1
|
Petri BJ, Piell KM, Wahlang B, Head KZ, Rouchka EC, Park JW, Hwang JY, Banerjee M, Cave MC, Klinge CM. Altered splicing factor and alternative splicing events in a mouse model of diet- and polychlorinated biphenyl-induced liver disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104260. [PMID: 37683712 PMCID: PMC10591945 DOI: 10.1016/j.etap.2023.104260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with human environmental exposure to polychlorinated biphenyls (PCBs). Alternative splicing (AS) is dysregulated in steatotic liver disease and is regulated by splicing factors (SFs) and N-6 methyladenosine (m6A) modification. Here integrated analysis of hepatic mRNA-sequencing data was used to identify differentially expressed SFs and differential AS events (ASEs) in the livers of high fat diet-fed C57BL/6 J male mice exposed to Aroclor1260, PCB126, Aroclor1260 + PCB126, or vehicle control. Aroclor1260 + PCB126 co-exposure altered 100 SFs and replicate multivariate analysis of transcript splicing (rMATS) identified 449 ASEs in 366 genes associated with NAFLD pathways. These ASEs were similar to those resulting from experimental perturbations in m6A writers, readers, and erasers. These results demonstrate specific hepatic SF and AS regulatory mechanisms are disrupted by HFD and PCB exposures, contributing to the expression of altered isoforms that may play a role in NAFLD progression to NASH.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Kellianne M Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Banrida Wahlang
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Kimberly Z Head
- University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Eric C Rouchka
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; KY INBRE Bioinformatics Core, University of Louisville, USA
| | - Juw Won Park
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; KY INBRE Bioinformatics Core, University of Louisville, USA; Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Jae Yeon Hwang
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY 40292, USA
| | - Mayukh Banerjee
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Matthew C Cave
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA; University of Louisville Hepatobiology and Toxicology Center, USA; The University of Louisville Superfund Research Center, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA; University of Louisville Center for Integrative Environmental Health Sciences (CIEHS), USA.
| |
Collapse
|
2
|
Capinha L, Jennings P, Commandeur JNM. Exposure to Cis- and Trans-regioisomers of S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-glutathione result in quantitatively and qualitatively different cellular effects in RPTEC/TERT1 cells. Toxicol Lett 2023:S0378-4274(23)00205-9. [PMID: 37353095 DOI: 10.1016/j.toxlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Bioactivation of trichloroethylene (TCE) via glutathione conjugation is associated with several adverse effects in the kidney and other extrahepatic tissues. Of the three regioisomeric conjugates formed, S-(1,2-trans-dichlorovinyl)-glutathione (1,2-trans-DCVG), S-(1,2-cis-dichlorovinyl)-glutathione and S-(2,2-dichlorovinyl)-glutathione, only 1,2-trans-DCVG and its corresponding cysteine-conjugate, 1,2-trans-DCVC, have been subject to extensive mechanistic studies. In the present study, the metabolism and cellular effects of 1,2-cis-DCVG, the major regioisomer formed by rat liver fractions, and 1,2-cis-DCVC were investigated for the first time using RPTEC/TERT1-cells as in vitro renal model. In contrast to 1,2-trans-DCVG/C, the cis-regioisomers showed minimal effects on cell viability and mitochondrial respiration. Transcriptomics analysis showed that both 1,2-cis-DCVC and 1,2-trans-DCVC caused Nrf2-mediated antioxidant responses, with 3µM as lowest effective concentration. An ATF4-mediated integrated stress response and p53-mediated responses were observed starting from 30µM for 1,2-trans-DCVC and 125µM for 1,2-cis-DCVC. Comparison of the metabolism of the DCVG regioisomers by LC/MS showed comparable rates of processing to their corresponding DCVC. No detectable N-acetylation was observed in RPTEC/TERT1 cells. Instead, N-glutamylation of DCVC to form N-γ-glutamyl-S-(dichlorovinyl)-L-cysteine was identified as a novel route of metabolism. The results suggest that 1,2-cis-DCVC may be of less toxicological concern for humans than 1,2-trans-DCVC, considering its lower intrinsic toxicity and lower rate of formation by human liver fractions.
Collapse
Affiliation(s)
- Liliana Capinha
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| | - Jan N M Commandeur
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Corral-Serrano JC, Sladen PE, Ottaviani D, Rezek OF, Athanasiou D, Jovanovic K, van der Spuy J, Mansfield BC, Cheetham ME. Eupatilin Improves Cilia Defects in Human CEP290 Ciliopathy Models. Cells 2023; 12:1575. [PMID: 37371046 PMCID: PMC10297203 DOI: 10.3390/cells12121575] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The photoreceptor outer segment is a highly specialized primary cilium that is essential for phototransduction and vision. Biallelic pathogenic variants in the cilia-associated gene CEP290 cause non-syndromic Leber congenital amaurosis 10 (LCA10) and syndromic diseases, where the retina is also affected. While RNA antisense oligonucleotides and gene editing are potential treatment options for the common deep intronic variant c.2991+1655A>G in CEP290, there is a need for variant-independent approaches that could be applied to a broader spectrum of ciliopathies. Here, we generated several distinct human models of CEP290-related retinal disease and investigated the effects of the flavonoid eupatilin as a potential treatment. Eupatilin improved cilium formation and length in CEP290 LCA10 patient-derived fibroblasts, in gene-edited CEP290 knockout (CEP290 KO) RPE1 cells, and in both CEP290 LCA10 and CEP290 KO iPSCs-derived retinal organoids. Furthermore, eupatilin reduced rhodopsin retention in the outer nuclear layer of CEP290 LCA10 retinal organoids. Eupatilin altered gene transcription in retinal organoids by modulating the expression of rhodopsin and by targeting cilia and synaptic plasticity pathways. This work sheds light on the mechanism of action of eupatilin and supports its potential as a variant-independent approach for CEP290-associated ciliopathies.
Collapse
Affiliation(s)
| | - Paul E. Sladen
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | - Daniele Ottaviani
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
- Department of Biology, University of Padova, Padova, 35122 Padova PD, Italy
| | - Olivia F. Rezek
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | - Dimitra Athanasiou
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | - Katarina Jovanovic
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | | | - Brian C. Mansfield
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B, Rockledge Drive, Montgomery County, MD 20892, USA
| | - Michael E. Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| |
Collapse
|
4
|
Corral-Serrano JC, Sladen PE, Ottaviani D, Rezek FO, Jovanovic K, Athanasiou D, van der Spuy J, Mansfield BC, Cheetham ME. Eupatilin improves cilia defects in human CEP290 ciliopathy models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536565. [PMID: 37205323 PMCID: PMC10187159 DOI: 10.1101/2023.04.12.536565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The photoreceptor outer segment is a highly specialized primary cilium essential for phototransduction and vision. Biallelic pathogenic variants in the cilia-associated gene CEP290 cause non-syndromic Leber congenital amaurosis 10 (LCA10) and syndromic diseases, where the retina is also affected. While RNA antisense oligonucleotides and gene editing are potential treatment options for the common deep intronic variant c.2991+1655A>G in CEP290 , there is a need for variant-independent approaches that could be applied to a broader spectrum of ciliopathies. Here, we generated several distinct human models of CEP290 -related retinal disease and investigated the effects of the flavonoid eupatilin as a potential treatment. Eupatilin improved cilium formation and length in CEP290 LCA10 patient-derived fibroblasts, in gene-edited CEP290 knockout (CEP290 KO) RPE1 cells, and in both CEP290 LCA10 and CEP290 KO iPSCs-derived retinal organoids. Furthermore, eupatilin reduced rhodopsin retention in the outer nuclear layer of CEP290 LCA10 retinal organoids. Eupatilin altered gene transcription in retinal organoids, by modulating the expression of rhodopsin, and by targeting cilia and synaptic plasticity pathways. This work sheds light into the mechanism of action of eupatilin, and supports its potential as a variant-independent approach for CEP290 -associated ciliopathies. Abstract Figure
Collapse
Affiliation(s)
- JC Corral-Serrano
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - PE Sladen
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - D Ottaviani
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
- Department of Biology, University of Padova, Padova, Italy
| | - FO Rezek
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - K Jovanovic
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - D Athanasiou
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - J van der Spuy
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - BC Mansfield
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - ME Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| |
Collapse
|
5
|
Dardente H, Lomet D, Desmarchais A, Téteau O, Lasserre O, Gonzalez AA, Dubois E, Beltramo M, Elis S. Impact of food restriction on the medio-basal hypothalamus of intact ewes as revealed by a large-scale transcriptomics study. J Neuroendocrinol 2022; 34:e13198. [PMID: 36168278 DOI: 10.1111/jne.13198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
In mammals, the medio-basal hypothalamus (MBH) integrates photoperiodic and food-related cues to ensure timely phasing of physiological functions, including seasonal reproduction. The current human epidemics of obesity and associated reproductive disorders exemplifies the tight link between metabolism and reproduction. Yet, how food-related cues impact breeding at the level of the MBH remains unclear. In this respect, the sheep, which is a large diurnal mammal with a marked dual photoperiodic/metabolic control of seasonal breeding, is a relevant model. Here, we present a large-scale study in ewes (n = 120), which investigated the impact of food restriction (FRes) on the MBH transcriptome using unbiased RNAseq, followed by RT-qPCR. Few genes (~100) were impacted by FRes and the transcriptional impact was very modest (<2-fold increase or < 50% decrease for most genes). As anticipated, FRes increased expression of Npy/AgRP/LepR and decreased expression of Pomc/Cartpt, while Kiss1 expression was not impacted. Of particular interest, Eya3, Nmu and Dio2, genes involved in photoperiodic decoding within the MBH, were also affected by FRes. Finally, we also identified a handful of genes not known to be regulated by food-related cues (e.g., RNase6, HspA6, Arrdc2). In conclusion, our transcriptomics study provides insights into the impact of metabolism on the MBH in sheep, which may be relevant to human, and identifies possible molecular links between metabolism and (seasonal) reproduction.
Collapse
Affiliation(s)
- Hugues Dardente
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Didier Lomet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Université Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Sébastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
6
|
Alcohol use disorder causes global changes in splicing in the human brain. Transl Psychiatry 2021; 11:2. [PMID: 33414398 PMCID: PMC7790816 DOI: 10.1038/s41398-020-01163-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/11/2023] Open
Abstract
Alcohol use disorder (AUD) is a widespread disease leading to the deterioration of cognitive and other functions. Mechanisms by which alcohol affects the brain are not fully elucidated. Splicing constitutes a nuclear process of RNA maturation, which results in the formation of the transcriptome. We tested the hypothesis as to whether AUD impairs splicing in the superior frontal cortex (SFC), nucleus accumbens (NA), basolateral amygdala (BLA), and central nucleus of the amygdala (CNA). To evaluate splicing, bam files from STAR alignments were indexed with samtools for use by rMATS software. Computational analysis of affected pathways was performed using Gene Ontology Consortium, Gene Set Enrichment Analysis, and LncRNA Ontology databases. Surprisingly, AUD was associated with limited changes in the transcriptome: expression of 23 genes was altered in SFC, 14 in NA, 102 in BLA, and 57 in CNA. However, strikingly, mis-splicing in AUD was profound: 1421 mis-splicing events were detected in SFC, 394 in NA, 1317 in BLA, and 469 in CNA. To determine the mechanism of mis-splicing, we analyzed the elements of the spliceosome: small nuclear RNAs (snRNAs) and splicing factors. While snRNAs were not affected by alcohol, expression of splicing factor heat shock protein family A (Hsp70) member 6 (HSPA6) was drastically increased in SFC, BLA, and CNA. Also, AUD was accompanied by aberrant expression of long noncoding RNAs (lncRNAs) related to splicing. In summary, alcohol is associated with genome-wide changes in splicing in multiple human brain regions, likely due to dysregulation of splicing factor(s) and/or altered expression of splicing-related lncRNAs.
Collapse
|
7
|
Xie Z, Sun R, Qi C, Jiao S, Jiang Y, Liu Z, Zhao D, Liu R, Li Q, Yang K, Hu L, Wang X, Tang X, Ouyang H, Pang D. Generation of a pHSPA6 gene-based multifunctional live cell sensor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118919. [PMID: 33279608 DOI: 10.1016/j.bbamcr.2020.118919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Biosensors utilizing intact live cells can report responses to certain stimuli rapidly and sensitively and have attracted a great deal of attention. The expression pattern of HSPA6, a little studied HSPA family member, has contributed to the development of multifunctional and intelligent whole-cell sensors. Herein, a new pHSPA6-based EGFP fluorescent reporter cell line was designed and developed via a CRISPR/Cas9-mediated knock-in strategy. The fluorescent reporter cell line has a precise EGFP integration site and gene copy number, and no selectable marker genes were introduced during the selection processes. Stimulation experiments with HSPA6-specific stressors indicated that EGFP fluorescent reporter cells could rapidly and effectively convert stress signals into EGFP fluorescent signals. Furthermore, cell proliferation and gene expression pattern analysis showed that the fluorescent reporter cells grew well and that both the integrated EGFP gene and the pHSPA6 gene were expressed rapidly and sensitively in response to stimulation. This study provides a new strategy for the construction of a cell model for HSPA6 expression/interaction and an intelligent live cell sensor, which can potentially be applied to numerous fields, such as those focusing on cellular models of HSPA6 signaling cascades, biomaterials, food security, environmental assessment, and drug screening.
Collapse
Affiliation(s)
- Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Ruize Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Shuyu Jiao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Yuan Jiang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Zhenying Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Dehua Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Ruonan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Qirong Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Kang Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Lanxin Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Xinping Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Xiaochun Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China.
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 130062 Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
8
|
Chiricosta L, Gugliandolo A, Bramanti P, Mazzon E. Could the Heat Shock Proteins 70 Family Members Exacerbate the Immune Response in Multiple Sclerosis? An in Silico Study. Genes (Basel) 2020; 11:genes11060615. [PMID: 32503176 PMCID: PMC7348765 DOI: 10.3390/genes11060615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system. It represents one of the main causes of neurological disability in young people. In MS, the autoimmune response is directed against myelin antigens but other possible bio-molecular markers are investigated. The aim of this work was, through an in silico study, the evaluation of the transcriptional modifications between healthy subjects and MS patients in six brain areas (corpus callosum, hippocampus, internal capsule, optic chiasm, frontal and parietal cortex) in order to identify genes representative of the disease. Our results show the upregulation of the Heat Shock Proteins (HSPs) HSPA1A, HSPA1B, HSPA7, HSPA6, HSPH1 and HSPA4L of the HSP70 family, among which HSPA1A and HSPA1B are upregulated in all the brain areas. HSP70s are molecular chaperones indispensable for protein folding, recently associated with immune system maintenance. The little overexpression of the HSPs protects the cells from stress but extreme upregulation can contribute to the MS pathogenesis. We also investigated the genes involved in the immune system that result in overall upregulation in the corpus callosum, hippocampus, internal capsule, optic chiasm and are absent in the cortex. Interestingly, the genes of the immune system and the HSP70s have comparable levels of expression.
Collapse
|
9
|
Deane CAS, Brown IR. Intracellular Targeting of Heat Shock Proteins in Differentiated Human Neuronal Cells Following Proteotoxic Stress. J Alzheimers Dis 2019; 66:1295-1308. [PMID: 30412487 DOI: 10.3233/jad-180536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
HSPA6 (Hsp70B') is an inducible member of the Hsp70 (HSPA) family of heat shock proteins that is present in the human genome and not found in mouse and rat. Hence it is lacking in current animal models of neurodegenerative diseases. To advance knowledge of the little studied HSPA6, differentiated human neuronal SH-SY5Y cells were treated with the proteotoxic stress-inducing agent MG132. A robust induction of HSPA6 was apparent which localized to the periphery of MG132-induced protein aggregates in the neuronal cytoplasm. Components of the protein disaggregation/refolding machine that co-operate with Hsp70 also targeted the periphery of cytoplasmic protein aggregates, including DNAJB1 (Hsp40-1), HSPH1 (Hsp105α), and HSPB1 (Hsp27). These data suggest that HSPA6 is involved in the response of human neuronal cells to proteotoxic stress that is a feature of neurodegenerative diseases which have been characterized as protein misfolding disorders. Constitutively expressed HSPA8 (Hsc70) also localized tothe periphery of cytoplasmic protein aggregates following the treatment of differentiated human neuronal cells with MG132. HSPA8 could provide a rapid response to proteotoxic stress in neuronal cells, circumventing the time required to upregulate inducible Hsps.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Long non-coding RNA and mRNA analysis of Ang II-induced neuronal dysfunction. Mol Biol Rep 2019; 46:3233-3246. [PMID: 30945068 DOI: 10.1007/s11033-019-04783-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/22/2019] [Indexed: 02/03/2023]
Abstract
The sustained activation of Angiotensin II (Ang II) induces the remodelling of neurovascular units, inflammation and oxidative stress reactions in the brain. Long non-coding RNAs (lncRNAs) play a crucial regulatory role in the pathogenesis of hypertensive neuronal damage. The present study aimed to substantially extend the list of potential candidate genes involved in Ang II-related neuronal damage. This study assessed apoptosis and energy metabolism with Annexin V/PI staining and a Seahorse assay after Ang II exposure in SH-SY5Y cells. The expression of mRNA and lncRNA was investigated by transcriptome sequencing. The integrated analysis of mRNA and lncRNAs and the molecular mechanism of Ang II on neuronal injury was analysed by bioinformatics. Ang II increased the apoptosis rate and reduced the energy metabolism of SH-SY5Y cells. The data showed that 702 mRNAs and 821 lncRNAs were differentially expressed in response to Ang II exposure (244 mRNAs and 432 lncRNAs were upregulated, 458 mRNAs and 389 lncRNAs were downregulated) (fold change ≥ 1.5, P < 0.05). GO and KEGG analyses showed that both DE mRNA and DE lncRNA were enriched in the metabolism, differentiation, apoptosis and repair of nerve cells. This is the first report of the lncRNA-mRNA integrated profile of SH-SY5Y cells induced by Ang II. The novel targets revealed that the metabolism of the vitamin B group, the synthesis of unsaturated fatty acids and glycosphingolipids are involved in the Ang II-related cognitive impairment. Sphingolipid metabolism, the Hedgehog signalling pathway and vasopressin-regulated water reabsorption play important roles in nerve damage.
Collapse
|
11
|
Deane CAS, Brown IR. Knockdown of Heat Shock Proteins HSPA6 (Hsp70B') and HSPA1A (Hsp70-1) Sensitizes Differentiated Human Neuronal Cells to Cellular Stress. Neurochem Res 2017; 43:340-350. [PMID: 29090408 DOI: 10.1007/s11064-017-2429-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022]
Abstract
Heat shock proteins are involved in cellular repair and protective mechanisms that counter characteristic features of neurodegenerative diseases such as protein misfolding and aggregation. The HSPA (Hsp70) multigene family includes the widely studied HSPA1A (Hsp70-1) and the little studied HSPA6 (Hsp70B') which is present in the human genome and not in mouse and rat. The effect of knockdown of HSPA6 and HSPA1A expression was examined in relation to the ability of differentiated human SH-SY5Y neuronal cells to tolerate thermal stress. Low dose co-application of celastrol and arimoclomol, which induces Hsps, enhanced the ability of differentiated neurons to survive heat shock. Small interfering RNA (siRNA) knockdown of HSPA6 and HSPA1A resulted in loss of the protective effect of co-application of celastrol/arimoclomol. More pronounced effects on neuronal viability were apparent at 44 °C heat shock compared to 43 °C. siRNA knockdown suggests that HSPA6 and HSPA1A contribute to protection of differentiated human neuronal cells from cellular stress.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
12
|
Cui QL, Khan D, Rone M, T.S. Rao V, Johnson RM, Lin YH, Bilodeau PA, Hall JA, Rodriguez M, Kennedy TE, Ludwin SK, Antel JP. Sublethal oligodendrocyte injury: A reversible condition in multiple sclerosis? Ann Neurol 2017; 81:811-824. [DOI: 10.1002/ana.24944] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Qiao-Ling Cui
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Damla Khan
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Malena Rone
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Vijayaraghava T.S. Rao
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | | | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Philippe-Antoine Bilodeau
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Jeffery A. Hall
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | | | - Timothy E. Kennedy
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| | - Samuel K. Ludwin
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
- Department of Pathology and Molecular Medicine; Queens University; Kingston Ontario Canada
| | - Jack P. Antel
- Department of Neurology and Neurosurgery; Montreal Neurological Institute and Hospital, McGill University; Montreal Quebec Canada
| |
Collapse
|
13
|
Deane CAS, Brown IR. Differential Targeting of Hsp70 Heat Shock Proteins HSPA6 and HSPA1A with Components of a Protein Disaggregation/Refolding Machine in Differentiated Human Neuronal Cells following Thermal Stress. Front Neurosci 2017; 11:227. [PMID: 28484369 PMCID: PMC5401876 DOI: 10.3389/fnins.2017.00227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/04/2017] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins (Hsps) co-operate in multi-protein machines that counter protein misfolding and aggregation and involve DNAJ (Hsp40), HSPA (Hsp70), and HSPH (Hsp105α). The HSPA family is a multigene family composed of inducible and constitutively expressed members. Inducible HSPA6 (Hsp70B') is found in the human genome but not in the genomes of mouse and rat. To advance knowledge of this little studied HSPA member, the targeting of HSPA6 to stress-sensitive neuronal sites with components of a disaggregation/refolding machine was investigated following thermal stress. HSPA6 targeted the periphery of nuclear speckles (perispeckles) that have been characterized as sites of transcription. However, HSPA6 did not co-localize at perispeckles with DNAJB1 (Hsp40-1) or HSPH1 (Hsp105α). At 3 h after heat shock, HSPA6 co-localized with these members of the disaggregation/refolding machine at the granular component (GC) of the nucleolus. Inducible HSPA1A (Hsp70-1) and constitutively expressed HSPA8 (Hsc70) co-localized at nuclear speckles with components of the machine immediately after heat shock, and at the GC layer of the nucleolus at 1 h with DNAJA1 and BAG-1. These results suggest that HSPA6 exhibits targeting features that are not apparent for HSPA1A and HSPA8.
Collapse
Affiliation(s)
- Catherine A S Deane
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto ScarboroughToronto, ON, Canada
| |
Collapse
|
14
|
Deane CAS, Brown IR. Components of a mammalian protein disaggregation/refolding machine are targeted to nuclear speckles following thermal stress in differentiated human neuronal cells. Cell Stress Chaperones 2017; 22:191-200. [PMID: 27966060 PMCID: PMC5352593 DOI: 10.1007/s12192-016-0753-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/25/2016] [Accepted: 11/25/2016] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. They counter protein misfolding and aggregation that are characteristic features of neurodegenerative diseases. Hsps act co-operatively in disaggregation/refolding machines that assemble at sites of protein misfolding and aggregation. Members of the DNAJ (Hsp40) family act as "holdases" that detect and bind misfolded proteins, while members of the HSPA (Hsp70) family act as "foldases" that refold proteins to biologically active states. HSPH1 (Hsp105α) is an important additional member of the mammalian disaggregation/refolding machine that acts as a disaggregase to promote the dissociation of aggregated proteins. Components of a disaggregation/refolding machine were targeted to nuclear speckles after thermal stress in differentiated human neuronal SH-SY5Y cells, namely: HSPA1A (Hsp70-1), DNAJB1 (Hsp40-1), DNAJA1 (Hsp40-4), and HSPH1 (Hsp105α). Nuclear speckles are rich in RNA splicing factors, and heat shock disrupts RNA splicing which recovers after stressful stimuli. Interestingly, constitutively expressed HSPA8 (Hsc70) was also targeted to nuclear speckles after heat shock with elements of a disaggregation/refolding machine. Hence, neurons have the potential to rapidly assemble a disaggregation/refolding machine after cellular stress using constitutively expressed Hsc70 without the time lag needed for synthesis of stress-inducible Hsp70. Constitutive Hsc70 is abundant in neurons in the mammalian brain and has been proposed to play a role in pre-protecting neurons from cellular stress.
Collapse
Affiliation(s)
- Catherine A S Deane
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Centre for the Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
15
|
Becirovic L, Brown IR. Targeting of Heat Shock Protein HSPA6 (HSP70B') to the Periphery of Nuclear Speckles is Disrupted by a Transcription Inhibitor Following Thermal Stress in Human Neuronal Cells. Neurochem Res 2016; 42:406-414. [PMID: 27743288 DOI: 10.1007/s11064-016-2084-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. The intracellular localization of inducible members of the HSPA (HSP70) family can be used as an index to identify stress-sensitive sites in differentiated human neuronal cells. Following thermal stress, the little studied HSPA6 (HSP70B') was targeted to the periphery of nuclear speckles (perispeckles) that are sites of transcription factories. Triptolide, a fast-acting transcription inhibitor, knocked down levels of the large subunit of RNA polymerase II, RPB1, during the time-frame when HSPA6 associated with perispeckles. Administration of triptolide to heat shocked human neuronal SH-SY5Y cells, disrupted HSPA6 localization to perispeckles, suggesting the involvement of HSPA6 in transcriptional recovery after stress. The HSPA6 gene is present in the human genome but is not found in the genomes of the mouse and rat. Hence current animal models of neurodegenerative diseases lack a member of the HSPA family that exhibits the feature of stress-induced targeting to perispeckles.
Collapse
Affiliation(s)
- Larissa Becirovic
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Ian R Brown
- Department of Biological Sciences, Centre for the Neurobiology of Stress, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|