1
|
Wickramaratne AC, Wickner S, Kravats AN. Hsp90, a team player in protein quality control and the stress response in bacteria. Microbiol Mol Biol Rev 2024; 88:e0017622. [PMID: 38534118 PMCID: PMC11332350 DOI: 10.1128/mmbr.00176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
SUMMARYHeat shock protein 90 (Hsp90) participates in proteostasis by facilitating protein folding, activation, disaggregation, prevention of aggregation, degradation, and protection against degradation of various cellular proteins. It is highly conserved from bacteria to humans. In bacteria, protein remodeling by Hsp90 involves collaboration with the Hsp70 molecular chaperone and Hsp70 cochaperones. In eukaryotes, protein folding by Hsp90 is more complex and involves collaboration with many Hsp90 cochaperones as well as Hsp70 and Hsp70 cochaperones. This review focuses primarily on bacterial Hsp90 and highlights similarities and differences between bacterial and eukaryotic Hsp90. Seminal research findings that elucidate the structure and the mechanisms of protein folding, disaggregation, and reactivation promoted by Hsp90 are discussed. Understanding the mechanisms of bacterial Hsp90 will provide fundamental insight into the more complex eukaryotic chaperone systems.
Collapse
Affiliation(s)
- Anushka C. Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea N. Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
2
|
Qin Z, Peng K, Feng Y, Wang Y, Huang B, Tian Z, Ouyang P, Huang X, Chen D, Lai W, Geng Y. Transcriptome reveals the role of the htpG gene in mediating antibiotic resistance through cell envelope modulation in Vibrio mimicus SCCF01. Front Microbiol 2024; 14:1295065. [PMID: 38239724 PMCID: PMC10794384 DOI: 10.3389/fmicb.2023.1295065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
HtpG, a bacterial homolog of the eukaryotic 90 kDa heat-shock protein (Hsp90), represents the simplest member of the heat shock protein family. While the significance of Hsp90 in fungal and cancer drug resistance has been confirmed, the role of HtpG in bacterial antibiotic resistance remains largely unexplored. This research aims to investigate the impact of the htpG gene on antibiotic resistance in Vibrio mimicus. Through the creation of htpG gene deletion and complementation strains, we have uncovered the essential role of htpG in regulating the structural integrity of the bacterial cell envelope. Our transcriptomics analysis demonstrates that the deletion of htpG increases the sensitivity of V. mimicus to antimicrobial peptides, primarily due to upregulated lipopolysaccharide synthesis, reduced glycerophospholipid content, and weakened efflux pumps activity. Conversely, reduced sensitivity to β-lactam antibiotics in the ΔhtpG strain results from decreased peptidoglycan synthesis and dysregulated peptidoglycan recycling and regulation. Further exploration of specific pathway components is essential for a comprehensive understanding of htpG-mediated resistance mechanisms, aiding in the development of antimicrobial agents. To our knowledge, this is the first effort to explore the relationship between htpG and drug resistance in bacteria.
Collapse
Affiliation(s)
- Zhenyang Qin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kun Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yilin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bowen Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ziqi Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
García-Descalzo L, García-López E, Cid C. Comparative Proteomic Analysis of Psychrophilic vs. Mesophilic Bacterial Species Reveals Different Strategies to Achieve Temperature Adaptation. Front Microbiol 2022; 13:841359. [PMID: 35591995 PMCID: PMC9111180 DOI: 10.3389/fmicb.2022.841359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
The old debate of nature (genes) vs. nurture (environmental variables) is once again topical concerning the effect of climate change on environmental microorganisms. Specifically, the Polar Regions are experiencing a drastic increase in temperature caused by the rise in greenhouse gas emissions. This study, in an attempt to mimic the molecular adaptation of polar microorganisms, combines proteomic approaches with a classical microbiological analysis in three bacterial species Shewanella oneidensis, Shewanella frigidimarina, and Psychrobacter frigidicola. Both shewanellas are members of the same genus but they live in different environments. On the other hand, Shewanella frigidimarina and Psychrobacter frigidicola share the same natural environment but belong to a different genus. The comparison of the strategies employed by each bacterial species estimates the contribution of genome vs. environmental variables in the adaptation to temperature. The results show a greater versatility of acclimatization for the genus Shewanella with respect to Psychrobacter. Besides, S. frigidimarina was the best-adapted species to thermal variations in the temperature range 4–30°C and displayed several adaptation mechanisms common with the other two species. Regarding the molecular machinery used by these bacteria to face the consequences of temperature changes, chaperones have a pivoting role. They form complexes with other proteins in the response to the environment, establishing cooperation with transmembrane proteins, elongation factors, and proteins for protection against oxidative damage.
Collapse
Affiliation(s)
- Laura García-Descalzo
- Centro de Astrobiología, Department of Planetology and Habitability, CSIC-INTA, Madrid, Spain
| | - Eva García-López
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiología, Department of Molecular Ecology, CSIC-INTA, Madrid, Spain
| |
Collapse
|
4
|
Wickner S, Nguyen TLL, Genest O. The Bacterial Hsp90 Chaperone: Cellular Functions and Mechanism of Action. Annu Rev Microbiol 2021; 75:719-739. [PMID: 34375543 DOI: 10.1146/annurev-micro-032421-035644] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that folds and remodels proteins, thereby regulating the activity of numerous substrate proteins. Hsp90 is widely conserved across species and is essential in all eukaryotes and in some bacteria under stress conditions. To facilitate protein remodeling, bacterial Hsp90 collaborates with the Hsp70 molecular chaperone and its cochaperones. In contrast, the mechanism of protein remodeling performed by eukaryotic Hsp90 is more complex, involving more than 20 Hsp90 cochaperones in addition to Hsp70 and its cochaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of bacterial Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70. We describe the universally conserved structure and conformational dynamics of these chaperones and their interactions with one another and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide a framework for understanding the more complex eukaryotic Hsp90 system. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Thu-Lan Lily Nguyen
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Olivier Genest
- Aix-Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France;
| |
Collapse
|
5
|
Identification of Biomolecules Involved in the Adaptation to the Environment of Cold-Loving Microorganisms and Metabolic Pathways for Their Production. Biomolecules 2021; 11:biom11081155. [PMID: 34439820 PMCID: PMC8393263 DOI: 10.3390/biom11081155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/22/2022] Open
Abstract
Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.
Collapse
|
6
|
Nakamoto H, Yokoyama Y, Suzuki T, Miyamoto Y, Fujishiro T, Morikawa M, Miyata Y. A cyclic lipopeptide surfactin is a species-selective Hsp90 inhibitor that suppresses cyanobacterial growth. J Biochem 2021; 170:255-264. [PMID: 33768253 DOI: 10.1093/jb/mvab037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is essential for eukaryotic cells, whereas bacterial homologs play a role under stresses and in pathogenesis. Identifying species-specific Hsp90 inhibitors is challenging because Hsp90 is evolutionarily conserved. We found that a cyclic lipopeptide surfactin inhibits the ATPase activity of Hsp90 from the cyanobacterium Synechococcus elongatus (S. elongatus) PCC 7942 but does not inhibit Escherichia coli (E. coli), yeast and human Hsp90s. Molecular docking simulations indicated that surfactin could bind to the N-terminal dimerization interface of the cyanobacterial Hsp90 in the ATP- and ADP-bound states, which provided molecular insights into the species-selective inhibition. The data suggest that surfactin inhibits a rate-limiting conformational change of S. elongatus Hsp90 in the ATP hydrolysis. Surfactin also inhibited the interaction of the cyanobacterial Hsp90 with a model substrate, and suppressed S. elongatus growth under heat stress, but not that of E. coli. Surfactin did not show significant cellular toxicity toward mammalian cells. These results indicate that surfactin inhibits the cellular function of Hsp90 specifically in the cyanobacterium. The present study shows that a cyclic peptide has a great specificity to interact with a specific homolog of a highly conserved protein family.
Collapse
Affiliation(s)
- Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yuhei Yokoyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Takahiro Suzuki
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yuri Miyamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Masaaki Morikawa
- Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
7
|
Lemaire ON, Méjean V, Iobbi-Nivol C. The Shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems. FEMS Microbiol Rev 2020; 44:155-170. [DOI: 10.1093/femsre/fuz031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT
The Gram-negative Shewanella bacterial genus currently includes about 70 species of mostly aquatic γ-proteobacteria, which were isolated around the globe in a multitude of environments such as surface freshwater and the deepest marine trenches. Their survival in such a wide range of ecological niches is due to their impressive physiological and respiratory versatility. Some strains are among the organisms with the highest number of respiratory systems, depending on a complex and rich metabolic network. Implicated in the recycling of organic and inorganic matter, they are important components of organism-rich oxic/anoxic interfaces, but they also belong to the microflora of a broad group of eukaryotes from metazoans to green algae. Examples of long-term biological interactions like mutualism or pathogeny have been described, although molecular determinants of such symbioses are still poorly understood. Some of these bacteria are key organisms for various biotechnological applications, especially the bioremediation of hydrocarbons and metallic pollutants. The natural ability of these prokaryotes to thrive and detoxify deleterious compounds explains their use in wastewater treatment, their use in energy generation by microbial fuel cells and their importance for resilience of aquatic ecosystems.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, UMR 7281, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402 Marseille, France
| |
Collapse
|
8
|
Taxonomic and functional characterization of a microbial community from a volcanic englacial ecosystem in Deception Island, Antarctica. Sci Rep 2019; 9:12158. [PMID: 31434915 PMCID: PMC6704131 DOI: 10.1038/s41598-019-47994-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Glaciers are populated by a large number of microorganisms including bacteria, archaea and microeukaryotes. Several factors such as solar radiation, nutrient availability and water content greatly determine the diversity and abundance of these microbial populations, the type of metabolism and the biogeochemical cycles. Three ecosystems can be differentiated in glaciers: supraglacial, subglacial and englacial ecosystems. Firstly, the supraglacial ecosystem, sunlit and oxygenated, is predominantly populated by photoautotrophic microorganisms. Secondly, the subglacial ecosystem contains a majority of chemoautotrophs that are fed on the mineral salts of the rocks and basal soil. Lastly, the englacial ecosystem is the least studied and the one that contains the smallest number of microorganisms. However, these unknown englacial microorganisms establish a food web and appear to have an active metabolism. In order to study their metabolic potentials, samples of englacial ice were taken from an Antarctic glacier. Microorganisms were analyzed by a polyphasic approach that combines a set of -omic techniques: 16S rRNA sequencing, culturomics and metaproteomics. This combination provides key information about diversity and functions of microbial populations, especially in rare habitats. Several whole essential proteins and enzymes related to metabolism and energy production, recombination and translation were found that demonstrate the existence of cellular activity at subzero temperatures. In this way it is shown that the englacial microorganisms are not quiescent, but that they maintain an active metabolism and play an important role in the glacial microbial community.
Collapse
|
9
|
Elabed H, González-Tortuero E, Ibacache-Quiroga C, Bakhrouf A, Johnston P, Gaddour K, Blázquez J, Rodríguez-Rojas A. Seawater salt-trapped Pseudomonas aeruginosa survives for years and gets primed for salinity tolerance. BMC Microbiol 2019; 19:142. [PMID: 31234794 PMCID: PMC6591848 DOI: 10.1186/s12866-019-1499-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Background In nature, microorganisms have to adapt to long-term stressful conditions often with growth limitations. However, little is known about the evolution of the adaptability of new bacteria to such environments. Pseudomonas aeruginosa, an opportunistic pathogen, after natural evaporation of seawater, was shown to be trapped in laboratory-grown halite crystals and to remain viable after entrapment for years. However, how this bacterium persists and survives in such hypersaline conditions is not understood. Results In this study, we aimed to understand the basis of survival, and to characterise the physiological changes required to develop salt tolerance using P. aeruginosa as a model. Several clones of P. aeruginosa were rescued after 14 years in naturally evaporated marine salt crystals. Incubation of samples in nutrient-rich broth allowed re-growth and subsequent plating yielded observable colonies. Whole genome sequencing of the P. aeruginosa isolates confirmed the recovery of the original strain. The re-grown strains, however, showed a new phenotype consisting of an enhanced growth in growing salt concentration compared to the ancestor strain. The intracellular accumulation of K+ was elicited by high concentration of Na+ in the external medium to maintain the homeostasis. Whole transcriptomic analysis by microarray indicated that 78 genes had differential expression between the parental strain and its derivative clones. Sixty-one transcripts were up-regulated, while 17 were down-regulated. Based on a collection of single-gene knockout mutants and gene ontology analysis, we suggest that the adaptive response in P. aeruginosa to hyper-salinity relies on multiple gene product interactions. Conclusions The individual gene contributions build up the observed phenotype, but do not ease the identification of salinity-related metabolic pathways. The long-term inclusion of P. aeruginosa in salt crystals primes the bacteria, mediating a readjustment of the bacterial physiology to growth in higher salt concentrations. Our findings provide a starting point to understand how P. aeruginosa, a relevant environmental and pathogenic bacterium, survives to long-term salt stress. Electronic supplementary material The online version of this article (10.1186/s12866-019-1499-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hamouda Elabed
- Laboratory of Contagious Diseases and Biologically Active Substances LR99-ES27 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.,Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | - Enrique González-Tortuero
- Department of Veterinary and Animal Sciences, Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Ibacache-Quiroga
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain.,Centro de Micro-Bioinnovación, Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Amina Bakhrouf
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Paul Johnston
- Institute of Biology, FreieUniversität Berlin, Berlin, Germany
| | - Kamel Gaddour
- Laboratory of Analysis, Treatment and Valorization of Environmental Polluants and products, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Jesús Blázquez
- Department of Microbial Biotechnology, Spanish National Center for Biotechnology (CNB), Madrid, Spain
| | | |
Collapse
|
10
|
Genest O, Wickner S, Doyle SM. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. J Biol Chem 2018; 294:2109-2120. [PMID: 30401745 DOI: 10.1074/jbc.rev118.002806] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heat shock proteins 90 (Hsp90) and 70 (Hsp70) are two families of highly conserved ATP-dependent molecular chaperones that fold and remodel proteins. Both are important components of the cellular machinery involved in protein homeostasis and participate in nearly every cellular process. Although Hsp90 and Hsp70 each carry out some chaperone activities independently, they collaborate in other cellular remodeling reactions. In eukaryotes, both Hsp90 and Hsp70 function with numerous Hsp90 and Hsp70 co-chaperones. In contrast, bacterial Hsp90 and Hsp70 are less complex; Hsp90 acts independently of co-chaperones, and Hsp70 uses two co-chaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70, with an emphasis on bacterial chaperones. We describe the structure and conformational dynamics of these chaperones and their interactions with each other and with client proteins. The physiological roles of Hsp90 in Escherichia coli and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide the groundwork for understanding the more complex eukaryotic Hsp90 system and its modulation by Hsp90 co-chaperones.
Collapse
Affiliation(s)
- Olivier Genest
- From the Aix Marseille Univ, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, 13402 Marseille, France and
| | - Sue Wickner
- the Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Shannon M Doyle
- the Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
11
|
Hsp90 Is Essential under Heat Stress in the Bacterium Shewanella oneidensis. Cell Rep 2018; 19:680-687. [PMID: 28445720 DOI: 10.1016/j.celrep.2017.03.082] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 11/22/2022] Open
Abstract
The Hsp90 chaperone is essential in eukaryotes and activates a large array of client proteins. In contrast, its role is still elusive in bacteria, and only a few Hsp90 bacterial clients are known. Here, we found that Hsp90 is essential in the model bacterium Shewanella oneidensis under heat stress. A genetic screen for Hsp90 client proteins identified TilS, an essential protein involved in tRNA maturation. Overexpression of TilS rescued the growth defect of the hsp90 deletion strain under heat stress. In vivo, the activity and the amount of TilS were significantly reduced in the absence of Hsp90 at high temperature. Furthermore, we showed that Hsp90 interacts with TilS, and Hsp90 prevents TilS aggregation in vitro at high temperature. Together, our results indicate that TilS is a client of Hsp90 in S. oneidensis. Therefore, our study links the essentiality of bacterial Hsp90 at high temperature with the identification of a client.
Collapse
|
12
|
Nakamoto H, Kojima K. Non-housekeeping, non-essential GroEL (chaperonin) has acquired novel structure and function beneficial under stress in cyanobacteria. PHYSIOLOGIA PLANTARUM 2017; 161:296-310. [PMID: 28597961 DOI: 10.1111/ppl.12595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/17/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
GroELs which are prokaryotic members of the chaperonin (Cpn)/Hsp60 family are molecular chaperones of which Escherichia coli GroEL is a model for subsequent research. The majority of bacterial species including E. coli and Bacillus subtilis have only one essential groEL gene that forms an operon with the co-chaperone groES gene. In contrast to these model bacteria, two or three groEL genes exist in cyanobacterial genomes. One of them, groEL2, does not form an operon with the groES gene, whereas the other(s) does. In the case of cyanobacteria containing two GroEL homologs, one of the GroELs, GroEL1, substitutes for the native GroEL in an E. coli cell, but GroEL2 does not. Unlike the E. coli GroEL, GroEL2 is not essential, but it plays an important role which is not substitutable by GroEL1 under stress. Regulation of expression and biochemical properties of GroEL2 are different/diversified from GroEL1 and E. coli GroEL in many aspects. We postulate that the groEL2 gene has acquired a novel, beneficial function especially under stresses and become preserved by natural selection, with the groEL1 gene retaining the original, house-keeping function. In this review, we will focus on difference between the two GroELs in cyanobacteria, and divergence of GroEL2 from the E. coli GroEL. We will also compare cyanobacterial GroELs with the chloroplast Cpns (60α and 60β) which are thought to be evolved from the cyanobacterial GroEL1. Chloroplast Cpns appear to follow the different path from cyanobacterial GroELs in the evolution after gene duplication of the corresponding ancestral groEL gene.
Collapse
Affiliation(s)
- Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Kouji Kojima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Barik S. On the role, ecology, phylogeny, and structure of dual-family immunophilins. Cell Stress Chaperones 2017; 22:833-845. [PMID: 28567569 PMCID: PMC5655371 DOI: 10.1007/s12192-017-0813-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 01/26/2023] Open
Abstract
The novel class of dual-family immunophilins (henceforth abbreviated as DFI) represents naturally occurring chimera of classical FK506-binding protein (FKBP) and cyclophilin (CYN), connected by a flexible linker that may include a three-unit tetratricopeptide (TPR) repeat. Here, I report a comprehensive analysis of all current DFI sequences and their host organisms. DFIs are of two kinds: CFBP (cyclosporin- and FK506-binding protein) and FCBP (FK506- and cyclosporin-binding protein), found in eukaryotes. The CFBP type occurs in select bacteria that are mostly extremophiles, such as psychrophilic, thermophilic, halophilic, and sulfur-reducing. Essentially all DFI organisms are unicellular. I suggest that DFIs are specialized bifunctional chaperones that use their flexible interdomain linker to associate with large polypeptides or multisubunit megacomplexes to promote simultaneous folding or renaturation of two clients in proximity, essential in stressful and denaturing environments. Analysis of sequence homology and predicted 3D structures of the FKBP and CYN domains as well as the TPR linkers upheld the modular nature of the DFIs and revealed the uniqueness of their TPR domain. The CFBP and FCBP genes appear to have evolved in parallel pathways with no obvious single common ancestor. The occurrence of both types of DFI in multiple unrelated phylogenetic clades supported their selection in metabolic and environmental niche roles rather than a traditional taxonomic relationship. Nonetheless, organisms with these rare immunophilins may define an operational taxonomic unit (OTU) bound by the commonality of chaperone function.
Collapse
Affiliation(s)
- Sailen Barik
- , EonBio, 3780 Pelham Drive, Mobile, AL, 36619, USA.
| |
Collapse
|
14
|
Garcia-Lopez E, Cid C. Glaciers and Ice Sheets As Analog Environments of Potentially Habitable Icy Worlds. Front Microbiol 2017; 8:1407. [PMID: 28804477 PMCID: PMC5532398 DOI: 10.3389/fmicb.2017.01407] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Icy worlds in the solar system and beyond have attracted a remarkable attention as possible habitats for life. The current consideration about whether life exists beyond Earth is based on our knowledge of life in terrestrial cold environments. On Earth, glaciers and ice sheets have been considered uninhabited for a long time as they seemed too hostile to harbor life. However, these environments are unique biomes dominated by microbial communities which maintain active biochemical routes. Thanks to techniques such as microscopy and more recently DNA sequencing methods, a great biodiversity of prokaryote and eukaryote microorganisms have been discovered. These microorganisms are adapted to a harsh environment, in which the most extreme features are the lack of liquid water, extremely cold temperatures, high solar radiation and nutrient shortage. Here we compare the environmental characteristics of icy worlds, and the environmental characteristics of terrestrial glaciers and ice sheets in order to address some interesting questions: (i) which are the characteristics of habitability known for the frozen worlds, and which could be compatible with life, (ii) what are the environmental characteristics of terrestrial glaciers and ice sheets that can be life-limiting, (iii) What are the microbial communities of prokaryotic and eukaryotic microorganisms that can live in them, and (iv) taking into account these observations, could any of these planets or satellites meet the conditions of habitability? In this review, the icy worlds are considered from the point of view of astrobiological exploration. With the aim of determining whether icy worlds could be potentially habitable, they have been compared with the environmental features of glaciers and ice sheets on Earth. We also reviewed some field and laboratory investigations about microorganisms that live in analog environments of icy worlds, where they are not only viable but also metabolically active.
Collapse
Affiliation(s)
| | - Cristina Cid
- Microbial Evolution Laboratory, Centro de Astrobiología (Consejo Superior de Investigaciones Cientificas-Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| |
Collapse
|
15
|
Kim HJ, Suga K, Kim BM, Rhee JS, Lee JS, Hagiwara A. Light-dependent transcriptional events during resting egg hatching of the rotifer Brachionus manjavacas. Mar Genomics 2015; 20:25-31. [PMID: 25703093 DOI: 10.1016/j.margen.2015.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 11/26/2022]
Abstract
Rotifer resting eggs often have to endure harsh environmental conditions during the diapause phase. They are stimulated by light to hatch. In order to study the hatching mechanism, we observed resting eggs and measured their transcriptional expression under different light exposure periods (total darkness, and after 30 min, and 4h light). By using differential-display reverse transcription PCR (DDRT-PCR), we isolated 80 genes that displayed different expression patterns in response to the three light treatments: 20 genes were expressed in total darkness, 40 different genes were differentially expressed under 30 min light, and 20 further genes were expressed after 4h of light. The resting eggs showed no phenotypic differences in embryonic development during the 4h illumination period. In general, the expression patterns of the analyzed genes in resting eggs were differentially modulated by light exposure time. In total darkness, resting eggs mainly expressed genes encoding cell defense and homeostasis functions. In the 30 min illumination group, we found enriched expression of genes encoding fatty acid metabolism-related components, including Acyl-CoA dehydrogenase (ACAD). Genes encoding cellular and embryonic developmental functions were highly observed in the 30 min-illuminated group but were not observed in the 4h-illuminated group. Real-time RT-PCR revealed that several transcripts such as encoding V-type H(+)-translocating pyrophosphatase (V-PPase) and Meckelin had prolonged expression levels when exposed to light for 4h. In the 4h illuminated group, the RecQ protein-like 5 (RECQL5) gene was enriched. This RECQL5 gene may be expressed to protect the developing embryo from continuous light exposure. The data presented in this study indicate that DDRT-PCR-aided gene screening can be helpful to isolate candidate genes involved in the hatching process.
Collapse
Affiliation(s)
- Hee-Jin Kim
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.
| | - Koushirou Suga
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 406-772, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
16
|
García-Descalzo L, García-López E, Alcázar A, Baquero F, Cid C. Proteomic analysis of the adaptation to warming in the Antarctic bacteria Shewanella frigidimarina. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2229-40. [PMID: 25149826 DOI: 10.1016/j.bbapap.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/27/2022]
Abstract
Antarctica is subjected to extremely variable conditions, but the importance of the temperature increase in cold adapted bacteria is still unknown. To study the molecular adaptation to warming of Antarctic bacteria, cultures of Shewanella frigidimarina were incubated at temperatures ranging from 0°C to 30°C, emulating the most extreme conditions that this strain could tolerate. A proteomic approach was developed to identify the soluble proteins obtained from cells growing at 4°C, 20°C and 28°C. The most drastic effect when bacteria were grown at 28°C was the accumulation of heat shock proteins as well as other proteins related to stress, redox homeostasis or protein synthesis and degradation, and the decrease of enzymes and components of the cell envelope. Furthermore, two main responses in the adaptation to warm temperature were detected: the presence of diverse isoforms in some differentially expressed proteins, and the composition of chaperone interaction networks at the limits of growth temperature. The abundance changes of proteins suggest that warming induces a stress situation in S. frigidimarina forcing cells to reorganize their molecular networks as an adaptive response to these environmental conditions.
Collapse
Affiliation(s)
| | - Eva García-López
- Centro de Astrobiologia (CSIC-INTA), 28850 Torrejón de Ardoz, Spain
| | - Alberto Alcázar
- Department of Investigation, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Fernando Baquero
- Centro de Astrobiologia (CSIC-INTA), 28850 Torrejón de Ardoz, Spain; Department of Microbiology, Hospital Ramon y Cajal, 28034 Madrid, Spain
| | - Cristina Cid
- Centro de Astrobiologia (CSIC-INTA), 28850 Torrejón de Ardoz, Spain.
| |
Collapse
|
17
|
Nakamoto H, Fujita K, Ohtaki A, Watanabe S, Narumi S, Maruyama T, Suenaga E, Misono TS, Kumar PKR, Goloubinoff P, Yoshikawa H. Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins. J Biol Chem 2014; 289:6110-9. [PMID: 24415765 DOI: 10.1074/jbc.m113.524801] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.
Collapse
|
18
|
Astakhova LN, Zatsepina OG, Przhiboro AA, Evgen'ev MB, Garbuz DG. Novel arrangement and comparative analysis of hsp90 family genes in three thermotolerant species of Stratiomyidae (Diptera). INSECT MOLECULAR BIOLOGY 2013; 22:284-296. [PMID: 23521688 DOI: 10.1111/imb.12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The heat shock proteins belonging to the Hsp90 family (Hsp83 in Diptera) play a crucial role in the protection of cells due to their chaperoning functions. We sequenced hsp90 genes from three species of the family Stratiomyidae (Diptera) living in thermally different habitats and characterized by extraordinarily high thermotolerance. The sequence variation and structure of the hsp90 family genes were compared with previously described features of hsp70 copies isolated from the same species. Two functional hsp83 genes were found in the species studied, that are arranged in tandem orientation at least in one of them. This organization was not previously described. Stratiomyidae hsp83 genes share a high level of identity with hsp83 of Drosophila, and the deduced protein possesses five conserved amino acid sequence motifs characteristic of the Hsp90 family as well as the C-terminus MEEVD sequence characteristic of the cytosolic isoform. A comparison of the hsp83 promoters of two Stratiomyidae species from thermally contrasting habitats demonstrated that while both species contain canonical heat shock elements in the same position, only one of the species contains functional GAF-binding elements. Our data indicate that in the same species, hsp83 family genes show a higher evolution rate than the hsp70 family.
Collapse
|
19
|
García-Descalzo L, García-López E, Postigo M, Baquero F, Alcazar A, Cid C. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers. Front Microbiol 2013; 4:55. [PMID: 23515855 PMCID: PMC3601304 DOI: 10.3389/fmicb.2013.00055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 02/26/2013] [Indexed: 11/13/2022] Open
Abstract
Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the “Little Ice Age” although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of ice, but little or no relationships to other chemical characteristics were found.
Collapse
Affiliation(s)
- Laura García-Descalzo
- Microbial Evolution Laboratory, Centro de Astrobiología (Consejo Superior de Investigaciones Cientificas - Instituto Nacional de Técnica Aeroespacial) Torrejón de Ardoz, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Wang Q, Wang Q, Tong W, Bai X, Chen Z, Zhao J, Zhang J, Liu S. Regulation of enzyme activity of alcohol dehydrogenase through its interactions with pyruvate-ferredoxin oxidoreductase in Thermoanaerobacter tengcongensis. Biochem Biophys Res Commun 2011; 417:1018-23. [PMID: 22222371 DOI: 10.1016/j.bbrc.2011.12.083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
Abstract
Alcohol dehydrogenases (ADHs) from thermophilic microorganisms are interesting enzymes that have their potential applications in biotechnology and potentially provide insight into the mechanisms of action of thermo-tolerant proteins. The molecular mechanisms of ADHs under thermal stress in vivo have yet to be explored. Herein, we employed a proteomic strategy to survey the possible interactions of secondary-ADH (2-ADH) with other proteins in Thermoanaerobacter tengcongensis (T. tengcongensis) cultured at 75°C and found that 2-ADH, pyruvate-ferredoxin oxidoreductase (PFOR) and several glycolytic enzymes coexisted in a protein complex. Using anion exchange chromatography, the elution profile indicated that the native 2-ADH was present in two forms, PFOR-bound and PFOR-free. Immuno-precipitation and pull down analysis further validated the interactions between 2-ADH and PFOR. The kinetic behaviours of 2-ADH either in the recombinant or native form were evaluated with different substrates. The enzyme activity of 2-ADH was inhibited in a non-competitive mode by PFOR, implying the interaction of 2-ADH and PFOR negatively regulated alcohol formation. In T. tengcongensis, PFOR is an enzyme complex located at the upstream of 2-ADH in the alcohol generation pathway. These findings, therefore, offered a plausible mechanism for how alcohol metabolism is regulated by hetero-interactions between 2-ADH and PFOR, especially in anaerobic thermophiles.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hartson SD, Matts RL. Approaches for defining the Hsp90-dependent proteome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:656-67. [PMID: 21906632 DOI: 10.1016/j.bbamcr.2011.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Hsp90 is the target of ongoing drug discovery studies seeking new compounds to treat cancer, neurodegenerative diseases, and protein folding disorders. To better understand Hsp90's roles in cellular pathologies and in normal cells, numerous studies have utilized proteomics assays and related high-throughput tools to characterize its physical and functional protein partnerships. This review surveys these studies, and summarizes the strengths and limitations of the individual attacks. We also include downloadable spreadsheets compiling all of the Hsp90-interacting proteins identified in more than 23 studies. These tools include cross-references among gene aliases, human homologues of yeast Hsp90-interacting proteins, hyperlinks to database entries, summaries of canonical pathways that are enriched in the Hsp90 interactome, and additional bioinformatic annotations. In addition to summarizing Hsp90 proteomics studies performed to date and the insights they have provided, we identify gaps in our current understanding of Hsp90-mediated proteostasis. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | | |
Collapse
|
22
|
Baquero F. The 2010 Garrod Lecture: The dimensions of evolution in antibiotic resistance: ex unibus plurum et ex pluribus unum. J Antimicrob Chemother 2011; 66:1659-72. [DOI: 10.1093/jac/dkr214] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|