijmegenThe Netherlands
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLeicesterUK
| | - Laween Uthman
- Radboud Institute for Health SciencesDepartments of PhysiologyNijmegenThe Netherlands
- CardiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Yasina Somani
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLeicesterUK
| | - Niels van Royen
- CardiologyRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
4
|
Miao LN, Pan D, Shi J, Du JP, Chen PF, Gao J, Yu Y, Shi DZ, Guo M. Role and Mechanism of PKC-δ for Cardiovascular Disease: Current Status and Perspective. Front Cardiovasc Med 2022; 9:816369. [PMID: 35242825 PMCID: PMC8885814 DOI: 10.3389/fcvm.2022.816369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Protein kinase C (PKC) is a protein kinase with important cellular functions. PKC-δ, a member of the novel PKC subfamily, has been well-documented over the years. Activation of PKC-δ plays an important regulatory role in myocardial ischemia/reperfusion (IRI) injury and myocardial fibrosis, and its activity and expression levels can regulate pathological cardiovascular diseases such as atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. This article aims to review the structure and function of PKC-δ, summarize the current research regarding its activation mechanism and its role in cardiovascular disease, and provide novel insight into further research on the role of PKC-δ in cardiovascular diseases.
Collapse
Affiliation(s)
- Li-na Miao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Deng Pan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Junhe Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-peng Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng-fei Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Da-Zhuo Shi
| | - Ming Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Ming Guo
| |
Collapse
|
5
|
Thijssen DHJ, Uthman L, Somani Y, Royen N. Short term exercise‐induced protection of cardiovascular function and health: Why and how fast does the heart benefit from exercise? J Physiol 2021; 600:1339-1355. [PMID: 35239189 PMCID: PMC9311195 DOI: 10.1113/jp282000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract Regular exercise training has potent and powerful protective effects against the development of cardiovascular disease. These cardioprotective effects of regular exercise training are partly explained through the effects of exercise on traditional cardiovascular risk factors and improvement in cardiac and vascular health, which take several weeks to months to develop. This review focuses on the observation that single bouts of exercise may also possess an underrecognized, clinically useful form of immediate cardioprotection. Studies, performed in both animals and humans, demonstrate that single or short‐term exercise‐induced protection (SEP) attenuates the magnitude of cardiac and/or vascular damage in response to prolonged ischaemia and reperfusion injury. This review highlights preclinical evidence supporting the hypothesis that SEP activates multiple pathways to confer immediate protection against ischaemic events, reduce the severity of potentially lethal ischaemic myocardial injury, and therefore act as a physiological first line of defence against injury. Given the fact that the extent of SEP could be modulated by exercise‐related and subject‐related factors, it is important to recognize and consider these factors to optimize future clinical implications of SEP. This review also summarizes potential effector signalling pathways (i.e. communication between exercising muscles to vascular/cardiac tissue) and intracellular pathways (i.e. reducing tissue damage) that ultimately confer protection against cardiac and vascular injury. Finally, we discuss potential future directions for designing adequate human and animal studies that will support developing effective SEP strategies for the (multi‐)diseased and aged individual. Key points Single or short‐term exercise‐induced protection (SEP) attenuates the magnitude of cardiac and/or vascular damage in response to prolonged ischaemia and reperfusion injury (IR injury). SEP activates multiple pathways to confer cardiac protection, which develops remotely at the site of the activated muscle by release of circulating molecules, which transfer towards activation of intramyocardial signalling that promotes cell survival during episodes of IR injury. SEP represents an attractive intervention in aged individuals and in those with co‐morbidities. The immediate protection, low cost and simplicity to increase the ‘dose’ of SEP offers unique opportunities in the clinical applications of SEP.
![]()
Collapse
Affiliation(s)
- Dick H. J. Thijssen
- Radboud Institute for Health Sciences Departments of Physiology Nijmegen The Netherlands
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Leicester United Kingdom
| | - Laween Uthman
- Radboud Institute for Health Sciences Departments of Physiology Nijmegen The Netherlands
- Cardiology Radboud University Medical Center Nijmegen The Netherlands
| | - Yasina Somani
- Research Institute for Sport and Exercise Sciences Liverpool John Moores University Leicester United Kingdom
| | - Niels Royen
- Cardiology Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
6
|
Zeng X, Li X, Li C. Seasons affect the phosphorylation of pork sarcoplasmic proteins related to meat quality. Anim Biosci 2021; 35:96-104. [PMID: 34474534 PMCID: PMC8738932 DOI: 10.5713/ab.21.0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Sarcoplasmic proteins include proteins that play critical roles in biological processes of living organisms. How seasons influence biological processes and meat quality of postmortem muscles through the regulation of protein phosphorylation remain to be investigated. In this study, the phosphorylation of sarcoplasmic proteins in pork longissimus muscle was investigated in four seasons. METHODS Sarcoplasmic proteins were extracted from 40 pork carcasses (10 for each season) and analyzed through ProQ Diamond staining for phosphorylation labeling and Sypro Ruby staining for total protein labeling. The pH of muscle, contents of glycogen and ATP were measured at 45 min, 3 h, and 9 h postmortem and the water (P2b, P21, and P22) was measured at 3 h and 9 h. RESULTS A total of 21 bands were detected. Band 8 (heat shock cognate 71 kDa protein; heat shock 70 kDa protein 1B) had higher phosphorylation level in summer than that in other seasons at 45 min postmortem. The phosphorylation levels of 3 Bands were significantly different between fast and normal pH decline groups (p<0.05). The phosphorylation levels of 4 bands showed negative associations with immobilized water (P21) and positive association with free water (P22). CONCLUSION The phosphorylation levels of sarcoplasmic proteins involved in energy metabolism and heat stress response at early postmortem time differed depending on the seasons. These proteins include heat shock protein 70, pyruvate kinase, phosphoglucomutase-1, glucose-6-phosphate isomerase, and carbonic anhydrase 3. High temperatures in summer might result in the phosphorylation of those proteins, leading to pH decline and low water holding capacity.
Collapse
Affiliation(s)
- Xianming Zeng
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing, 210095, China.,Key Laboratory of Animal Products Processing, MOA, Nanjing, 210095, China.,Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing, 210095, China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing, 210095, China.,Key Laboratory of Animal Products Processing, MOA, Nanjing, 210095, China.,Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing, 210095, China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Nanjing, 210095, China.,Key Laboratory of Animal Products Processing, MOA, Nanjing, 210095, China.,Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing, 210095, China.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Jiang L, Shen X, Dun Y, Xie M, Fu S, Zhang W, Qiu L, Ripley-Gonzalez JW, Liu S. Exercise combined with trimetazidine improves anti-fatal stress capacity through enhancing autophagy and heat shock protein 70 of myocardium in mice. Int J Med Sci 2021; 18:1680-1686. [PMID: 33746584 PMCID: PMC7976563 DOI: 10.7150/ijms.53899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Anti-stress capacity is important to resist the occurrence of adverse events. To observe the effects of exercise, trimetazidine alone or combined on the anti-stress capacity of mice, and further explore its potential mechanism. Methods: Forty-four C57BL/6 male mice aged 8 weeks were randomly divided into four groups (n=11 for each group): control group (group C), exercise group (group E), trimetazidine group (group T), exercise combined with trimetazidine group (group TE). After the intervention, each group was randomly subdivided into the exhaustive exercise (EE, n=6) and the non-EE (n=5) subgroups. The mice in the EE-subgroup underwent EE. Mice were sacrificed 12 hours later after EE. The myocardial ultrastructure and autophagosomes were observed under an electron microscope. The expression of autophagy-related proteins: BNIP3, LC3-II, and P62 were analyzed and the heat shock protein 70 mRNA transcription and protein expression were also investigated. Results: Exercise or trimetazidine increased the expression of BNIP3, LC3-II, and heat shock protein 70, decreased the expression of P62 pre- and post-EE while the combination has the synergistic effect. Conclusion: Exercise and trimetazidine, alone or combined enhanced the anti-stress capacity of mice significantly. The underlying mechanism may be associated with the promotion of autography and the expression of heat shock protein 70.
Collapse
Affiliation(s)
- Lingjun Jiang
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China.,Division of Sport and Rehabilitation Medicine, University Hospital Ulm, Parkstr. 11, 89075, Ulm, Germany
| | - Xuanlin Shen
- Department of Rehabilitation, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu 215500, P.R China
| | - Yaoshan Dun
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Murong Xie
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Siqian Fu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Wenliang Zhang
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Ling Qiu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Jeffrey W Ripley-Gonzalez
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| | - Suixin Liu
- Division of Cardiac Rehabilitation, Department of Physical Medicine & Rehabilitation, Xiangya Hospital Central South University, Changsha, Hunan 410008, P.R China
| |
Collapse
|
8
|
Nitika, Porter CM, Truman AW, Truttmann MC. Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code. J Biol Chem 2020; 295:10689-10708. [PMID: 32518165 PMCID: PMC7397107 DOI: 10.1074/jbc.rev120.011666] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/08/2020] [Indexed: 02/01/2023] Open
Abstract
Cells must be able to cope with the challenge of folding newly synthesized proteins and refolding those that have become misfolded in the context of a crowded cytosol. One such coping mechanism that has appeared during evolution is the expression of well-conserved molecular chaperones, such as those that are part of the heat shock protein 70 (Hsp70) family of proteins that bind and fold a large proportion of the proteome. Although Hsp70 family chaperones have been extensively examined for the last 50 years, most studies have focused on regulation of Hsp70 activities by altered transcription, co-chaperone "helper" proteins, and ATP binding and hydrolysis. The rise of modern proteomics has uncovered a vast array of post-translational modifications (PTMs) on Hsp70 family proteins that include phosphorylation, acetylation, ubiquitination, AMPylation, and ADP-ribosylation. Similarly to the pattern of histone modifications, the histone code, this complex pattern of chaperone PTMs is now known as the "chaperone code." In this review, we discuss the history of the Hsp70 chaperone code, its currently understood regulation and functions, and thoughts on what the future of research into the chaperone code may entail.
Collapse
Affiliation(s)
- Nitika
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Corey M Porter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Matthias C Truttmann
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Exercise Preconditioning Plays a Protective Role in Exhaustive Rats by Activating the PI3K-Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3598932. [PMID: 32063981 PMCID: PMC6998755 DOI: 10.1155/2020/3598932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/12/2019] [Accepted: 12/20/2019] [Indexed: 12/24/2022]
Abstract
Objective To investigate whether exercise preconditioning (EP) protects the rat heart from exhaustive exercise- (EE-) induced injury by inducing the PI3K-Akt signaling pathway. Methods 84 male Sprague-Dawley rats were randomly divided into 6 groups (n = 14 rats per group): control group (Con), exhaustive exercise group (EE), exercise preconditioning group (EP), exercise preconditioning + exhaustive exercise group (EP + EE), LY294002 (PI3K inhibitor) + exercise preconditioning + exhaustive exercise group (LY + EP + EE), and LY294002 group (LY). The Con and LY did not exercise. The remaining groups were subjected to treadmill running. The structure of myocardial tissue and serum biomarkers of myocardial injury were observed. Hemodynamic parameters were recorded with a pressure-volume catheter. TUNEL assay was used to detect the apoptosis of cardiac myocytes, and the level of mitochondrial membrane permeability transforming pore (mPTP) in myocardium was evaluated using ELISA. Pathway and apoptosis-related proteins in myocardium were assessed using western blotting. Results Compared to the Con group, the EE group showed remarkable myocardial injury, such as cardiac dysfunction and myocardial apoptosis. Compared to the EE group, the injuries in the EP + EE group were improved. EP increased the PI3K-Akt signaling pathway and regulated Bcl-2 family to decrease the mPTP openness level. However, the cardioprotective effects of EP were attenuated when pretreated with the LY294002. Conclusions EP protected the heart from EE-induced injury, and it may improve the cardiac function and reduce the cardiomyocyte apoptosis by activating the PI3K-Akt signaling pathway.
Collapse
|
10
|
Weng X, Liu H, Zhang X, Sun Q, Li C, Gu M, Xu Y, Li S, Li W, Du J. An α 2-adrenoceptor agonist: Dexmedetomidine induces protective cardiomyocyte hypertrophy through mitochondrial-AMPK pathway. Int J Med Sci 2020; 17:2454-2467. [PMID: 33029088 PMCID: PMC7532472 DOI: 10.7150/ijms.47598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Aims: Dexmedetomidine (Dex) as a highly selective α2-adrenoceptor agonist, was widely used anesthetic in perioperative settings, whether Dex induces cardiac hypertrophy during perioperative administration is unknown. Methods: The effects of Dex on cardiac hypertrophy were explored using the transverse aortic constriction model and neonatal rat cardiomyocytes. Results: We reported that Dex induces cardiomyocyte hypertrophy with activated ERK, AKT, PKC and inactivated AMPK in both wild-type mice and primary cultured rat cardiomyocytes. Additionally, pre-administration of Dex protects against transverse aortic constriction induced-heart failure in mice. We found that Dex up-regulates the activation of ERK, AKT, and PKC via suppression of AMPK activation in rat cardiomyocytes. However, suppression of mitochondrial coupling efficiency and membrane potential by FCCP blocks Dex induced AMPK inactivation as well as ERK, AKT, and PKC activation. All of these effects are blocked by the α2-adrenoceptor antagonist atipamezole. Conclusion: The present study demonstrates Dex preconditioning induces cardiac hypertrophy that protects against heart failure through mitochondria-AMPK pathway in perioperative settings.
Collapse
Affiliation(s)
- Xiaojian Weng
- Department of Anesthesiology and SICU, Xinhua Hospital, Shanghai, China
| | - Hua Liu
- Department of Anesthesiology, The Ninth People's Hospital, Shanghai, China
| | - Xiaodan Zhang
- Department of ICU, Shanghai General Hospital, Shanghai, China
| | - Qianqian Sun
- Department of Anesthesiology and SICU, Xinhua Hospital, Shanghai, China
| | - Cheng Li
- Department of Anesthesiology and SICU, Xinhua Hospital, Shanghai, China
| | - Minglu Gu
- Department of Anesthesiology and SICU, Xinhua Hospital, Shanghai, China
| | - Yanyifang Xu
- Department of Anesthesiology and SICU, Xinhua Hospital, Shanghai, China
| | - Shitong Li
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Li
- Department of Anesthesiology and SICU, Xinhua Hospital, Shanghai, China
| | - Jianer Du
- Department of Anesthesiology and SICU, Xinhua Hospital, Shanghai, China
| |
Collapse
|
11
|
Phosphoproteins Involved in the Inhibition of Apoptosis and in Cell Survival in the Leiomyoma. J Clin Med 2019; 8:jcm8050691. [PMID: 31100862 PMCID: PMC6572112 DOI: 10.3390/jcm8050691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
Uterine leiomyomas are benign smooth muscle cell tumors originating from the myometrium. In this study we focus on leiomyoma and normal myometrium phosphoproteome, to identify differentially phosphorylated proteins involved in tumorigenic signaling pathways, and in anti-apoptotic processes and cell survival. We obtained paired tissue samples of seven leiomyomas and adjacent myometria and analyzed the phosphoproteome by two-dimensional gel electrophoresis (2-DE) combined with immobilized metal affinity chromatography (IMAC) and Pro-Q Diamond phosphoprotein gel stain. We used mass spectrometry for protein identification and Western blotting for 2-DE data validation. Quantities of 33 proteins enriched by the IMAC approach were significantly different in the leiomyoma if compared to the myometrium. Bioinformatic analysis revealed ten tumorigenic signaling pathways and four phosphoproteins involved in both the inhibition of apoptosis and cell survival. Our study highlights the involvement of the phosphoproteome in leiomyoma growth. Further studies are needed to understand the role of phosphorylation in leiomyoma. Our data shed light on mechanisms that still need to be ascertained, but could open the path to a new class of drugs that not only can block the growth, but could also lead to a significant reduction in tumor size.
Collapse
|
12
|
Zemanovic S, Ivanov MV, Ivanova LV, Bhatnagar A, Michalkiewicz T, Teng RJ, Kumar S, Rathore R, Pritchard KA, Konduri GG, Afolayan AJ. Dynamic Phosphorylation of the C Terminus of Hsp70 Regulates the Mitochondrial Import of SOD2 and Redox Balance. Cell Rep 2018; 25:2605-2616.e7. [PMID: 30485823 PMCID: PMC6377235 DOI: 10.1016/j.celrep.2018.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
The import of superoxide dismutase-2 (SOD2) into mitochondria is vital for the survival of eukaryotic cells. SOD2 is encoded within the nuclear genome and translocated into mitochondria for activation after translation in the cytosol. The molecular chaperone Hsp70 modulates SOD2 activity by promoting import of SOD2 into mitochondria. In turn, the activity of Hsp70 is controlled by co-chaperones, particularly CHIP, which directs Hsp70-bound proteins for degradation in the proteasomes. We investigated the mechanisms controlling the activity of SOD2 to signal activation and maintain mitochondrial redox balance. We demonstrate that Akt1 binds to and phosphorylates the C terminus of Hsp70 on Serine631, which inhibits CHIP-mediated SOD2 degradation thereby stabilizing and promoting SOD2 import. Conversely, increased mitochondrial-H2O2 formation disrupts Akt1-mediated phosphorylation of Hsp70, and non-phosphorylatable Hsp70 mutants decrease SOD2 import, resulting in mitochondrial oxidative stress. Our findings identify Hsp70 phosphorylation as a physiological mechanism essential for regulation of mitochondrial redox balance.
Collapse
Affiliation(s)
- Sara Zemanovic
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Cardiovascular Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA
| | - Maxim V Ivanov
- Department of Chemistry, Marquette University, 1250 W. Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Lena V Ivanova
- Department of Chemistry, Marquette University, 1250 W. Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Amogh Bhatnagar
- Department of Chemistry, Marquette University, 1250 W. Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Teresa Michalkiewicz
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Cardiovascular Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA
| | - Ru-Jeng Teng
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Cardiovascular Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA
| | - Suresh Kumar
- Cardiovascular Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA
| | - Rajendra Rathore
- Department of Chemistry, Marquette University, 1250 W. Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Kirkwood A Pritchard
- Cardiovascular Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA
| | - Girija G Konduri
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Cardiovascular Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA
| | - Adeleye J Afolayan
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Cardiovascular Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Road, Wauwatosa, WI 53226, USA.
| |
Collapse
|
13
|
Ranek MJ, Stachowski MJ, Kirk JA, Willis MS. The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0530. [PMID: 29203715 DOI: 10.1098/rstb.2016.0530] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
The ongoing contractile and metabolic demands of the heart require a tight control over protein quality control, including the maintenance of protein folding, turnover and synthesis. In heart disease, increases in mechanical and oxidative stresses, post-translational modifications (e.g., phosphorylation), for example, decrease protein stability to favour misfolding in myocardial infarction, heart failure or ageing. These misfolded proteins are toxic to cardiomyocytes, directly contributing to the common accumulation found in human heart failure. One of the critical class of proteins involved in protecting the heart against these threats are molecular chaperones, including the heat shock protein70 (HSP70), HSP90 and co-chaperones CHIP (carboxy terminus of Hsp70-interacting protein, encoded by the Stub1 gene) and BAG-3 (BCL2-associated athanogene 3). Here, we review their emerging roles in the maintenance of cardiomyocytes in human and experimental models of heart failure, including their roles in facilitating the removal of misfolded and degraded proteins, inhibiting apoptosis and maintaining the structural integrity of the sarcomere and regulation of nuclear receptors. Furthermore, we discuss emerging evidence of increased expression of extracellular HSP70, HSP90 and BAG-3 in heart failure, with complementary independent roles from intracellular functions with important therapeutic and diagnostic considerations. While our understanding of these major HSPs in heart failure is incomplete, there is a clear potential role for therapeutic modulation of HSPs in heart failure with important contextual considerations to counteract the imbalance of protein damage and endogenous protein quality control systems.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Mark J Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Marisa J Stachowski
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Jonathan A Kirk
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University, Chicago, IL 60302, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, CB#7525, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
14
|
Yuan Y, Pan SS, Shen YJ. Cardioprotection of exercise preconditioning involving heat shock protein 70 and concurrent autophagy: a potential chaperone-assisted selective macroautophagy effect. J Physiol Sci 2018; 68:55-67. [PMID: 27928720 PMCID: PMC10717675 DOI: 10.1007/s12576-016-0507-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/21/2016] [Indexed: 12/23/2022]
Abstract
It has been confirmed that exercise preconditioning (EP) has a protective effect on acute cardiovascular stress. However, how Hsp70 participates in EP-induced cardioprotection is unknown. EP may involve Hsp70 to repair unfolded proteins or may also stabilize the function of the endoplasmic reticulum via Hsp70-related autophagy to work on a protective formation. Our EP protocol involves four periods of 10 min running with 10 min recovery intervals. We added a period of exhaustive running to test this protective effect, using histology and molecular biotechnology methods to detect related markers. EP provided cardioprotection at its early and late phases against exhaustive exercise-induced ischemic myocardial injury. Results showed that Hsp70 co-chaperone protein BAG3, ubiquitin adaptor p62 and critical autophagy protein LC3 were significantly upregulated at the early phase. Meanwhile, Hsp70, Hsp70/BAG3 co-localization extent, LC31 and LC3II were significantly upregulated at the late phase. Hsp70 mRNA levels and LC3II/I ratios were also consistent with the extent of myocardial injury following exhaustive exercise. Hsp70 increase was delayed relative to BAG3 and p62 after EP, indicating a pre-synthesized phenomenon of BAG3 and p62 for chaperone-assisted selective autophagy (CASA). The decreased Hsp70, BAG3 and p62 levels and increased Hsp70/BAG3 co-localization extent and LC3 levels induced by exhaustive exercise after EP suggest that EP-induced cardioprotection might associate with CASA. Hsp70 has a cardioprotective role and has a closer link with CASA in LEP. Additionally, EP may not cause exhaustion-dependent excessive autophagy regulation. Collectively, during early and late EP, CASA potentially plays different roles in cardioprotection.
Collapse
Affiliation(s)
- Yang Yuan
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China
| | - Shan-Shan Pan
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China.
| | - Yu-Jun Shen
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China
| |
Collapse
|
15
|
Protective effects of high-intensity versus low-intensity interval training on isoproterenol-induced cardiac injury in wistar rats. Res Cardiovasc Med 2017. [DOI: 10.5812/cardiovascmed.34639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Phosphoproteomic profiling of myofibrillar and sarcoplasmic proteins of muscle in response to salting. Food Sci Biotechnol 2016; 25:993-1001. [PMID: 30263365 DOI: 10.1007/s10068-016-0161-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022] Open
Abstract
A phosphoproteomic profile of myofibrillar and sarcoplasmic proteins of muscle in response to salting was investigated. Myofibrillar and sarcoplasmic proteins extracted from salted meat with 0, 1, 2, 3, 4, and 5% salt for 0, 2, 4, 6, 8, and 16 h were analyzed by SDS-PAGE electrophoresis and fluorescence staining. The global phosphorylation of myofibrillar proteins in salted meat was lower than that in control muscle at 16 h of salting (p<0.05), and the global phosphorylation of myofibrillar proteins in 3% salt-treated group at 16 h was the lowest. However, salting showed no significant effect on phosphorylation of sarcoplasmic proteins. Four categories of phosphorylated protein were identified by LC-MS/MS, involved in stress response (heat shock protein), glycometabolism (glycogen phosphorylase, glyceraldehyde-3-phosphate dehydrogenase), oxidation or reduction (superoxide dismutase), and others (myoglobin), the phosphorylation of which was affected by salting. Thus, salting may influence meat quality through protein phosphorylation, which regulates protein degradation and glycolysis.
Collapse
|
17
|
Zhang Q, Tian Y, Duan J, Wu J, Yan S, Chen H, Meng X, Owusu-Ansah KG, Zheng S. Chelerythrine ameliorates acute cardiac allograft rejection in mice. Transpl Immunol 2016; 38:78-83. [PMID: 27450116 DOI: 10.1016/j.trim.2016.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 01/23/2023]
Abstract
The improvement in graft survival over the past decade has been mainly due to calcineurin inhibitors, which interfere with the calcium-mediated pathway. Recently, other pathways such as those mediated by protein kinase C (PKC) are coming into view. The purpose of this study was to assess the immunosuppressive properties of chelerythrine, a specific PKC inhibitor, in preventing acute rejection in murine heterotopic heart transplantation. Mice were randomly divided into control and chelerythrine treated group. The control group received PBS while the chelerythrine treated group was given intraperitoneal injection doses (1, 5, 10mg/kg) of chelerythrine from day 0 to day 14 after heart transplantation. Six days after transplantation, cardiac allografts were harvested for further tests. The mean survival time (MST) of the cardiac allograft in untreated animals was 8days while graft MSTs observed in chelerythrine treated group was 13 and 23days at 5 and 10mg/kg treatment doses, respectively (P<0.05). Histologic assessment of the allograft in chelerythrine group showed a significant decline in histologic rejection score, as well as CD4+ and CD8+ T cell infiltration and ICAM-1+ endothelial cell activation. Down-regulation of Th1/Th2 cytokine expression was observed in chelerythrine treatment group. Meanwhile, chelerythrine was also found to inhibit the dephosphorylation of phosphorylated nuclear factor of activated T cells (NFAT) protein 1 and 4.
Collapse
Affiliation(s)
- Qiyi Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Yang Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Jixuan Duan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Jingjin Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Sheng Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Hui Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Xueqin Meng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Kwabena Gyabaah Owusu-Ansah
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang Province, Hangzhou, China; Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
18
|
Ding CL, Xu G, Tang HL, Zhu SY, Zhao LJ, Ren H, Zhao P, Qi ZT, Wang W. Anchoring of both PKA-RIIα and 14-3-3θ regulates retinoic acid induced 16 mediated phosphorylation of heat shock protein 70. Oncotarget 2016; 6:15540-50. [PMID: 25900241 PMCID: PMC4558169 DOI: 10.18632/oncotarget.3702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
Our previous study reported that retinoic acid induced 16 (RAI16) could enhance tumorigenesis in hepatocellular carcinoma (HCC). However, the cellular functions of RAI16 are still unclear. In this study, by immunoprecipitation and tandem (MS/MS) mass spectrometry analysis, we identified that RAI16 interacted with the type II regulatory subunit of PKA (PKA-RIIα), acting as a novel protein kinase A anchoring protein (AKAP). In addition, RAI16 also interacted with heat shock protein 70 (HSP70) and 14-3-3θ. Further studies indicated that RAI16 mediated PKA phosphorylation of HSP70 at serine 486, resulting in anti-apoptosis events. RAI16 was also phosphorylated by the anchored PKA at serine 325, which promoted the recruitment of 14-3-3θ, which, in turn, inhibited RAI16 mediated PKA phosphorylation of HSP70. These findings offer mechanism insight into RAI16 mediated anti-apoptosis signaling in HCC.
Collapse
Affiliation(s)
- Cui-Ling Ding
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Gang Xu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Hai-Lin Tang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Shi-Ying Zhu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Lan-Juan Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Hao Ren
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Ping Zhao
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Zhong-Tian Qi
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| | - Wen Wang
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, Shanghai, China
| |
Collapse
|
19
|
Chen L, Li X, Ni N, Liu Y, Chen L, Wang Z, Shen QW, Zhang D. Phosphorylation of myofibrillar proteins in post-mortem ovine muscle with different tenderness. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1474-83. [PMID: 25950868 DOI: 10.1002/jsfa.7244] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/13/2015] [Accepted: 04/28/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Tenderness is one of the most important quality attributes especially for beef and lamb. As protein phosphorylation and dephosphorylation regulate glycolysis, muscle contraction and turnover of proteins within living cells, it may contribute to the conversion of muscle to meat. The changes of myofibrillar protein phosphorylation in post-mortem ovine muscle with different levels of tenderness were investigated in this study. RESULTS The protein phosphorylation level (P/T ratio) of the tender group increased from 0.5 to 12 h post mortem and then decreased. The P/T ratio of tough group increased during 24 h post mortem, increasing faster from 0.5 to 4 h post mortem than from 4 to 24 h post mortem.The global phosphorylation level of tough meat was significantly higher than tender meat at 4, 12 and 24 h post mortem (P < 0.05). Protein identification revealed that most of the phosphoproteins were proteins with sarcomeric function; the others were involved in glycometabolism, stress response, etc. The phosphorylation levels of myofibrillar proteins, e.g. myosin light chain 2 and actin, were significantly different among groups of different tenderness and at different post-mortem time points (P < 0.05). CONCLUSION Protein phosphorylation may influence meat rigor mortis through contractile machinery and glycolysis, which in turn affect meat tenderness.
Collapse
Affiliation(s)
- Lijuan Chen
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Xin Li
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Na Ni
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Yue Liu
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Li Chen
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Zhenyu Wang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Qingwu W Shen
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
| | - Dequan Zhang
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, People's Republic of China
- Synergetic Innovation Center of Food Safety and Nutrition, Beijing 100193, People's Republic of China
| |
Collapse
|
20
|
Wang K, Xu BC, Duan HY, Zhang H, Hu FS. Late cardioprotection of exercise preconditioning against exhaustive exercise-induced myocardial injury by up-regulatation of connexin 43 expression in rat hearts. ASIAN PAC J TROP MED 2015; 8:658-63. [DOI: 10.1016/j.apjtm.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/20/2015] [Accepted: 07/15/2015] [Indexed: 11/29/2022] Open
|
21
|
Hao Z, Pan SS, Shen YJ, Ge J. Exercise preconditioning-induced late phase of cardioprotection against exhaustive exercise: possible role of protein kinase C delta. J Physiol Sci 2014; 64:333-45. [PMID: 24951033 PMCID: PMC10717080 DOI: 10.1007/s12576-014-0323-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 05/23/2014] [Indexed: 11/26/2022]
Abstract
The objective of this study was to investigate the late cardiac effect of exercise preconditioning (EP) on the exhaustive exercise-induced myocardial injury in rats and the role of protein kinase C (PKC) in EP. Rats were subjected to a run on the treadmill for four periods of 10 min each at 30 m/min with intervening periods of rest of 10 min as an EP protocol. The exhaustive exercise was performed 24 h after EP. PKC inhibitor chelerythrine (CHE) was injected before EP. The results showed that EP increased the running ability of rats, and alleviated the exhaustive exercise-induced injury in cardiomyocytes, but pretreatment with PKC inhibitor CHE did not abolish the late phase cardioprotection of EP. A significant increase of PKCδ, both at the protein level and the mRNA level in the left ventricular myocardium of rats, accompanied by its activated form (phosphorylated on Thr507, p-PKCδThr507) translocated to intercalated disks and was found in the late phase of EP. This circumstance was not attenuated by CHE. These results suggested that a high level of PKCδ might be involved in cardioprotection against myocardial damage, but if activated PKCδ at reperfusion took on a key role in cardioprotection was still an outstanding question.
Collapse
Affiliation(s)
- Zhe Hao
- Department of Sports Anatomy, School of Sports Science, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438 China
| | - Shan-Shan Pan
- Department of Sports Anatomy, School of Sports Science, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438 China
| | - Yu-Jun Shen
- Department of Sports Anatomy, School of Sports Science, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438 China
| | - Jun Ge
- Department of Sports Anatomy, School of Sports Science, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438 China
| |
Collapse
|
22
|
Quindry JC, Hamilton KL. Exercise and cardiac preconditioning against ischemia reperfusion injury. Curr Cardiol Rev 2014; 9:220-9. [PMID: 23909636 PMCID: PMC3780347 DOI: 10.2174/1573403x113099990033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 06/02/2013] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease (CVD), including ischemia reperfusion (IR) injury, remains a major cause of morbidity and mortality in industrialized nations. Ongoing research is aimed at uncovering therapeutic interventions against IR injury. Regular exercise participation is recognized as an important lifestyle intervention in the prevention and treatment of CVD and IR injury. More recent understanding reveals that moderate intensity aerobic exercise is also an important experimental model for understanding the cellular mechanisms of cardioprotection against IR injury. An important discovery in this regard was the observation that one-to-several days of exercise will attenuate IR injury. This phenomenon has been observed in young and old hearts of both sexes. Due to the short time course of exercise induced protection, IR injury prevention must be mediated by acute biochemical alterations within the myocardium. Research over the last decade reveals that redundant mechanisms account for exercise induced cardioprotection against IR. While much is now known about exercise preconditioning against IR injury, many questions remain. Perhaps most pressing, is what mechanisms mediate cardioprotection in aged hearts and what sex-dependent differences exist. Given that that exercise preconditioning is a polygenic effect, it is likely that multiple mediators of exercise induced cardioprotection have yet to be uncovered. Also unknown, is whether post translational modifications due to exercise are responsible for IR injury prevention. This review will provide an overview the major mechanisms of IR injury and exercise preconditioning. The discussion highlights many promising avenues for further research and describes how exercise preconditioning may continue to be an important scientific paradigm in the translation of cardioprotection research to the clinic.
Collapse
Affiliation(s)
- John C Quindry
- Cardioprotection Laboratory, Department of Kinesiology, Auburn University, AL 36849, USA
| | | |
Collapse
|
23
|
Hao Z, Pan SS, Shen YJ, Ge J. Exercise Preconditioning-Induced Early and Late Phase of Cardioprotection Is Associated With Protein Kinase C Epsilon Translocation. Circ J 2014; 78:1636-45. [DOI: 10.1253/circj.cj-13-1525] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhe Hao
- Department of Sports Anatomy, School of Sports Science, Shanghai University of Sport
| | - Shan-Shan Pan
- Department of Sports Anatomy, School of Sports Science, Shanghai University of Sport
| | - Yu-Jun Shen
- Department of Sports Anatomy, School of Sports Science, Shanghai University of Sport
| | - Jun Ge
- Department of Sports Anatomy, School of Sports Science, Shanghai University of Sport
| |
Collapse
|
24
|
Nowak G, Soundararajan S, Mestril R. Protein kinase C-α interaction with iHSP70 in mitochondria promotes recovery of mitochondrial function after injury in renal proximal tubular cells. Am J Physiol Renal Physiol 2013; 305:F764-76. [PMID: 23804450 DOI: 10.1152/ajprenal.00061.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This study determined the role of PKC-α and associated inducible heat shock protein 70 (iHSP70) in the repair of mitochondrial function in renal proximal tubular cells (RPTCs) after oxidant injury. Wild-type PKC-α (wtPKC-α) and an inactive PKC-α [dominant negative dn; PKC-α] mutant were overexpressed in primary cultures of RPTCs, and iHSP70 levels and RPTC regeneration were assessed after treatment with the oxidant tert-butylhydroperoxide (TBHP). TBHP exposure increased ROS production and induced RPTC death, which was prevented by ferrostatin and necrostatin-1 but not by cyclosporin A. Overexpression of wtPKC-α maintained mitochondrial levels of active PKC-α, reduced cell death, and accelerated proliferation without altering ROS production in TBHP-injured RPTCs. In contrast, dnPKC-α blocked proliferation and monolayer regeneration. Coimmunoprecipitation and proteomic analysis demonstrated an association between inactive, but not active, PKC-α and iHSP70 in mitochondria. Mitochondrial iHSP70 levels increased as levels of active PKC-α decreased after injury. Overexpression of dnPKC-α augmented, whereas overexpression of wtPKC-α abrogated, oxidant-induced increases in mitochondrial iHSP70 levels. iHSP70 overexpression (1) maintained mitochondrial levels of phosphorylated PKC-α, (2) improved the recovery of state 3 respiration and ATP content, (3) decreased RPTC death (an effect abrogated by cyclosporine A), and (4) accelerated proliferation after oxidant injury. In contrast, iHSP70 inhibition blocked the recovery of ATP content and exacerbated RPTC death. Inhibition of PKC-α in RPTC overexpressing iHSP70 blocked the protective effects of iHSP70. We conclude that active PKC-α maintains mitochondrial function and decreases cell death after oxidant injury. iHSP70 is recruited to mitochondria in response to PKC-α dephosphorylation and associates with and reactivates inactive PKC-α, which promotes the recovery of mitochondrial function, decreases RPTC death, and improves regeneration.
Collapse
Affiliation(s)
- Grazyna Nowak
- Dept. of Pharmaceutical Sciences, Univ. of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
25
|
Zhang X, Xiao Z, Yao J, Zhao G, Fa X, Niu J. Participation of protein kinase C in the activation of Nrf2 signaling by ischemic preconditioning in the isolated rabbit heart. Mol Cell Biochem 2012; 372:169-79. [DOI: 10.1007/s11010-012-1458-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
|
26
|
Webster I, Du Toit EF, Huisamen B, Lochner A. The effect of creatine supplementation on myocardial function, mitochondrial respiration and susceptibility to ischaemia/reperfusion injury in sedentary and exercised rats. Acta Physiol (Oxf) 2012; 206:6-19. [PMID: 22741552 DOI: 10.1111/j.1748-1716.2012.02463.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To investigate the effects of dietary creatine supplementation alone and in combination with exercise on basal cardiac function, susceptibility to ischaemia/reperfusion injury and mitochondrial oxidative function. There has been an increase in the use of creatine supplementation among sports enthusiasts, and by clinicians as a therapeutic agent in muscular and neurological diseases. The effects of creatine have been studied extensively in skeletal muscle, but not in the myocardium. METHODS Male Wistar rats were swim-trained for 8 weeks, 5 days per week. Hearts were excised and either freeze-clamped for biochemical analysis or perfused on the isolated heart perfusion system to assess function and ischaemia/reperfusion tolerance. Mechanical function was documented in working heart and retrograde mode. The left coronary artery was ligated and infarct size determined. Mitochondrial oxidative capacity was quantified. RESULTS Aortic output recovery of hearts from the sedentary controls (CSed) was significantly higher than those from creatine-supplemented sedentary (CrSed), creatine-supplemented exercised (CrEx) as well as control exercised (CEx) groups. Ischaemic contracture of hearts from CrEx was significantly higher than that of CSed. There were no differences in infarct size and mitochondrial oxygen consumption. CONCLUSION This study suggests that creatine supplementation has no effects on basal cardiac function but reduces myocardial tolerance to ischaemia in hearts from exercise-trained animals, by increasing the ischaemic contracture and decreasing reperfusion aortic output. Exercise training alone also significantly decreased aortic output recovery. However, the exact mechanisms for these adverse myocardial effects are unknown and need further investigation.
Collapse
Affiliation(s)
- I. Webster
- Medical Physiology; University of Stellenbosch; Cape Town; South Africa
| | - E. F. Du Toit
- School of Medical Sciences; Griffith University; QLD; Australia
| | - B. Huisamen
- Medical Physiology; University of Stellenbosch; Cape Town; South Africa
| | - A. Lochner
- Medical Physiology; University of Stellenbosch; Cape Town; South Africa
| |
Collapse
|
27
|
Weeks KL, Gao X, Du XJ, Boey EJ, Matsumoto A, Bernardo BC, Kiriazis H, Cemerlang N, Tan JW, Tham YK, Franke TF, Qian H, Bogoyevitch MA, Woodcock EA, Febbraio MA, Gregorevic P, McMullen JR. Phosphoinositide 3-Kinase p110α Is a Master Regulator of Exercise-Induced Cardioprotection and PI3K Gene Therapy Rescues Cardiac Dysfunction. Circ Heart Fail 2012; 5:523-34. [DOI: 10.1161/circheartfailure.112.966622] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background—
Numerous molecular and biochemical changes have been linked with the cardioprotective effects of exercise, including increases in antioxidant enzymes, heat shock proteins, and regulators of cardiac myocyte proliferation. However, a master regulator of exercise-induced protection has yet to be identified. Here, we assess whether phosphoinositide 3-kinase (PI3K) p110α is essential for mediating exercise-induced cardioprotection, and if so, whether its activation independent of exercise can restore function of the failing heart.
Methods and Results—
Cardiac-specific transgenic (Tg) mice with elevated or reduced PI3K(p110α) activity (constitutively active PI3K [caPI3K] and dominant negative PI3K, respectively) and non-Tg controls were subjected to 4 weeks of exercise training followed by 1 week of pressure overload (aortic-banding) to induce pathological remodeling. Aortic-banding in untrained non-Tg controls led to pathological cardiac hypertrophy, depressed systolic function, and lung congestion. This phenotype was attenuated in non-Tg controls that had undergone exercise before aortic-banding. Banded caPI3K mice were protected from pathological remodeling independent of exercise status, whereas exercise provided no protection in banded dominant negative PI3K mice, suggesting that PI3K is necessary for exercise-induced cardioprotection. Tg overexpression of heat shock protein 70 could not rescue the phenotype of banded dominant negative PI3K mice, and deletion of heat shock protein 70 from banded caPI3K mice had no effect. Next, we used a gene therapy approach (recombinant adeno-associated viral vector 6) to deliver caPI3K expression cassettes to hearts of mice with established cardiac dysfunction caused by aortic-banding. Mice treated with recombinant adeno-associated viral 6-caPI3K vectors had improved heart function after 10 weeks.
Conclusions—
PI3K(p110α) is essential for exercise-induced cardioprotection and delivery of caPI3K vector can improve function of the failing heart.
Collapse
Affiliation(s)
- Kate L. Weeks
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Xiaoming Gao
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Xiao-Jun Du
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Esther J.H. Boey
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Aya Matsumoto
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Bianca C. Bernardo
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Helen Kiriazis
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Nelly Cemerlang
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Joon Win Tan
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Yow Keat Tham
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Thomas F. Franke
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Hongwei Qian
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Marie A. Bogoyevitch
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Elizabeth A. Woodcock
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Mark A. Febbraio
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Paul Gregorevic
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| | - Julie R. McMullen
- From the Baker IDI Heart and Diabetes Institute (K.L.W., X.G., X-J.D., E.J.H.B., A.M., B.C.B., H.K., N.C., J.W.T., Y.K.T., H.Q., E.A.W., M.A.F., P.G., J.R.M.); Department of Biochemistry and Molecular Biology, University of Melbourne (K.L.W., M.A.B.), Melbourne, Victoria, Australia; Department of Psychiatry and Department of Pharmacology, New York University, School of Medicine, New York, NY (T.F.F.); Department of Medicine (J.R.M.) and the Department of Physiology (J.R.M.), Monash University,
| |
Collapse
|
28
|
Exercise preconditioning provides early cardioprotection against exhaustive exercise in rats: potential involvement of protein kinase C delta translocation. Mol Cell Biochem 2012; 368:89-102. [PMID: 22648735 DOI: 10.1007/s11010-012-1346-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/16/2012] [Indexed: 12/13/2022]
Abstract
The objective of this study was to investigate the early cardioprotective effect of exercise preconditioning (EP) on the exhaustive exercise-induced myocardial injury in rats and the role of protein kinase C delta isoform (PKCδ) in EP. Rats were subjected to run on the treadmill for four periods of 10 min each at 30 m/min with intervening periods of rest of 10 min as an EP protocol. The exhaustive exercise was performed 0.5 h after EP. PKC inhibitor chelerythrine (CHE) was injected before EP. Our results showed that EP markedly attenuated the exhaustive exercise-induced myocardial ischemia/hypoxia, ultrastructural damage, high serum cTnI, and NT-proBNP levels. CHE injection before EP did not abolish the protection of EP. Both exhaustive exercise and EP produced a significant increase in PKCδ and p-PKCδ(Thr507) protein levels in cardiomyocytes. However, the immunostaining of p-PKCδ(Thr507) in EP cardiomyocytes was primarily localized to intercalated disks and nuclei while the exhaustive exercise-induced high level p-PKCδ(Thr507) was mainly distributed in the cytoplasm. Moreover, the high PKCδ and p-PKCδ(Thr507) levels in exhaustive exercise were significantly down-regulated by EP. CHE did not attenuate the expressions of PKCδ and p-PKCδ(Thr507). These results indicate that an appropriate activation and translocation of PKCδ may represent a mechanism whereby EP can exert an early cardioprotection against exhaustive exercise-induced myocardial injury.
Collapse
|
29
|
Silver JT, Noble EG. Regulation of survival gene hsp70. Cell Stress Chaperones 2012; 17:1-9. [PMID: 21874533 PMCID: PMC3227850 DOI: 10.1007/s12192-011-0290-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 12/31/2022] Open
Abstract
Rapid expression of the survival gene, inducible heat shock protein 70 (hsp70), is critical for mounting cytoprotection against severe cellular stress, like elevated temperature. Hsp70 protein chaperones the refolding of heat-denatured peptides to minimize proteolytic degradation as a part of an eukaryotically conserved phenomenon referred to as the heat shock response. The physiologic stress associated with exercise, which can include elevated temperature, mechanical damage, hypoxia, lowered pH, and reactive oxygen species generation, may promote protein unfolding, leading to hsp70 gene expression in skeletal myofibers. Although the pre-transcriptional activation of hsp70 gene expression has been thoroughly reviewed, discussion of downstream hsp70 gene regulation is less extensive. The purpose of this brief review was to examine all levels of hsp70 gene regulation in response to heat stress and exercise with a special focus on skeletal myofibers where data are available. In general, while heat stress represses bulk gene expression, hsp70 mRNA expression is enhanced. Post-transcriptionally, intronless hsp70 mRNA circumvents a host of decay pathways, as well as heat stress-repressed pre-mRNA splicing and nuclear export. Pre-translationally, hsp70 mRNA is excluded from stress granules and preferentially translated during heat stress-repressed global cap-dependent translation. Post-translationally, nascent Hsp70 protein is thermodynamically stable at elevated temperatures, allowing for the commencement of chaperoning activity early after synthesis to attenuate the heat shock response and protect against subsequent injury. This review demonstrates that hsp70 mRNA expression is closely coupled with functional protein translation.
Collapse
Affiliation(s)
- Jordan Thomas Silver
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
| | - Earl G. Noble
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON Canada N6A 3K7
- Lawson Health Research Institute, The University of Western Ontario, London, ON Canada N6A 3K7
| |
Collapse
|
30
|
Porter K, Medford HM, McIntosh CM, Marsh SA. Cardioprotection requires flipping the 'posttranslational modification' switch. Life Sci 2011; 90:89-98. [PMID: 22154907 DOI: 10.1016/j.lfs.2011.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/11/2011] [Accepted: 10/25/2011] [Indexed: 01/26/2023]
Abstract
Minimizing damage during reperfusion of the heart following an ischemic event is an important part of the recovery process, as is preventing future recurrences; however, restoring blood perfusion to the heart following ischemia can lead to apoptosis, necrosis, and finally, diminished cardiac function. Exercise reduces risk of heart disease and has been shown to improve the recovery of the heart following ischemia and reperfusion. Brief intermittent ischemic events administered prior to or following a myocardial infarction have also been demonstrated to reduce the infarct size and improve cardiac function, thereby providing cardioprotection. Many signaling transduction pathways are known to regulate cardioprotection, including but not limited to calcium regulation, antioxidant scavenging, and kinase activation. Although posttranslational modifications (PTM) such as phosphorylation, O-GlcNAcylation, methylation, and acetylation are essential regulators of these pathways, their contributions are often overlooked in the literature. This review will examine how PTMS are important regulators of cardioprotection and demonstrate why they should be targeted when developing future therapies for the minimization of damage caused by cardiac ischemia and reperfusion.
Collapse
Affiliation(s)
- Karen Porter
- Program in Nutrition and Exercise Physiology, Washington State University, Spokane, WA, USA
| | | | | | | |
Collapse
|
31
|
Frasier CR, Moore RL, Brown DA. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. J Appl Physiol (1985) 2011; 111:905-15. [DOI: 10.1152/japplphysiol.00004.2011] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of exercise to protect the heart against ischemia-reperfusion (I/R) injury is well known in both human epidemiological studies and experimental animal models. In this review article, we describe what is currently known about the ability of exercise to precondition the heart against infarction. Just 1 day of exercise can protect the heart against ischemia/reperfusion damage, and this protection is upheld with months of exercise, making exercise one of the few sustainable preconditioning stimuli. Exercise preconditioning depends on the model and intensity of exercise, and appears to involve heightened oxidant buffering capacity, upregulated subunits of sarcolemmal ATP-sensitive potassium channels, and adaptations to cardiac mitochondria. We review the putative mechanisms involved in exercise preconditioning and point out many areas where future research is necessary to advance our understanding of how this stimulus confers resistance against I/R damage.
Collapse
Affiliation(s)
- Chad R. Frasier
- Department of Physiology, Brody School of Medicine, East Carolina University; and
| | - Russell L. Moore
- Department of Integrative Physiology and Office of the Provost, University of Colorado at Boulder, Boulder, Colorado
| | - David A. Brown
- Department of Physiology, Brody School of Medicine, East Carolina University; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina; and
| |
Collapse
|
32
|
Huang H, Larsen MR, Karlsson AH, Pomponio L, Costa LN, Lametsch R. Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences. Proteomics 2011; 11:4063-76. [DOI: 10.1002/pmic.201100173] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/21/2011] [Accepted: 07/11/2011] [Indexed: 11/08/2022]
|
33
|
Jimenez SK, Jassal DS, Kardami E, Cattini PA. A single bout of exercise promotes sustained left ventricular function improvement after isoproterenol-induced injury in mice. J Physiol Sci 2011; 61:331-6. [PMID: 21487940 PMCID: PMC10717125 DOI: 10.1007/s12576-011-0147-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/28/2011] [Indexed: 01/09/2023]
Abstract
We have investigated whether acute (swimming) exercise is sufficient to have sustained beneficial effects against cardiac functional decline observed after high-dose isoproterenol administration. Mice were subjected to one bout of swimming for 30 min ("swim" group). Twenty-four hours later, they were given isoproterenol (160 mg/kg) to cause injury. Two control groups were included, a shallow "water" group, for which no swimming took place, and a "cage" group; they were both given isoproterenol as in the "swim" group. Cardiac function was assessed by tissue Doppler imaging (TDI) 24 h, 2 weeks, and 4 weeks post-isoproterenol. Left ventricular (LV) systolic function including endocardial velocity and radial strain rate declined significantly in all groups at all time points after isoproterenol, compared with their pre-isoproterenol treatment values. The "swim" group, however, had significantly higher LV systolic function compared with either of the control groups at 24 h, and this improvement persisted 2 and 4 weeks post-treatment. There were no significant differences between the control groups at any time point. In conclusion, a single bout of swimming has sustained beneficial effects against injury, as measured by TDI, after administration of isoproterenol.
Collapse
Affiliation(s)
- Sarah K. Jimenez
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 3J7 Canada
- Institute of Cardiovascular Science, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6 Canada
| | - Davinder S. Jassal
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 3J7 Canada
- Institute of Cardiovascular Science, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6 Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, MB R3E 3J7 Canada
- Institute of Cardiovascular Science, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6 Canada
| | - Peter A. Cattini
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 3J7 Canada
| |
Collapse
|
34
|
Short-term exercise provides left ventricular myocardial protection against intermittent hypoxia-induced apoptosis in rats. Eur J Appl Physiol 2011; 111:1939-50. [DOI: 10.1007/s00421-010-1824-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
|
35
|
Shen YJ, Pan SS, Zhuang T, Wang FJ. Exercise preconditioning initiates late cardioprotection against isoproterenol-induced myocardial injury in rats independent of protein kinase C. J Physiol Sci 2011; 61:13-21. [PMID: 20941560 PMCID: PMC10716974 DOI: 10.1007/s12576-010-0116-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/16/2010] [Indexed: 11/25/2022]
Abstract
The objective of this study was to investigate the late cardioprotective effect of exercise preconditioning (EP) on isoproterenol (ISO)-induced myocardial injury in rats and the role of protein kinase C (PKC) in EP. Rats were injected with ISO 24 h after running on a treadmill for four periods of 10 min each at 28-30 m/min with intervening periods of rest of 10 min. Nonselective PKC inhibitor chelerythrine (CHE) was injected before EP. The myocardial injury was evaluated quantitatively in terms of the serum cardiac troponin I (cTnI) levels, the myocardial ischemia/hypoxia area, and the integral optical density (IOD) of haematoxylin-basic fuchsin-picric acid (HBFP) staining, and qualitatively in terms of the myocardial ultrastructure. EP markedly attenuated the ISO-induced myocardial ischemia/hypoxia and ultrastructural damage with lower serum cTnI levels. CHE injection before EP did not block the protective effect of EP, displaying a mild myocardial ischemia/hypoxia and well-preserved ultrastructure with even lower serum cTnI levels. The results indicate that EP can exert a late cardioprotection against ISO-induced myocardial injury, and that an injection of the nonselective PKC inhibitor CHE before EP may have a different effect on ISO-induced myocardial injury. Further investigation needs to be conducted to define the role of different PKC isozymes in EP by using isozyme-selective inhibitors.
Collapse
Affiliation(s)
- Yu-Jun Shen
- Department of Sports Anatomy, College of Sports Science, Shanghai University of Sport, 650 Qingyuanhuan Road, Shanghai, 200438 China
| | - Shan-Shan Pan
- Department of Sports Anatomy, College of Sports Science, Shanghai University of Sport, 650 Qingyuanhuan Road, Shanghai, 200438 China
| | - Tao Zhuang
- Department of Sports Anatomy, College of Sports Science, Shanghai University of Sport, 650 Qingyuanhuan Road, Shanghai, 200438 China
| | - Feng-Juan Wang
- Department of Sports Anatomy, College of Sports Science, Shanghai University of Sport, 650 Qingyuanhuan Road, Shanghai, 200438 China
| |
Collapse
|
36
|
Chu LM, Osipov RM, Robich MP, Feng J, Oyamada S, Bianchi C, Sellke FW. Is hyperglycemia bad for the heart during acute ischemia? J Thorac Cardiovasc Surg 2010; 140:1345-52. [PMID: 20542299 PMCID: PMC2949689 DOI: 10.1016/j.jtcvs.2010.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/11/2010] [Accepted: 05/18/2010] [Indexed: 01/26/2023]
Abstract
OBJECTIVE This study investigates the impact of diabetes on myocardium in the setting of acute ischemia-reperfusion in a porcine model. METHODS In normoglycemic (ND group) and alloxan-induced diabetic (DM group) male Yucatan pigs, the left anterior descending coronary artery territory was made ischemic and then reperfused. Hemodynamic values and myocardial function were measured. Monastryl blue and triphenyl tetrazolium chloride staining were used to assess size of the areas at risk and infarction. Glycogen content was assessed using periodic acid-Schiff staining. Cell death and survival signaling pathways were assessed by immunoblotting. RESULTS Mean arterial pressure and developed left ventricular pressure were lower in the DM group (P < .05). Whereas global left ventricular function was worse in the DM group (P < .05), regional function in the area at risk was improved on the horizontal axis (P < .05). Mean infarct size was smaller in the DM versus the ND group (19% vs 43%; P < .05), whereas the area at risk was similar in both groups (34% vs 36%; P = .7). Ischemic myocardium in the DM group displayed more prominent staining for glycogen compared with the ND group. In the area at risk, expression of cell survival proteins including phosphorylated endothelial nitric oxide synthase (0.17 ± 0.04 vs 0.04 ± 0.01; P < .05), heat shock protein 27 (0.7 ± 0.2 vs 0.3 ± 0.1; P < .05), nuclear factor-κB (0.14 ± 0.02 vs 0.03 ± 0.01; P < .05), and mammalian target of rapamycin (0.35 ± 0.05 vs 0.15 ± 0.02; P < .05) were higher in DM animals, whereas in nonischemic tissue, expression of these proteins was similar or lower in the DM group. CONCLUSIONS Although type I diabetes worsens global left ventricular function, it is protective in the ischemic area, leading to increased expression of cell survival proteins and decreased infarct size.
Collapse
Affiliation(s)
- Louis M Chu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Myocardial tolerance to ischemia-reperfusion injury, training intensity and cessation. Eur J Appl Physiol 2010; 111:859-68. [PMID: 21063725 DOI: 10.1007/s00421-010-1707-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
Training has been shown to induce cardioprotection. The mechanisms involved remain still poorly understood. Aims of the study were to examine the relevance of training intensity on myocardial protection against ischemia/reperfusion (I/R) injury, and to which extent the beneficial effects persist after training cessation in rats. Sprague-Dawley rats trained at either low (60% [Formula: see text]) or high (80% [Formula: see text]) intensity for 10 weeks. An additional group of highly trained rats was detrained for 4 weeks. Untrained rats served as controls. At the end of treatment, rats of all groups were split into two subgroups. In the former, rats underwent left anterior descending artery (LAD) ligature for 30 min, followed by 90-min reperfusion, with subsequent measurement of the infarct size. In the latter, biopsies were taken to measure heat-shock proteins (HSP) 70/72, vascular endothelial growth factor (VEGF) protein levels, and superoxide dismutase (SOD) activity. Training reduced infarct size proportionally to training intensity. With detraining, infarct size increased compared to highly trained rats, maintaining some cardioprotection with respect to controls. Cardioprotection was proportional to training intensity and related to HSP70/72 upregulation and Mn-SOD activity. The relationship with Mn-SOD was lost with detraining. VEGF protein expression was not affected by either training or detraining. Stress proteins and antioxidant defenses might be involved in the beneficial effects of long-term training as a function of training intensity, while HSP70 may be one of the factors accounting for the partial persistence of myocardial protection against I/R injury in detrained rats.
Collapse
|
38
|
Jha KN, Wong L, Zerfas PM, De Silva RS, Fan YX, Spiridonov NA, Johnson GR. Identification of a novel HSP70-binding cochaperone critical to HSP90-mediated activation of small serine/threonine kinase. J Biol Chem 2010; 285:35180-7. [PMID: 20829357 DOI: 10.1074/jbc.m110.134767] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported the identification of small serine/threonine kinase (SSTK) that is expressed in postmeiotic germ cells, associates with HSP90, and is indispensable for male fertility. Sperm from SSTK-null mice cannot fertilize eggs in vitro and are incapable of fusing with eggs that lack zona pellucida. Here, using the yeast two-hybrid screen, we have discovered a novel SSTK-interacting protein (SIP) that is expressed exclusively in testis. The gene encoding SIP is restricted to mammals and encodes a 125-amino acid polypeptide with a predicted tetratricopeptide repeat domain. SIP is co-localized with SSTK in the cytoplasm of spermatids as they undergo restructuring and chromatin condensation, but unlike SSTK, is not retained in the mature sperm. SIP binds to SSTK with high affinity (K(d) ∼10 nM), and the proteins associate with each other when co-expressed in cells. In vitro, SIP inhibited SSTK kinase activity, whereas the presence of SIP in cells resulted in enzymatic activation of SSTK without affecting Akt or MAPK activity. SIP was found to be associated with cellular HSP70, and analyses with purified proteins revealed that SIP directly bound HSP70. Importantly, SSTK recruited SIP onto HSP90, and treatment of cells with the specific HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, completely abolished SSTK catalytic activity. Hence, these findings demonstrate that HSP90 is essential for functional maturation of the kinase and identify SIP as a cochaperone that is critical to the HSP90-mediated activation of SSTK.
Collapse
Affiliation(s)
- Kula N Jha
- Laboratory of Chemistry, Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Reciprocal regulation between M3 muscarinic acetylcholine receptor and protein kinase C-epsilon in ventricular myocytes during myocardial ischemia in rats. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:443-50. [PMID: 19685039 DOI: 10.1007/s00210-009-0444-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
Abstract
We have studied the association between M(3) muscarinic acetylcholine receptors (M(3)-mAChR) and protein kinase C-epsilon (PKC-epsilon) during ischemic myocardial injury using Western blot analysis and immunoprecipitation technique. Myocardial ischemia (MI) induced PKC-epsilon translocation from cytosolic to membrane fractions. This translocation participated in the phosphorylation of M(3)-mAChR in membrane fractions, which could be abolished by the inhibitor of PKC, chelerythrine chloride. On the other hand, M(3)-mAChR could also regulate the expression of PKC-epsilon in ischemic myocardium. Choline (choline chloride, an M(3) receptor agonist, administered at 15 min before occlusion) strengthened the association between PKC-epsilon and M(3)-mAChR. However, blockade of M(3)-mAChR by 4-diphenylacetoxy-N-methylpiperidine methiodide (an M(3) receptor antagonist, administered at 20 min before occlusion) completely inhibited the effect of choline on the expression of PKC-epsilon. We conclude that the translocation of PKC-epsilon is required for the phosphorylation of M(3)-mAChR; moreover, increased PKC-epsilon activity is associated with M(3)-mAChR during MI. This reciprocal regulation is likely to play a role in heart signal transduction during ischemia between ventricular myocytes.
Collapse
|
40
|
Staib JL, Tümer N, Powers SK. Increased temperature and protein oxidation lead to HSP72 mRNA and protein accumulation in the in vivo exercised rat heart. Exp Physiol 2009; 94:71-80. [PMID: 18931043 PMCID: PMC2941883 DOI: 10.1113/expphysiol.2008.044685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of myocardial heat shock protein 72 (HSP72), mediated by its transcription factor, heat shock factor 1 (HSF1), increases following exercise. However, the upstream stimuli governing exercise-induced HSF1 activation and subsequent Hsp72 gene expression in the whole animal remain unclear. Exercise-induced increases in body temperature may promote myocardial radical production, leading to protein oxidation. Conceivably, myocardial protein oxidation during exercise may serve as an important signal to promote nuclear HSF1 migration and activation of Hsp72 expression. Therefore, these experiments tested the hypothesis that prevention of exercise-induced increases in body temperature attenuates cardiac protein oxidation, diminishes HSF1 activation and decreases HSP72 expression in vivo. To test this hypothesis, in vivo exercise-induced changes in body temperature were manipulated by exercising male rats in either cold (4 degrees C) or warm ambient conditions (22 degrees C). Warm exercise increased both body temperature (+3 degrees C) and myocardial protein oxidation, whereas these changes were attenuated by cold exercise. Interestingly, exercise in both conditions did not significantly increase myocardial nuclear localized phosphorylated HSF1. Nonetheless, warm exercise elevated left-ventricular HSP72 mRNA by ninefold and increased myocardial HSP72 protein levels by threefold compared with cold-exercised animals. Collectively, these data indicate that elevated body temperature and myocardial protein oxidation promoted exercise-induced cardiac HSP72 mRNA expression and protein accumulation following in vivo exercise. However, these results suggest that exercise-induced myocardial HSP72 protein accumulation is not a result of nuclear-localized, phosphorylated HSF1, indicating that other transcriptional or post-transcriptional regulatory mechanisms are involved in exercise-induced HSP72 expression.
Collapse
Affiliation(s)
- Jessica L Staib
- Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118225, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|