1
|
Romero A, Figueras A, Novoa B. Spring viraemia of carp virus modulates the time-dependent unfolded protein response to facilitate viral replication. Front Immunol 2025; 16:1576758. [PMID: 40248709 PMCID: PMC12003378 DOI: 10.3389/fimmu.2025.1576758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
Introduction The spring viraemia of carp virus (SVCV) poses a significant threat to global aquaculture, yet effective antiviral drugs and vaccines remain unavailable. Understanding the interplay between host-pathogen interactions and SVCV replication is crucial for devising preventive strategies. Methods ZF4 cells were exposed to UV-inactivated SVCV or live SVCV at different multiplicities of infection, and the modulation of the unfolded protein response (UPR) was assayed by qPCR at different times. Moreover, ZF4 cells were treated with several UPR modulators to investigate their effect on viral replication. The UPR was also modulated in vivo in zebrafish larvae, and its impact on the survival against SVCV infection was evaluated. Results and conclusions This study reveals how SVCV exploits the host's UPR to facilitate its replication. SVCV targets the immunoglobulin heavy chain-binding protein (BiP) and the activating transcription factor 4 (ATF4) during early infection to enhance viral RNA synthesis and translation. At later stages, activation of the BiP, the PKR-like ER kinase (PERK), and the inositol-requiring enzyme 1 alpha (IRE1α) pathways supports the release of viral progeny and induces cellular processes, including immune responses and apoptotic cell death. Furthermore, the data demonstrate that modulating UPR pathways, particularly ATF6 and PERK, significantly affect viral replication, providing a novel avenue for antiviral drug development. Preliminary in vivo studies suggest the feasibility of chemically modulating the UPR to combat SVCV, though optimizing administration conditions to maximize efficacy while minimizing side effects warrants further investigation. These findings offer critical insights into the molecular mechanisms underlying SVCV pathogenesis and highlight promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Alejandro Romero
- Instituto de Investigaciones Marinas Spanish National Research Council
(CSIC), Vigo, Spain
| | | | - Beatriz Novoa
- Instituto de Investigaciones Marinas Spanish National Research Council
(CSIC), Vigo, Spain
| |
Collapse
|
2
|
Kuzminsky I, Ghanim M. Immunity responses as checkpoints for efficient transmission of begomoviruses by whiteflies. Virology 2025; 605:110462. [PMID: 40020542 DOI: 10.1016/j.virol.2025.110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025]
Abstract
Begomoviruses are a group of single stranded DNA plant viruses exclusively transmitted by the sweet potato whitefly Bemisia tabaci in a persistent, circulative manner. After acquisition from plant phloem, this group of viruses circulate and are retained within the whitefly, interacting with tissues, cells and molecular pathways for maintaining the safety of the infective intact virions, by exploiting cellular mechanisms and avoiding degradation by the insect immune responses. During retention, the virions are internalized in the midgut cells, exit and spend hours-days in the hemolymph and cross into salivary gland cells, before transmission. Destroying this group of viruses by the insect immune system seems inefficient for the most part, by examining their very efficient transmission. Thus, within the various sites along the transmission pathway especially in the midgut, it is thought that the immune system with its various layers is activated for avoiding the damage caused by the viruses on one hand, and for ensuring their safe circulation and transmission on the other hand. Begomoviruses have evolved mechanisms for counteracting and exploiting the activated immune system for their safe translocation within the whitefly. In this review, we discuss the various levels of immunity activated against begomoviruses in B. tabaci, taking other pathogen-vector systems as examples and reflecting relevant components on the interactions between B. tabaci and Begomoviruses.
Collapse
Affiliation(s)
- Ilana Kuzminsky
- Department of Entomology, Volcani Center, Rishon LeZion, 7505101, Israel; Department of Agroecology and Plant Health, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
3
|
Li Q, Kang C. Dengue virus NS4B protein as a target for developing antivirals. Front Cell Infect Microbiol 2022; 12:959727. [PMID: 36017362 PMCID: PMC9398000 DOI: 10.3389/fcimb.2022.959727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Dengue virus is an important pathogen affecting global population while no specific treatment is available against this virus. Effort has been made to develop inhibitors through targeting viral nonstructural proteins such as NS3 and NS5 with enzymatic activities. No potent inhibitors entering clinical studies have been developed so far due to many challenges. The genome of dengue virus encodes four membrane-bound nonstructural proteins which do not possess any enzymatic activities. Studies have shown that the membrane protein-NS4B is a validated target for drug discovery and several NS4B inhibitors exhibited antiviral activities in various assays and entered preclinical studies.. Here, we summarize the recent studies on dengue NS4B protein. The structure and membrane topology of dengue NS4B derived from biochemical and biophysical studies are described. Function of NS4B through protein-protein interactions and some available NS4B inhibitors are summarized. Accumulated studies demonstrated that cell-based assays play important roles in developing NS4B inhibitors. Although the atomic structure of NS4B is not obtained, target-based drug discovery approach become feasible to develop NS4B inhibitors as recombinant NS4B protein is available.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
4
|
Cheung YP, Park S, Pagtalunan J, Maringer K. The antiviral role of NF-κB-mediated immune responses and their antagonism by viruses in insects. J Gen Virol 2022; 103. [PMID: 35510990 DOI: 10.1099/jgv.0.001741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The antiviral role of innate immune responses mediated by the NF-κB family of transcription factors is well established in vertebrates but was for a long time less clear in insects. Insects encode two canonical NF-κB pathways, the Toll and Imd ('immunodeficiency') pathways, which are best characterised for their role in antibacterial and antifungal defence. An increasing body of evidence has also implicated NF-κB-mediated innate immunity in antiviral responses against some, but not all, viruses. Specific pattern recognition receptors (PRRs) and molecular events leading to NF-κB activation by viral pathogen-associated molecular patterns (PAMPs) have been elucidated for a number of viruses and insect species. Particularly interesting are recent findings indicating that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway detects viral RNA to activate NF-κB-regulated gene expression. We summarise the literature on virus-NF-κB pathway interactions across the class Insecta, with a focus on the dipterans Drosophila melanogaster and Aedes aegypti. We discuss potential reasons for differences observed between different virus-host combinations, and highlight similarities and differences between cGAS-STING signalling in insects versus vertebrates. Finally, we summarise the increasing number of known molecular mechanisms by which viruses antagonise NF-κB responses, which suggest that NF-κB-mediated immunity exerts strong evolutionary pressures on viruses. These developments in our understanding of insect antiviral immunity have relevance to the large number of insect species that impact on humans through their transmission of human, livestock and plant diseases, exploitation as biotechnology platforms, and role as parasites, pollinators, livestock and pests.
Collapse
Affiliation(s)
- Yin P Cheung
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sohyun Park
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Justine Pagtalunan
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
5
|
Flavivirus infections induce a Golgi stress response in vertebrate and mosquito cells. Sci Rep 2021; 11:23489. [PMID: 34873243 PMCID: PMC8648732 DOI: 10.1038/s41598-021-02929-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023] Open
Abstract
The stress of the Golgi apparatus is an autoregulatory mechanism that is induced to compensate for greater demand in the Golgi functions. No examples of Golgi stress responses due to physiological stimuli are known. Furthermore, the impact on this organelle of viral infections that occupy the vesicular transport during replication is unknown. In this work, we evaluated if a Golgi stress response is triggered during dengue and Zika viruses replication, two flaviviruses whose replicative cycle is heavily involved with the Golgi complex, in vertebrate and mosquito cells. Using GM-130 as a Golgi marker, and treatment with monensin as a positive control for the induction of the Golgi stress response, a significant expansion of the Golgi cisternae was observed in BHK-21, Vero E6 and mosquito cells infected with either virus. Activation of the TFE3 pathway was observed in the infected cells as indicated by the translocation from the cytoplasm to the nucleus of TFE3 and increased expression of pathway targeted genes. Of note, no sign of activation of the stress response was observed in CRFK cells infected with Feline Calicivirus (FCV), a virus released by cell lysis, not requiring vesicular transport. Finally, dilatation of the Golgi complex and translocation of TFE3 was observed in vertebrate cells expressing dengue and Zika viruses NS1, but not NS3. These results indicated that infections by dengue and Zika viruses induce a Golgi stress response in vertebrate and mosquito cells due to the increased demand on the Golgi complex imposed by virion and NS1 processing and secretion.
Collapse
|
6
|
Elrefaey AME, Hollinghurst P, Reitmayer CM, Alphey L, Maringer K. Innate Immune Antagonism of Mosquito-Borne Flaviviruses in Humans and Mosquitoes. Viruses 2021; 13:2116. [PMID: 34834923 PMCID: PMC8624719 DOI: 10.3390/v13112116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 01/01/2023] Open
Abstract
Mosquito-borne viruses of the Flavivirus genus (Flaviviridae family) pose an ongoing threat to global public health. For example, dengue, Japanese encephalitis, West Nile, yellow fever, and Zika viruses are transmitted by infected mosquitoes and cause severe and fatal diseases in humans. The means by which mosquito-borne flaviviruses establish persistent infection in mosquitoes and cause disease in humans are complex and depend upon a myriad of virus-host interactions, such as those of the innate immune system, which are the main focus of our review. This review also covers the different strategies utilized by mosquito-borne flaviviruses to antagonize the innate immune response in humans and mosquitoes. Given the lack of antiviral therapeutics for mosquito-borne flaviviruses, improving our understanding of these virus-immune interactions could lead to new antiviral therapies and strategies for developing refractory vectors incapable of transmitting these viruses, and can also provide insights into determinants of viral tropism that influence virus emergence into new species.
Collapse
Affiliation(s)
- Ahmed M. E. Elrefaey
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| | - Philippa Hollinghurst
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | | | - Luke Alphey
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Woking GU24 0NF, UK; (P.H.); (C.M.R.); (L.A.)
| |
Collapse
|
7
|
Lu H, Zhan Y, Li X, Bai X, Yuan F, Ma L, Wang X, Xie M, Wu W, Chen Z. Novel insights into the function of an N-terminal region of DENV2 NS4B for the optimal helicase activity of NS3. Virus Res 2021; 295:198318. [PMID: 33485995 DOI: 10.1016/j.virusres.2021.198318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/19/2020] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Dengue virus NS3 is a prototypical DEx(H/D) helicase that binds and hydrolyzes NTP to translocate along and unwind double-stranded nucleic acids. NS3 and NS4B are essential components of the flavivirus replication complex. Evidences showed that NS4B interacted with NS3 and modulated the helicase activity of NS3. Despite important insights into structural, mechanistic, and cellular aspects of the NS3 function, there is still a gap in understanding how it coordinates the helicase activities within the replicase complex for efficient replication. Here, using the DENV2 as a model, we redefined the critical region of NS4B required for NS3 function by pull-down and MST assays. The FRET-based unwinding assay showed that NS3 would accelerate unwinding duplex nucleic acids in the presence of NS4B (51-83). The simulated NS3-NS4B complex models based on the rigid-body docking delineated the potential interaction sites located in the conserved motif within the core domain of NS3. Mutations in motif I (I190A) and motif III (P319L) of NS3 interfered with the unwinding activity stimulated by NS4B. Upon binding to the NS3 helicase, NS4B assisted NS3 to dissociate from single-stranded nucleic acid and enabled NS3 helicase to keep high activity at high ATP concentrations. These results suggest that NS4B probably serves as an essential cofactor for NS3 to coordinate the ATP cycles and nucleic acid binding during viral genome replication.
Collapse
Affiliation(s)
- Hongyun Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yumeng Zhan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaorong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuehui Bai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feifei Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lulu Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xue Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengjia Xie
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Li Z, Shen Y, Song Y, Zhang Y, Zhang C, Ma Y, Zhang F, Chen L. ER stress-related molecules induced by Hantaan virus infection in differentiated THP-1 cells. Cell Stress Chaperones 2021; 26:41-50. [PMID: 32870480 PMCID: PMC7736395 DOI: 10.1007/s12192-020-01150-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
Endoplasmic reticulum stress (ER stress) can be induced by virus infection. In this part, we explored whether Hantaan virus (HTNV) infection could induce ER stress in differentiated THP-1 (dTHP-1) cells. It showed that the mRNA and protein levels of ER stress-related 78 kDa glucose-regulated protein (GRP78, HSPA5) and mRNA levels of X box-binding protein 1 (XBP-1), activating transcription factor 6(ATF6) and PKR-like ER kinase (PERK) after HTNV infection, were significantly higher than that in uninfected control group. However, the mRNA levels of C/EBP homologous protein (CHOP), glucose-regulated protein 94 (GRP94, HSPC4), and inositol-requiring enzyme1 (IRE1) were not significantly different between the infected group and the untreated group in 2 h after virus infection. It is unusual in activating GRP78 but not GRP94. Meanwhile, dTHP-1 cells infected with HTNV at 12 h did not show obvious apoptosis. These results indicated that the HTNV infection could induce the unfolded protein response (UPR) in dTHP-1 cells, without directly leading to cell apoptosis during 12 h after virus infection.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
- Department of Medical Laboratory Technology, Xi'an Health School, Xi'an, Shaanxi, China
| | - Yuting Shen
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yun Song
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
9
|
Tian JN, Yang CC, Chuang CK, Tsai MH, Wu RH, Chen CT, Yueh A. A Dengue Virus Type 2 (DENV-2) NS4B-Interacting Host Factor, SERP1, Reduces DENV-2 Production by Suppressing Viral RNA Replication. Viruses 2019; 11:v11090787. [PMID: 31461934 PMCID: PMC6783944 DOI: 10.3390/v11090787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/12/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Host cells infected with dengue virus (DENV) often trigger endoplasmic reticulum (ER) stress, a key process that allows viral reproduction, without killing the host cells until the late stage of the virus life-cycle. However, little is known regarding which DENV viral proteins interact with the ER machinery to support viral replication. In this study, we identified and characterized a novel host factor, stress-associated ER protein 1 (SERP1), which interacts with the DENV type 2 (DENV-2) NS4B protein by several assays, for example, yeast two-hybrid, subcellular localization, NanoBiT complementation, and co-immunoprecipitation. A drastic increase (34.5-fold) in the SERP1 gene expression was observed in the DENV-2-infected or replicon-transfected Huh7.5 cells. The SERP1 overexpression inhibited viral yields (37-fold) in the DENV-2-infected Huh7.5 cells. In contrast, shRNAi-knockdown and the knockout of SERP1 increased the viral yields (3.4- and 16-fold, respectively) in DENV-2-infected HEK-293 and Huh7.5 cells, respectively. DENV-2 viral RNA replication was severely reduced in stable SERP1-expressing Huh7.5 cells transfected with DENV-2 replicon plasmids. The overexpression of DENV-2 NS4B alleviated the inhibitory effect of SERP1 on DENV-2 RNA replication. Taking these results together, we hypothesized that SERP1 may serve as an antiviral player during ER stress to restrict DENV-2 infection. Our studies revealed novel anti-DENV drug targets that may facilitate anti-DENV drug discovery.
Collapse
Affiliation(s)
- Jia-Ni Tian
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Chi-Chen Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chiu-Kai Chuang
- Division of Animal Technology, Agricultural Technology Research Institute, Miaoli 35053, Taiwan
| | - Ming-Han Tsai
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ren-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan.
| |
Collapse
|
10
|
Japanese Encephalitis Virus Induces Apoptosis and Encephalitis by Activating the PERK Pathway. J Virol 2019; 93:JVI.00887-19. [PMID: 31189710 DOI: 10.1128/jvi.00887-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022] Open
Abstract
Accumulated evidence demonstrates that Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, the precise role of PERK in JEV-induced apoptosis and encephalitis remains unknown. Here, we report that JEV infection activates the PERK-ATF4-CHOP apoptosis pathway both in vitro and in vivo PERK activation also promotes the formation of stress granule, which in turn represses JEV-induced apoptosis. However, PERK inhibitor reduces apoptosis, indicating that JEV-activated PERK predominantly induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway. Among JEV proteins that have been reported to induce ER stress, only JEV NS4B can induce PERK activation. PERK has been reported to form an active molecule by dimerization. The coimmunoprecipitation assay shows that NS4B interacts with PERK. Moreover, glycerol gradient centrifugation shows that NS4B induces PERK dimerization. Both the LIG-FHA and the LIG-WD40 domains within NS4B are required to induce PERK dimerization, suggesting that JEV NS4B pulls two PERK molecules together by simultaneously interacting with them via different motifs. PERK deactivation reduces brain cell damage and encephalitis during JEV infection. Furthermore, expression of JEV NS4B is sufficient to induce encephalitis via PERK in mice, indicating that JEV activates PERK primarily via its NS4B to cause encephalitis. Taken together, our findings provide a novel insight into JEV-caused encephalitis.IMPORTANCE Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, whether the PERK pathway of ER stress response plays important roles in JEV-induced apoptosis and encephalitis remains unknown. Here, we found that JEV infection activates ER stress sensor PERK in neuronal cells and mouse brains. PERK activation induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway upon JEV infection. Among the JEV proteins prM, E, NS1, NS2A, NS2B, and NS4B, only NS4B activates PERK. Moreover, activated PERK participates in apoptosis and encephalitis induced by JEV and NS4B. These findings provide a novel therapeutic approach for JEV-caused encephalitis.
Collapse
|
11
|
A small molecule inhibitor of ER-to-cytosol protein dislocation exhibits anti-dengue and anti-Zika virus activity. Sci Rep 2019; 9:10901. [PMID: 31358863 PMCID: PMC6662757 DOI: 10.1038/s41598-019-47532-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/18/2019] [Indexed: 02/08/2023] Open
Abstract
Infection with flaviviruses, such as dengue virus (DENV) and the recently re-emerging Zika virus (ZIKV), represents an increasing global risk. Targeting essential host elements required for flavivirus replication represents an attractive approach for the discovery of antiviral agents. Previous studies have identified several components of the Hrd1 ubiquitin ligase-mediated endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, a cellular protein quality control process, as host factors crucial for DENV and ZIKV replication. Here, we report that CP26, a small molecule inhibitor of protein dislocation from the ER lumen to the cytosol, which is an essential step for ERAD, has broad-spectrum anti-flavivirus activity. CP26 targets the Hrd1 complex, inhibits ERAD, and induces ER stress. Ricin and cholera toxins are known to hijack the protein dislocation machinery to reach the cytosol, where they exert their cytotoxic effects. CP26 selectively inhibits the activity of cholera toxin but not that of ricin. CP26 exhibits a significant inhibitory activity against both DENV and ZIKV, providing substantial protection to the host cells against virus-induced cell death. This study identified a novel dislocation inhibitor, CP26, that shows potent anti-DENV and anti-ZIKV activity in cells. Furthermore, this study provides the first example of the targeting of host ER dislocation with small molecules to combat flavivirus infection.
Collapse
|