1
|
Li XY, Gu XY, Li XM, Yan JG, Mao XL, Yu Q, Du YL, Kurihara H, Yan CY, Li WX. Supplementation with carnosine, a food-derived bioactive dipeptide, alleviates dexamethasone-induced oxidative stress and bone impairment via the NRF2 signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1091-1104. [PMID: 39291490 DOI: 10.1002/jsfa.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/07/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Carnosine, a natural bioactive dipeptide derived from meat muscle, possesses strong antioxidant properties. Dexamethasone, widely employed for treating various inflammatory diseases, raises concerns regarding its detrimental effects on bone health. This study aimed to investigate the protective effects of carnosine against dexamethasone-induced oxidative stress and bone impairment, along with its underlying mechanisms, utilizing chick embryos and a zebrafish model in vivo, as well as MC3T3-E1 cells in vitro. RESULTS Our findings revealed that carnosine effectively mitigated bone injury in dexamethasone-exposed chick embryos, accompanied by reduced oxidative stress. Further investigation demonstrated that carnosine alleviated impaired osteoblastic differentiation in MC3T3-E1 cells and zebrafish by suppressing the excessive production of reactive oxygen species (ROS) and enhancing the activity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPX). Moreover, mechanistic studies elucidated that carnosine promoted the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), thereby facilitating the transcription of its downstream antioxidant response elements, including heme oxyense-1 (HO-1), glutamate cysteine ligase modifier (GCLM), and glutamate cysteine ligase catalytic (GCLC) to counteract dexamethasone-induced oxidative stress. CONCLUSION Overall, this study underscores the potential therapeutic efficacy of carnosine in mitigating oxidative stress and bone damage induced by dexamethasone exposure, shedding light on its underlying mechanism of action by activating the NRF2 signaling pathway. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi-You Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao-Yuan Gu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiao-Min Li
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Jian-Gang Yan
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Xin-Liang Mao
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Qin Yu
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Yu-Lan Du
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
| | - Hiroshi Kurihara
- Perfect (Guangdong) Commodity Co., LTD, Zhongshan, China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chang-Yu Yan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Xi Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Liu Y, Chen H, Zhang Y, Shang Q, Zhao W, Zhang Y, Qiu W, Qin W, Lin F, He J, Liu H, Chen X, Gong Y, Liu L, Jiang Y, Ren H, Jiang X, Shen G. Plumbagin alleviates muscle atrophy in female mice through inhibiting the DANCR/NF-κB axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156282. [PMID: 39616734 DOI: 10.1016/j.phymed.2024.156282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/12/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Muscle atrophy is a condition of the skeletal muscular system closely related to inflammation and significantly affects a person's quality of life and physical activity. It is characterized primarily by the progressive loss of muscle mass, strength, and function. Plumbagin (PB), the main bioactive component of the traditional Chinese medicine Plumbago zeylanica L., has bFeen shown to treat various inflammatory diseases, such as osteoporosis, osteoarthritis, and sepsis. Furthermore, many biological processes, including inflammation, involve differentiation antagonistic nonprotein-coding RNA (DANCR). However, their role and clinical importance in myogenesis and amyotrophy are not well understood. PURPOSE This study aimed to explore the role of DANCR and the inflammatory response in the anti-muscle atrophy effects of PB. METHODS The expression of DANCR in muscle atrophic mice and during myogenic differentiation was examined using quantitative reverse transcription PCR (RT‒qPCR). The mechanism of DANCR in muscle atrophy was confirmed through gene knockdown, RNA sequencing (RNA-seq), RNA pull-down, RNA immunoprecipitation (RIP), immunofluorescence (IF), and luciferase reporter gene assays. Bioinformatics was utilized to investigate the mechanism by which PB treatment affects muscle atrophy. The relationship between PB and DANCR was verified by surface plasmon resonance (SPR) and RT‒qPCR. Additionally, the role of PB in muscle atrophy was explored through its control of DANCR-mediated regulation of the NF-κB pathway. Finally, the effect of PB on the myogenic differentiation of human skeletal muscle cells (HsKMCs) was investigated. RESULTS DANCR expression was upregulated in the muscle tissues of mice with muscle atrophy and downregulated during myogenic differentiation. Knockout of DANCR promoted myogenic differentiation and significantly alleviated the loss of muscle mass, strength, and function in mice with muscle atrophy. The primary mechanism involved DANCR directly binding to the p65 protein to regulate NF-κB pathway activity. Experiments revealed that PB could target the degradation of DANCR, reduce the nuclear entry of p65, and inhibit the activation of the NF-κB pathway. Consequently, PB significantly inhibited myotube atrophy and the inflammatory response in HsKMCs and promoted their myogenic differentiation by regulating the NF-κB pathway. CONCLUSIONS Our results suggest that PB regulates myogenesis and prevents amyotrophy by targeting the degradation of DANCR and inhibiting the activation of the NF-κB pathway. This study reveals the crucial role of DANCR in maintaining muscle physiology during muscle atrophy and identifies PB as an effective drug that can target DANCR degradation to alleviate muscle atrophy.
Collapse
Affiliation(s)
- Yu Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - You Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Wenhua Zhao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China
| | - Yuzhuo Zhang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China
| | - Weiyu Qiu
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China
| | - Weicheng Qin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Feng Lin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiahui He
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, China
| | - Huiwen Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xingda Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yan Gong
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lingjuan Liu
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yixuan Jiang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hui Ren
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China.
| | - Xiaobing Jiang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China.
| | - Gengyang Shen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
3
|
Cervia D, Zecchini S, Pincigher L, Roux-Biejat P, Zalambani C, Catalani E, Arcari A, Del Quondam S, Brunetti K, Ottria R, Casati S, Vanetti C, Barbalace MC, Prata C, Malaguti M, Casati SR, Lociuro L, Giovarelli M, Mocciaro E, Falcone S, Fenizia C, Moscheni C, Hrelia S, De Palma C, Clementi E, Perrotta C. Oral administration of plumbagin is beneficial in in vivo models of Duchenne muscular dystrophy through control of redox signaling. Free Radic Biol Med 2024; 225:193-207. [PMID: 39326684 DOI: 10.1016/j.freeradbiomed.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease. Recently approved molecular/gene treatments do not solve the downstream inflammation-linked pathophysiological issues such that supportive therapies are required to improve therapeutic efficacy and patients' quality of life. Over the years, a plethora of bioactive natural compounds have been used for human healthcare. Among them, plumbagin, a plant-derived analog of vitamin K3, has shown interesting potential to counteract chronic inflammation with potential therapeutic significance. In this work we evaluated the effects of plumbagin on DMD by delivering it as an oral supplement within food to dystrophic mutant of the fruit fly Drosophila melanogaster and mdx mice. In both DMD models, plumbagin show no relevant adverse effect. In terms of efficacy plumbagin improved the climbing ability of the dystrophic flies and their muscle morphology also reducing oxidative stress in muscles. In mdx mice, plumbagin enhanced the running performance on the treadmill and the muscle strength along with muscle morphology. The molecular mechanism underpinning these actions was found to be the activation of nuclear factor erythroid 2-related factor 2 pathway, the re-establishment of redox homeostasis and the reduction of inflammation thus generating a more favorable environment for skeletal muscles regeneration after damage. Our data provide evidence that food supplementation with plumbagin modulates the main, evolutionary conserved, mechanistic pathophysiological hallmarks of dystrophy, thus improving muscle function in vivo; the use of plumbagin as a therapeutic in humans should thus be explored further.
Collapse
MESH Headings
- Naphthoquinones/administration & dosage
- Naphthoquinones/pharmacology
- Animals
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Mice
- Administration, Oral
- Mice, Inbred mdx
- Oxidation-Reduction/drug effects
- Signal Transduction/drug effects
- Disease Models, Animal
- Drosophila melanogaster
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/pathology
- Oxidative Stress/drug effects
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Humans
- Male
Collapse
Affiliation(s)
- Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Chiara Zalambani
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Alessandro Arcari
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università Degli Studi Della Tuscia, Viterbo, 01100, Italy
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Sara Casati
- Department of Biomedical, Surgical, and Dental Science (DISBIOC), Università Degli Studi di Milano, Milano, 20133, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum-Università di Bologna, Bologna, 40126, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Laura Lociuro
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, 20132, Italy
| | - Sestina Falcone
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, F-75013, France
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; Department of Pathophysiology and Transplantation (DEPT), Università Degli Studi di Milano, Milano, 20122, Italy
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-Università di Bologna, Rimini, 47921, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università Degli Studi di Milano, 20054, Segrate, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy; IRCCS Eugenio Medea, Bosisio Parini, 23842, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università Degli Studi di Milano, Milano, 20157, Italy.
| |
Collapse
|
4
|
Liu Z, Wei J, Sun H, Xu L. Plumbagin ameliorates LPS-induced acute lung injury by regulating PI3K/AKT/mTOR and Keap1-Nrf2/HO-1 signalling pathways. J Cell Mol Med 2024; 28:e18386. [PMID: 38990057 PMCID: PMC11238321 DOI: 10.1111/jcmm.18386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 07/12/2024] Open
Abstract
Acute lung injury (ALI) is a major pathophysiological problem characterized by severe inflammation, resulting in high morbidity and mortality. Plumbagin (PL), a major bioactive constituent extracted from the traditional Chinese herb Plumbago zeylanica, has been shown to possess anti-inflammatory and antioxidant pharmacological activities. However, its protective effect on ALI has not been extensively studied. The objective of this study was to investigate the protective effect of PL against ALI induced by LPS and to elucidate its possible mechanisms both in vivo and in vitro. PL treatment significantly inhibited pathological injury, MPO activity, and the wet/dry ratio in lung tissues, and decreased the levels of inflammatory cells and inflammatory cytokines TNF-α, IL-1β, IL-6 in BALF induced by LPS. In addition, PL inhibited the activation of the PI3K/AKT/mTOR signalling pathway, increased the activity of antioxidant enzymes CAT, SOD, GSH and activated the Keap1/Nrf2/HO-1 signalling pathway during ALI induced by LPS. To further assess the association between the inhibitory effects of PL on ALI and the PI3K/AKT/mTOR and Keap1/Nrf2/HO-1 signalling, we pretreated RAW264.7 cells with 740Y-P and ML385. The results showed that the activation of PI3K/AKT/mTOR signalling reversed the protective effect of PL on inflammatory response induced by LPS. Moreover, the inhibitory effects of PL on the production of inflammatory cytokines induced by LPS also inhibited by downregulating Keap1/Nrf2/HO-1 signalling. In conclusion, the results indicate that the PL ameliorate LPS-induced ALI by regulating the PI3K/AKT/mTOR and Keap1-Nrf2/HO-1 signalling, which may provide a novel therapeutic perspective for PL in inhibiting ALI.
Collapse
Affiliation(s)
- Zhengjia Liu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Jiahui Wei
- Department of RespiratoryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Hongbin Sun
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Lei Xu
- Department of Thoracic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
5
|
Petrocelli G, Marrazzo P, Bonsi L, Facchin F, Alviano F, Canaider S. Plumbagin, a Natural Compound with Several Biological Effects and Anti-Inflammatory Properties. Life (Basel) 2023; 13:1303. [PMID: 37374085 DOI: 10.3390/life13061303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals from various medicinal plants are well known for their antioxidant properties and anti-cancer effects. Many of these bioactive compounds or natural products have demonstrated effects against inflammation, while some showed a role that is only approximately described as anti-inflammatory. In particular, naphthoquinones are naturally-occurring compounds with different pharmacological activities and allow easy scaffold modification for drug design approaches. Among this class of compounds, Plumbagin, a plant-derived product, has shown interesting counteracting effects in many inflammation models. However, scientific knowledge about the beneficial effect of Plumbagin should be comprehensively reported before candidating this natural molecule into a future drug against specific human diseases. In this review, the most relevant mechanisms in which Plumbagin plays a role in the process of inflammation were summarized. Other relevant bioactive effects were reviewed to provide a complete and compact scenario of Plumbagin's potential therapeutic significance.
Collapse
Affiliation(s)
| | - Pasquale Marrazzo
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Laura Bonsi
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Federica Facchin
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, BO, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, BO, Italy
| |
Collapse
|
6
|
Wang LT, Chen LR, Chen KH. Hormone-Related and Drug-Induced Osteoporosis: A Cellular and Molecular Overview. Int J Mol Sci 2023; 24:5814. [PMID: 36982891 PMCID: PMC10054048 DOI: 10.3390/ijms24065814] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoporosis resulting from an imbalance of bone turnover between resorption and formation is a critical health issue worldwide. Estrogen deficiency following a nature aging process is the leading cause of hormone-related osteoporosis for postmenopausal women, while glucocorticoid-induced osteoporosis remains the most common in drug-induced osteoporosis. Other medications and medical conditions related to secondary osteoporosis include proton pump inhibitors, hypogonadism, selective serotonin receptor inhibitors, chemotherapies, and medroxyprogesterone acetate. This review is a summary of the cellular and molecular mechanisms of bone turnover, the pathophysiology of osteoporosis, and their treatment. Nuclear factor-κβ ligand (RANKL) appears to be the critical uncoupling factor that enhances osteoclastogenesis. In contrast, osteoprotegerin (OPG) is a RANKL antagonist secreted by osteoblast lineage cells. Estrogen promotes apoptosis of osteoclasts and inhibits osteoclastogenesis by stimulating the production of OPG and reducing osteoclast differentiation after suppression of IL-1 and TNF, and subsequent M-CSF, RANKL, and IL-6 release. It can also activate the Wnt signaling pathway to increase osteogenesis, and upregulate BMP signaling to promote mesenchymal stem cell differentiation from pre-osteoblasts to osteoblasts rather than adipocytes. Estrogen deficiency leads to the uncoupling of bone resorption and formation; therefore, resulting in greater bone loss. Excessive glucocorticoids increase PPAR-2 production, upregulate the expression of Dickkopf-1 (DKK1) in osteoblasts, and inhibit the Wnt signaling pathway, thus decreasing osteoblast differentiation. They promote osteoclast survival by enhancing RANKL expression and inhibiting OPG expression. Appropriate estrogen supplement and avoiding excessive glucocorticoid use are deemed the primary treatment for hormone-related and glucocorticoid-induced osteoporosis. Additionally, current pharmacological treatment includes bisphosphonates, teriparatide (PTH), and RANKL inhibitors (such as denosumab). However, many detailed cellular and molecular mechanisms underlying osteoporosis seem complicated and unexplored and warrant further investigation.
Collapse
Affiliation(s)
- Li-Ting Wang
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan; (L.-T.W.); (L.-R.C.)
| | - Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan; (L.-T.W.); (L.-R.C.)
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
7
|
Li Z, Li D, Chen R, Gao S, Xu Z, Li N. Cell death regulation: A new way for natural products to treat osteoporosis. Pharmacol Res 2023; 187:106635. [PMID: 36581167 DOI: 10.1016/j.phrs.2022.106635] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a common metabolic bone disease that results from the imbalance of homeostasis within the bone. Intra-bone homeostasis is dependent on a precise dynamic balance between bone resorption by osteoclasts and bone formation by mesenchymal lineage osteoblasts, which comprises a series of complex and highly standardized steps. Programmed cell death (PCD) (e.g., apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis) is a cell death process that involves a cascade of gene expression events with tight structures. These events play a certain role in regulating bone metabolism by determining the fate of bone cells. Moreover, existing research has suggested that natural products derived from a wide variety of dietary components and medicinal plants modulate the PCDs based on different mechanisms, which show great potential for the prevention and treatment of osteoporosis, thus revealing the emergence of more acceptable complementary and alternative drugs with lower costs, fewer side effects and more long-term application. Accordingly, this review summarizes the common types of PCDs in the field of osteoporosis. Moreover, from the perspective of targeting PCDs, this review also discussed the roles of currently reported natural products in the treatment of osteoporosis and the involved mechanisms. Based on this, this review provides more insights into new molecular mechanisms of osteoporosis and provides a reference for developing more natural anti-osteoporosis drugs in the future.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Renchang Chen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shang Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
8
|
Cao Y, Zhao Q, Liu F, Zheng L, Lin X, Pan M, Tan X, Sun G, Zhao K. Drug Value of Drynariae Rhizoma Root-Derived Extracellular Vesicles for Neurodegenerative Diseases Based on Proteomics and Bioinformatics. PLANT SIGNALING & BEHAVIOR 2022; 17:2129290. [PMID: 36196516 PMCID: PMC9542947 DOI: 10.1080/15592324.2022.2129290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Extracellular vesicles (EVs) are nano-sized membrane vesicles released by various cell types. Mammalian EVs have been studied in-depth, but the role of plant EVs has rarely been explored. For the first time, EVs from Drynariae Rhizoma roots were isolated and identified using transmission electron microscopy and a flow nano analyzer. Proteomics and bioinformatics were applied to determine the protein composition and complete the functional analysis of the EVs. Seventy-seven proteins were identified from Drynariae Rhizoma root-derived EVs, with enzymes accounting for 47% of the proteins. All of the enzymes were involved in important biological processes in plants. Most of them, including NAD(P)H-quinone oxidoreductase, were enriched in the oxidative phosphorylation pathway in plants and humans, and Alzheimer's disease, Huntington's disease, and Parkinson's disease, which are associated with oxidative stress in humans. These findings suggested that EVs from Drynariae Rhizoma roots could alleviate such neurological diseases and that enzymes, especially NAD(P)H-quinone oxidoreductase, might play an important role in the process.
Collapse
Affiliation(s)
- Yue Cao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Zhao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fubin Liu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingdong Lin
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingyue Pan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejun Tan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ge Sun
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kewei Zhao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Tocotrienol as a Protecting Agent against Glucocorticoid-Induced Osteoporosis: A Mini Review of Potential Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185862. [PMID: 36144598 PMCID: PMC9506150 DOI: 10.3390/molecules27185862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Glucocorticoid-induced osteogenic dysfunction is the main pathologyical mechanism underlying the development of glucocorticoid-induced osteoporosis. Glucocorticoids promote adipogenic differentiation and osteoblast apoptosis through various pathways. Various ongoing studies are exploring the potential of natural products in preventing glucocorticoid-induced osteoporosis. Preclinical studies have consistently shown the bone protective effects of tocotrienol through its antioxidant and anabolic effects. This review aims to summarise the potential mechanisms of tocotrienol in preventing glucocorticoid-induced osteoporosis based on existing in vivo and in vitro evidence. The current literature showed that tocotrienol prevents oxidative damage on osteoblasts exposed to high levels of glucocorticoids. Tocotrienol reduces lipid peroxidation and increases oxidative stress enzyme activities. The reduction in oxidative stress protects the osteoblasts and preserves the bone microstructure and biomechanical strength of glucocorticoid-treated animals. In other animal models, tocotrienol has been shown to activate the Wnt/β-catenin pathway and lower the RANKL/OPG ratio, which are the targets of glucocorticoids. In conclusion, tocotrienol enhances osteogenic differentiation and bone formation in glucocorticoid-treated osteoblasts while improving structural integrity in glucocorticoid-treated rats. This is achieved by preventing oxidative stress and osteoblast apoptosis. However, these preclinical results should be validated in a randomised controlled trial.
Collapse
|
10
|
Zhang F, Li Q, Wu J, Ruan H, Sun C, Zhu J, Song Q, Wei X, Shi Y, Zhu L. Total Flavonoids of Drynariae Rhizoma Improve Glucocorticoid-Induced Osteoporosis of Rats: UHPLC-MS-Based Qualitative Analysis, Network Pharmacology Strategy and Pharmacodynamic Validation. Front Endocrinol (Lausanne) 2022; 13:920931. [PMID: 35846330 PMCID: PMC9279576 DOI: 10.3389/fendo.2022.920931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glucocorticoid-induced osteoporosis (GIOP) is a common form of secondary osteoporosis caused by the protracted or a large dosage of glucocorticoids (GCs). Total flavonoids of Drynariae rhizoma (TFDR) have been widely used in treating postmenopausal osteoporosis (POP). However, their therapeutic effects and potential mechanism against GIOP have not been fully elucidated. METHODS Ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESIQ-TOF-MS) experiments were performed for qualitative analysis. We performed hematoxylin-eosin (HE) staining and microcomputed tomography (micro-CT) analysis to detect the changes in bone microstructure. The changes in biochemical parameters in the serum samples were determined by performing an enzyme-linked immunosorbent assay (ELISA). The prediction results of network pharmacology were verified via quantitative real-time polymerase chain reaction (qRT-PCR) to elucidate the potential mechanism of TFDR against GIOP. RESULTS A total of 191 ingredients were identified in vitro and 48 ingredients in vivo. In the in-vivo experiment, the levels of the serum total cholesterol (TC), the serum triglyceride (TG), Leptin (LEP), osteocalcin (OC), osteoprotegerin (OPG), bone morphogenetic protein-2 (BMP-2), propeptide of type I procollagen (PINP), tartrate-resistant acid phosphatase (TRACP) and type-I collagen carboxy-terminal peptide (CTX-1) in the TFDR group significantly changed compared with those in the GIOP group. Moreover, the TFDR group showed an improvement in bone mineral density and bone microstructure. Based on the results of network pharmacology analysis, 67 core targets were selected to construct the network and perform PPI analysis as well as biological enrichment analysis. Five of the targets with high "degree value" had differential gene expression between groups using qRT-PCR. CONCLUSION TFDR, which may play a crucial role between adipose metabolism and bone metabolism, may be a novel remedy for the prevention and clinical treatment of GIOP.
Collapse
Affiliation(s)
- Fangqing Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuyue Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashuo Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haonan Ruan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghui Song
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Xu Wei, ; Yue Shi, ; Liguo Zhu,
| |
Collapse
|
11
|
Han J, Yang K, An J, Jiang N, Fu S, Tang X. The Role of NRF2 in Bone Metabolism - Friend or Foe? Front Endocrinol (Lausanne) 2022; 13:813057. [PMID: 35282459 PMCID: PMC8906930 DOI: 10.3389/fendo.2022.813057] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Bone metabolism is closely related to oxidative stress. As one of the core regulatory factors of oxidative stress, NRF2 itself and its regulation of oxidative stress are both involved in bone metabolism. NRF2 plays an important and controversial role in the regulation of bone homeostasis in osteoblasts, osteoclasts and other bone cells. The role of NRF2 in bone is complex and affected by several factors, such as its expression levels, age, sex, the presence of various physiological and pathological conditions, as well as its interaction with certains transcription factors that maintain the normal physiological function of the bone tissue. The properties of NRF2 agonists have protective effects on the survival of osteogenic cells, including osteoblasts, osteocytes and stem cells. Activation of NRF2 directly inhibits osteoclast differentiation by resisting oxidative stress. The effects of NRF2 inhibition and hyperactivation on animal skeleton are still controversial, the majority of the studies suggest that the presence of NRF2 is indispensable for the acquisition and maintenance of bone mass, as well as the protection of bone mass under various stress conditions. More studies show that hyperactivation of NRF2 may cause damage to bone formation, while moderate activation of NRF2 promotes increased bone mass. In addition, the effects of NRF2 on the bone phenotype are characterized by sexual dimorphism. The efficacy of NRF2-activated drugs for bone protection and maintenance has been verified in a large number of in vivo and in vitro studies. Additional research on the role of NRF2 in bone metabolism will provide novel targets for the etiology and treatment of osteoporosis.
Collapse
Affiliation(s)
- Jie Han
- The First Clinical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Kuan Yang
- The First Clinical College of Lanzhou University, Lanzhou, China
| | - Jinyang An
- The First Clinical College of Lanzhou University, Lanzhou, China
| | - Na Jiang
- The First Clinical College of Lanzhou University, Lanzhou, China
| | - Songbo Fu
- The First Clinical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xulei Tang
- The First Clinical College of Lanzhou University, Lanzhou, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Xulei Tang,
| |
Collapse
|
12
|
Dexamethasone Sensitizes Cancer Stem Cells to Gemcitabine and 5-Fluorouracil by Increasing Reactive Oxygen Species Production through NRF2 Reduction. Life (Basel) 2021; 11:life11090885. [PMID: 34575034 PMCID: PMC8470402 DOI: 10.3390/life11090885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have high tumor-initiating capacity and are resistant to chemotherapeutic reagents; thus eliminating CSCs is essential to improving the prognosis. Recently, we reported that dexamethasone increases the effects of gemcitabine on pancreatic CSCs; however, the mechanism involved remains to be fully elucidated. In this study, we explored the role of reactive oxygen species (ROS) in the dexamethasone-induced chemosensitization of CSCs. Dexamethasone increased the growth-inhibitory effects of gemcitabine and 5-fluorouracil, whereas N-acetyl-cysteine, a ROS scavenger, abolished this effect. Although dexamethasone alone did not increase ROS levels, dexamethasone promoted the increase in ROS levels induced by gemcitabine and 5-fluorouracil. Dexamethasone treatment reduced the expression of NRF2, a key regulator of antioxidant responses, which was attenuated by siRNA-mediated knockdown of the glucocorticoid receptor. Furthermore, brusatol, a suppressor of NRF2, sensitized pancreatic CSCs to gemcitabine and 5-fluorouracil. Of note, essentially, the same mechanism was functional in ovarian and colon CSCs treated by the combination of dexamethasone and chemotherapeutic agents. Our study suggests that dexamethasone can sensitize CSCs to chemotherapeutic agents by promoting chemotherapy-induced ROS production through suppressing NRF2 expression.
Collapse
|
13
|
Huang M, Wang Y, Peng R. Icariin Alleviates Glucocorticoid-Induced Osteoporosis through EphB4/Ephrin-B2 Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2982480. [PMID: 32508946 PMCID: PMC7251451 DOI: 10.1155/2020/2982480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Glucocorticoid (GC) is the most important risk factor for osteoporosis (OP); in the present study, we examined the potential mechanism of icariin, a natural bioactive compound isolated from the traditional Chinese herbal Epimedium, for GC-induced OP to explore its potential therapeutic effect. METHODS We used a GC-induced OP mice model and treated with icariin. Pathological changes were measured by H&E staining, and the effects of icariin on osteoblasts and osteoclasts were measured by immunohistochemistry (IHC) staining and western blot (WB) analyses, while trabecular bone parameters were detected by micro-CT imaging in vivo. RESULTS The results showed that in GC-induced OP symptoms, icariin treatment significantly increased the density of the trabecular bone when exposed to GC, revealed by H&E staining and micro-CT imaging. IHC staining showed that GC-induced OP had a lower EphB4 expression and higher Ephrin-B2 expression, but icariin could promote EphB4 while suppressing Ephrin-B2 expression. The WB results also provided evidence of the same protein expression trend, showing that the osteoblast marker OCN and the EphB4 downstream factor RhoA in the GC group were decreased, while both OCN and RhoA expression were significantly increased and the Ephrin-B2 downstream factor Grb4 in in GC group was increased after icariin treatment. CONCLUSION Icariin could improve the characteristics of OP through regulating the balance of the EphB4/Ephrin-B2 pathway. Further preclinical trial is needed to provide certainty of clinical benefits for OP patients.
Collapse
Affiliation(s)
- Mi Huang
- Hubei University of Chinese Medicine, Hubei, Wuhan 430000, China
| | - Ying Wang
- South China Botanical Garden, Chinese Academy of Sciences, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Key Laboratory of Guangdong Province Applied Botany, Guangzhou 510650, China
- Gannan Normal University, Ganzhou, Jinagxi 341000, China
| | - Rui Peng
- Hubei University of Chinese Medicine, Hubei, Wuhan 430000, China
| |
Collapse
|
14
|
Mo H, Zhang N, Li H, Li F, Pu R. Beneficial effects of Cuscuta chinensis extract on glucocorticoid-induced osteoporosis through modulation of RANKL/OPG signals. ACTA ACUST UNITED AC 2019; 52:e8754. [PMID: 31826180 PMCID: PMC6903142 DOI: 10.1590/1414-431x20198754] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
Cuscuta chinensis Lam. (Convolvulaceae) is an important herbal medicine widely used to improve sexual function, treat osteoporosis, and prevent aging, and has been reported to exhibit anti-osteoporotic effects in vitro. However, the activity of Cuscuta chinensis Lam. on glucocorticoid-induced osteoporosis still remains unclear. The present study aimed to assess the protective effect and the underlying mechanism of action of Cuscuta chinensis extract (CCE) against glucocorticoid-induced osteoporosis in vivo. Sprague-Dawley rats were randomly divided into four groups as follows: control group, osteoporosis group, and 2 CCE-treated osteoporosis groups (100 mg·kg-1·day-1). Blood samples and femur bones were collected for immunohistochemistry, biochemical, mRNA expression, and western blot analysis. HPLC analysis revealed that chlorogenic acid, quercetin, and hyperin were the major constituents of CCE. The results indicated that CCE increased bone length, bone weight, and bone mineral density and suppressed dexamethasone (DEX)-induced reduction in body weight. In addition, TRAP staining indicated that CCE reduced osteoclasts in DEX-induced osteoporosis rats. Mechanistically, CCE treatment alleviated the increase of bone resorption markers and the decline of osteogenic markers, which might be partially mediated by regulation of RANKL/OPG and RunX2 pathways. These results suggest that CCE showed promising effects in the protection against glucocorticoid-induced osteoporosis through protecting osteoblasts and suppressing osteoclastogenesis.
Collapse
Affiliation(s)
- Hui Mo
- Department of Nuclear Medicine, Maoming People's Hospital, Maoming, Guangdong, China
| | - Ning Zhang
- Department of Nuclear Medicine, Maoming People's Hospital, Maoming, Guangdong, China
| | - Huifu Li
- Department of Nuclear Medicine, Maoming People's Hospital, Maoming, Guangdong, China
| | - Fan Li
- Department of Nuclear Medicine, Maoming People's Hospital, Maoming, Guangdong, China
| | - Rong Pu
- Clinical Laboratory of the Third People's Hospital of Dongguan City, Dongguan, Guangdong, China
| |
Collapse
|
15
|
Jing Z, Wang C, Yang Q, Wei X, Jin Y, Meng Q, Liu Q, Liu Z, Ma X, Liu K, Sun H, Liu M. Luteolin attenuates glucocorticoid-induced osteoporosis by regulating ERK/Lrp-5/GSK-3β signaling pathway in vivo and in vitro. J Cell Physiol 2018; 234:4472-4490. [PMID: 30192012 DOI: 10.1002/jcp.27252] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/19/2018] [Indexed: 01/10/2023]
Abstract
Glucocorticoid-induced osteoporosis (GIO) is a secondary osteoporosis with extensive use of glucocorticoids (GCs). GCs can increase bone fragility and fracture via inhibiting osteoblastic proliferation and differentiation. Luteolin (LUT), a kind of plant flavonoid, has been reported to exhibit the antioxidant activity, but the effects of LUT on GIO still remain unclear. This study aimed to investigate the effects of LUT on GIO both in vivo and in vitro and elaborate the potential molecular mechanisms. LUT increased the superoxide dismutase activity, glutathione level and decreased reactive oxygen species (ROS) level and lactate dehydrogenase release in GIO. Meanwhile, LUT decreased caspase-3, caspase-9, and Bax protein expressions and increased Bcl-2 protein expression in GIO. LUT increased the ratio of osteoprotegerin (OPG)/receptor activator of nuclear factor-κB Ligand (RANKL) messenger RNA (mRNA) expression and mRNA expression levels of osteogenic markers, including runt-related transcription factor 2, osterix, collagen type I, and osteocalcin. LUT also enhanced the extracellular signal-regulated kinases (ERK) phosphorylation, glycogen synthase kinase 3β (GSK-3β) phosphorylation, mRNA expression levels of lipoprotein-receptor-related protein 5 (Lrp-5) and β-catenin. Further study revealed that Lrp-5 small interfering RNA (siRNA )and ERK-siRNA reduced the effects of LUT on GSK-3β phosphorylation, alkaline phosphatase (ALP) activity and the ratio of OPG/RANKL mRNA expression. Moreover, ERK-siRNA decreased Lrp-5 mRNA expression in vitro. These results indicated that LUT promoted proliferation by attenuating oxidative stress and promoted osteoblastic differentiation by regulating the ERK/Lrp-5/GSK-3β pathway in GIO. This study may bring to light the possible mechanisms involved in the action of LUT in GIO treatment, and benefit for further research on GIO.
Collapse
Affiliation(s)
- Zheng Jing
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qining Yang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xuelian Wei
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Liu W, Zhao Z, Na Y, Meng C, Wang J, Bai R. Dexamethasone-induced production of reactive oxygen species promotes apoptosis via endoplasmic reticulum stress and autophagy in MC3T3-E1 cells. Int J Mol Med 2018; 41:2028-2036. [PMID: 29393368 PMCID: PMC5810234 DOI: 10.3892/ijmm.2018.3412] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023] Open
Abstract
Apoptosis of osteoblasts, triggered by prolonged or excessive use of glucocorticoids (GCs), has been identified as a dominant contributor to the development of osteoporosis and osteonecrosis. However, the molecular mechanisms underlying GC‑induced apoptosis are multifaceted and remain to be fully elucidated. The present study aimed to explore the correlation between dexamethasone (DEX)‑induced reactive oxygen species (ROS), autophagy and apoptosis in MC3T3‑E1 osteoblast‑like cells. Cell viability was assessed using a Cell Counting Kit‑8 assay, and flow cytometry was performed to assess cellular apoptosis, cell cycle and ROS production. Immunofluorescence and western blot analysis were respectively used to detect autophagic vacuoles and the expression of proteins, including cyclin D kinase (CDK)2, poly[ADP ribose] polymerase, caspase‑3, activating transcription factor (ATF)4, CCAAT/enhancer‑binding protein homologous protein (CHOP), Beclin1, microtubule‑associated proteins 1A/1B light chain (LC)3B and P62. It was revealed that DEX not only reduced cell viability, but also promoted apoptosis via the activation of endoplasmic reticulum (ER) stress. In addition, DEX induced cell cycle arrest at G0/G1 phase via inhibition of the expression of CDK2, and the production of ROS was activated. Of note, the DEX‑mediated changes in viability and apoptosis were attenuated in MC3T3‑E1 cells after treatment with 3‑methyladenine, which is an autophagy inhibitor. Treatment with the antioxidant N‑acetylcysteine abolished the effect of DEX on the proliferation, apoptosis, ER stress and autophagy of MC3T3‑E1 cells. In conclusion, the present results indicated that DEX promoted the production of ROS, which enhanced apoptosis through activation of autophagy and ER stress in MC3T3-E1 cells.
Collapse
Affiliation(s)
| | | | - Yuyan Na
- Departments of Pediatric Orthopedics
| | | | - Jianzhong Wang
- Orthopedics and Trauma, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010030, P.R. China
| | - Rui Bai
- Departments of Pediatric Orthopedics
| |
Collapse
|
17
|
Zheng XY, Mao CY, Qiao H, Zhang X, Yu L, Wang TY, Lu EY. Plumbagin suppresses chronic periodontitis in rats via down-regulation of TNF-α, IL-1β and IL-6 expression. Acta Pharmacol Sin 2017; 38:1150-1160. [PMID: 28552911 DOI: 10.1038/aps.2017.19] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/13/2017] [Indexed: 01/01/2023]
Abstract
Chronic periodontitis (CP) is one of the most common oral diseases, which causes alveolar bone absorption and tooth loss in adults. In this study we aimed to investigate the potential of plumbagin (PL), a widely-investigated active compound extracted from the traditional Chinese herb Plumbago zeylanica L in treating CP. Human periodontal ligament stem cells (PDLSCs) were used for in vitro studies, whereas an animal model of CP was established in SD rats by ligation+Porphyromonas gingivalis (Pg) stimulation. The rats were injected with PL (2, 4, and 6 mg·kg-1·d-1, ip) for 4 weeks. Treatment of PDLSCs with TNF-α (10 ng/mL) markedly stimulated the expression of the proinflammatory cytokines TNF-α, IL-1β and IL-6, as well as the chemokines CCL-2 and CCL-5, which were dose-dependently suppressed by co-treatment with PL (1.25-5 μmol/L). Furthermore, PL (3.75 μmol/L) markedly suppressed TNF-α-induced activation of the MAPK, NF-κB and JAK/STAT signaling pathways in PDLSCs. In consistence with the in vitro studies, PL administration significantly decreased the expression of TNF-α, IL-1β and IL-6 in gingiva of the rat with CP, with the dosage 4 mg·kg-1·d-1 showing the best anti-inflammatory effect. Moreover, PL administration decelerated bone destruction in the rat with CP, evidenced by the aveolar bone loss (ABL) and H&E staining results. In conclusion, PL suppresses CP progression in rats by downregulating the expressions of TNF-α, IL-1β and IL-6 and inhibiting the MAPK, NF-κB and JAK/STAT signaling pathways.
Collapse
|
18
|
Liu ZF, Wu FX, Wang LP, Wang MC, Fu L. Lutein suppresses cell proliferation in human colon cancer cell line HT29 via Nrf-2/ARE signal transduction pathway. Shijie Huaren Xiaohua Zazhi 2016; 24:858-865. [DOI: 10.11569/wcjd.v24.i6.858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the anti-proliferative effect of lutein on human colon cancer HT29 cells and to explore the possible mechanisms involved by detecting the expression of nuclear factor erythroid-2 related factor 2 and heme oxygenase-1.
METHODS: HT29 cells were treated with different concentrations of lutein (20, 40, 80, and 160 mg/L) for 24, 48 or 72 h. After treatment, CCK8 method was used to detect cell proliferation. Cell cycle progression was analyzed by flow cytometry. The levels of Nrf-2 and HO-1 mRNAs were determined by RT-PCR. The levels of Nrf-2 and HO-1 proteins were determined by Western blot.
RESULTS: Lutein inhibited the proliferation of HT29 cells in a dose- and time-dependent manner. Treatment with 160 mg/L lutein for 72 h resulted in an inhibition rate of 78.09%. After treatment with lutein for 48 h, it was found by flow cytometry that lutein arrested HT29 cell growth at G0/G1 phase. Compared with the blank control group, lutein upregulated the mRNA and protein expression levels of Nrf-2 and HO-1 in a dose-dependent manner (P < 0.01).
CONCLUSION: Lutein can significantly inhibit the proliferation of HT29 cells, arrest cells in G0/G1 phase, and induce the mRNA and protein expression of Nrf-2 and HO-1. The inhibitory effect of lutein on cell proliferation may involve the Nrf-2/ARE signal transduction pathway.
Collapse
|
19
|
Panichayupakaranant P, Ahmad MI. Plumbagin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:229-246. [PMID: 27771927 DOI: 10.1007/978-3-319-41342-6_10] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) is a plant-derived naphthoquinones obtained mainly from three families, including Plumbaginaceae, Droseraceae, and Ebenaceae. Plumbagin has exhibited its potential therapeutic benefits on numerous chronic diseases, i.e., breast cancer, non-small cell lung cancer, melanoma, ovarian, squamous cell carcinomas, pancreatic cancer, and prostate cancer. In addition, its anti-inflammatory and antimicrobial activities as well as control of diabetes and cardiovascular diseases have been reported. Thus, plumbagin is a promising agent for development as a new drug for the treatment or control of chronic diseases. Studies on controlled drug release or drug delivery systems have been involved for improvement of its therapeutic efficacy as well as for the reduction of its toxicity. However, most of the recent research information is from in vitro and in vivo studies. Further clinical studies are therefore required for its developments and applications as a novel drug used to treat chronic diseases.
Collapse
Affiliation(s)
- Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.
- Excellent Research Laboratory, Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand.
| | - Md Iftekhar Ahmad
- Excellent Research Laboratory, Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
| |
Collapse
|